[go: up one dir, main page]

JP4977932B2 - Lithium ion secondary battery and manufacturing method thereof - Google Patents

Lithium ion secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4977932B2
JP4977932B2 JP2001207501A JP2001207501A JP4977932B2 JP 4977932 B2 JP4977932 B2 JP 4977932B2 JP 2001207501 A JP2001207501 A JP 2001207501A JP 2001207501 A JP2001207501 A JP 2001207501A JP 4977932 B2 JP4977932 B2 JP 4977932B2
Authority
JP
Japan
Prior art keywords
current collecting
sealing plate
lithium ion
collecting lead
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001207501A
Other languages
Japanese (ja)
Other versions
JP2003022796A (en
Inventor
伸治 村重
聡 倉中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001207501A priority Critical patent/JP4977932B2/en
Publication of JP2003022796A publication Critical patent/JP2003022796A/en
Application granted granted Critical
Publication of JP4977932B2 publication Critical patent/JP4977932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池ケース内の極板群と封口板が集電リードにより接続されているリチウムイオン二次電池およびその製造方法に関し、特に集電リードが芯材のような薄型であるものの接続構造に関する。
【0002】
【従来の技術】
従来、リチウムイオン二次電池の電池ケースは、ニッケル水素蓄電池などと同様に鉄ケースがよく使われていた。最近では、角型電池などで軽量化のためアルミケースが使われている。鉄ケースのリチウムイオン二次電池では、電池ケースが負極端子を兼ね、正極端子は電池ケースとは絶縁されている。逆に材料の極性の違いから、アルミケースのリチウムイオン二次電池では、電池ケースが正極端子を兼ね、負極端子は電池ケースとは絶縁されている。
【0003】
電池ケースと極板集電体との接続は、直接接触させて電気接続を取る方法や、集電リードを介し、スポット溶接する方法など様々な方法がある。また、溶接部位もケース底の他、様々なものがあり、角型電池などでは封口板がケースと一体になっているので、封口板に集電リードが溶接される。
【0004】
特開平9−171809号公報には、集電体の溶接のための溶接工程を簡略化し、かつ、集電体の溶接を確実にするために、極板の集電体である金属箔の一部を引き出して集電リードとする箔リードとし、この箔リードを電池ケースと封口板の間に挟み、レーザ封口と同時に溶接することが記載されている。
【0005】
この箔リードは、近年のリチウム二次電池の部品点数の減少による低コスト化、または、発電要素以外の部品の体積の削減による高容量化という研究開発の流れにも一致しているため、最近、特に注目されている。
【0006】
ところで、この箔リードを電池ケースと封口板の間に挟み、レーザ封口と同時に溶接する構成には、電池を落下させた時などのリード切れや短絡という課題があり、これらの課題を解決するための構成も各種提案されている。(特開2000−200595号公報等)
【0007】
【発明が解決しようとする課題】
しかし、以上のような構成では、リード溶接と封口溶接が同時に行われるため、封口が不完全になりやすく、歩留まりが低下すると言う課題があった。本発明は、この課題を解決し、封口部の信頼性の高いリチウムイオン二次電池を効率的に提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、本発明の電池は、正極芯材または負極芯材の一部分は、活物質が保持されていない未塗工部であり、さらに前記未塗工部の一部分は、極板群から引き出されて集電リードとなっており、前記集電リードの端部は、前記集電リードと主たる構成材料が同じ捨て材と、前記封口板の間に挟まれてレーザ溶接されていることを特徴とするものである。
【0009】
ここで、前記集電リードは前記未塗工部の一部分に切り欠けを入れて、前記切り欠けを折り返すことによって構成されていることが好ましく、さらに、前記未塗工部は前記芯材の端にあり、前記集電リードは前記未塗工部の先端部、すなわち芯材の先端部に、切り込みを入れて折り返すことによって構成されていることが、特に好ましい。
【0010】
以上のような構成にすることで、封口板と集電リードが確実に溶接され、封口板と電池ケースの間には、何も挟まれていないため封口が効率良く行える。
【0011】
本発明の電池の第2の構成として、捨て材の一部が折れ曲がり前記封口板と一体になっており、集電リードは、その捨て材と封口板の間に挟まれてレーザ溶接されていることを特徴とする。
【0012】
この構成を持つ電池の製造方法は、電極の未塗工部の一部分を、極板群から引き出して集電リードを作成し、前記集電リードの端部を、あらかじめ封口板に設置されている位置決めリブを折り曲げて挟みこむことで仮固定し、前記仮固定部分をレーザ溶接で固定する方法を用いる。
【0013】
この製造方法は、集電リードの位置決めが容易なため量産に向いている。
【0014】
本発明の電池の封口板は、薄型封口板であり、さらに薄型封口板の周囲および中央部に補強リブが形成されていることが好ましい。この構成にすると、封口板の強度を保ちながら、電池内の空間を大きくして容量を向上させることが出来る。
【0015】
【発明の実施の形態】
本発明の第1の構成のリチウムイオン二次電池は、正極活物質を正極芯材に保持した正極および負極活物質を負極芯材に保持した負極とセパレータとからなる極板群が電池ケース内に挿入されており、極板群と封口板が集電リードにより接続されているリチウムイオン二次電池において、前記正極芯材または負極芯材の一部分は、活物質が保持されていない未塗工部であり、さらに前記未塗工部の一部分は、極板群から引き出されて集電リードとなっており、前記集電リードの端部は、前記集電リードと主たる構成材料が同じ捨て材と前記封口板の間に挟まれてレーザ溶接されていることを特徴とするものである。
【0016】
本発明の正極活物質は、従来公知の正極材料を用いることができる。例えば、LiXCoO2、LiXNiO2、LiXMnO2、LiXCoYNi1-Y2、LiXMn24があげられる。ここで、上記のX値は充放電開始前の値であり充放電により増減する。また、複数の異なった正極材料を混合して用いることも可能である。
【0017】
本発明の正極芯材は、用いる正極材料の充放電電位において化学変化を起こさない電子伝導体であれば何でもよいが、特に、アルミニウムあるいはアルミニウム合金が好ましい。また、表面処理により芯材表面に凹凸を付けることも望ましい。形状は、特に箔が好ましい。
【0018】
前記活物質は、従来公知の導電剤および結着剤と混合し、ペースト状にして芯材に塗着し、乾燥および圧延を経て芯材に保持される。
【0019】
本発明の負極活物質は、天然黒鉛や人造黒鉛などの炭素が主に、使われる。
【0020】
本発明に用いられる負極芯材としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよいが、特に、銅あるいは銅合金が好ましい。これらの材料の表面を酸化して用いることもできる。また、表面処理により芯材表面に凹凸を付けることが望ましい。形状は、特に箔が好ましい。
【0021】
前記活物質は、正極と同様、従来公知の導電剤および結着剤と混合し、ペースト状にして芯材に塗着し、乾燥および圧延を経て芯材に保持される。
【0022】
本発明に用いられるセパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の微多孔性薄膜が用いられる。また、一定温度以上で孔を閉塞し、抵抗をあげる機能を持つことが好ましく、耐有機溶剤性と疎水性からポリプロピレン、ポリエチレンなどの単独又は組み合わせたオレフィン系ポリマーなどからつくられたシートが用いられる。セパレータの孔径は、電極シートより脱離した正負極材料、結着剤、導電剤が透過しない範囲であることが望ましく、例えば、0.01〜1μmであるものが望ましい。セパレータの厚みは、一般的には、5〜50μmが用いられる。また、空孔率は、電子やイオンの透過性と素材や膜圧に応じて決定されるが、一般的には30〜70%であることが望ましい。
【0023】
以上述べた正極、負極およびセパレータを積層または渦巻き状に捲回して極板群を構成する。
【0024】
本発明の電池ケースは、構成された電池において化学変化を起こさない材質なら構わないが、アルミキルド鋼などの鉄系材料やアルミニウム合金などのアルミ系材料が好ましい。特に、電池の軽量化の観点からアルミ系材料が好ましい。
【0025】
本発明の封口板に関しても、電池ケースと同様、電解液などに対して、化学変化を起こさない材質なら構わない。電池ケースとの封口に関しては、大きく分けてかしめと溶接があるが、溶接する場合は、電池ケースとおなじ材質であるのが好ましい。また、電池の軽量化の観点からアルミ系材料が好ましい。
【0026】
本発明の集電リードは芯材の未塗工部の一部分が極板群より引き出されたものである。この集電リードの作成については、あらかじめ、芯材の切断による作成時に集電リードにする予定の芯材の部分を残して作成する方法など様々な方法がある。これらの中でも、集電リードは前記未塗工部の一部分に切り欠けを入れて、前記切り欠けを折り返すことによって構成されているのが好ましい。
【0027】
前述の方法には、特開平9−171809号公報に記載されているように略コ字状の切り欠けを入れて、それを折り返すことによって集電リードを作成する方法がある。それ以外にも切り欠けでなく、芯材の幅方向の端面から切り込みを芯材の途中まで入れて折り返す方法がある。
【0028】
さらにこれらの方法の中で、前記未塗工部は前記芯材の終端にあり、前記集電リードは前記未塗工部の先端部、すなわち芯材の先端部に、切り込みを入れて折り返すことによって構成されていることが、特に好ましい。この構成にすることにより、芯材の途中に切り欠けや、切り込みを作る構成に比べ、加工する部分が少なくなる。特に、極板群が渦巻き状の巻回型の場合には、集電リードが極板群の中に巻き込まれる可能性が極めて少なくなり、効果的である。つまり、極板群は渦巻き極板群であり、前記渦巻き極板群の最外周に前記未塗工部および前記集電リードが配置されていることが、好適である。ただし、未塗工部は最外周に限定されるものではなく、封口板や対極の集電リードとの関係により、巻き始め部や電極の中央部に位置しても良い。
【0029】
なお、前記集電リードは、保護テープにより前記未塗工部に固定されていることが、好ましい。この構成により集電リードの特に端部の位置が固定するため、後の溶接工程が容易になる。
【0030】
集電リードの材質に関しては、当然芯材の材質と同じものになるが、本発明の集電リードの端部は、集電リードと主たる構成材料が同じ捨て材と封口板の間に挟まれてレーザ溶接されているものなので、封口板と同じ材質であるのが好ましい。つまり、アルミ系材料が好ましい。この時、集電リードを取り出した極板は正極となる。
【0031】
本発明の集電リードのような金属箔を、封口板のような金属板に溶接するのは、箔が破れやすいため難しい。通常は、超音波溶接法等がよく使われるが、溶接条件を一定にするのが難しく、例えば一日の気温の変化ですぐに溶接可能範囲を逸脱する。このため歩留まりが悪く、多量の個数を量産する電池の生産には不適である。
【0032】
したがって、本発明の溶接構造は、図1に示すように集電リード1を、同じ構成材料の捨て材2と封口板3とで挟み、レーザ溶接している。このような構成にすることにより、集電リード1が封口板3に確実に溶接されるという効果以外に、電池を落とした時などの衝撃で集電リード1が引っ張られた時も、捨て材2が集電リード1を面状に抑えているのでリード切れを起こしにくいという効果を生じる。
【0033】
さらに、捨て材が図2に示す捨て材2’のようにその端が折れ曲がり封口板3’と接合部4にて一体になっていると、挟みこまれた集電リード1の封口板3’内での位置が常にその場所に固定できるため好適である。
【0034】
この構造の溶接方法は、本発明の集電リードの端部を、図3に示すように、あらかじめ封口板3’に設置されている位置決めリブ5を折り曲げて挟みこむことで図2のごとく仮固定し、捨て材2’の上から集電リード1と重なっている部分をレーザ溶接で固定する。この方法だと集電リード1の位置決めが容易になり、精度もあがる。さらに、その結果として、位置ずれに対する余裕を見なくて良いため捨て材2’の大きさも小さくて済む。
【0035】
本発明の第2の構成のリチウムイオン二次電池は、正極活物質を正極芯材に保持した正極および負極活物質を負極芯材に保持した負極とセパレータとからなる極板群が電池ケース内に挿入されており、極板群と封口板が集電リードにより接続されているリチウムイオン二次電池において、前記封口板は薄型封口板であり、前記薄型封口板の周囲および中央部に補強リブが形成されていることを特徴としたものである。封口板を薄型にすると折れ曲がり等の強度が弱くなるが、本発明の封口板には周囲および中央部に補強リブが形成されているため、強度が強化されている。この効果は、封口板の材質がアルミ系材料である時に顕著な効果を発揮する。
【0036】
以上述べたきたように、本発明の集電リードおよび本発明の封口板の主たる構成材料はアルミニウムであることが好ましい。このようなアルミ系材料には、日本工業規格(JIS H4000(1988)、JIS H4160(1994)等)に規定されているように、A1085、A1080、A1070及びA1050などの純アルミやA3003、A3004、A3005及びA3105などの強度を強化したアルミ合金などがある。
【0037】
【実施例】
次に、実施例を用いて、本発明の具体例について説明する。
【0038】
<実施例1>
本発明の電池の特性を評価するため、以下に説明する角型電池を作製した。
【0039】
図4に本発明の第1の実施例の角型電池の構造図(一部断面図)を示す。
【0040】
図4において、リチウムイオン二次電池は正極6、負極7とセパレータ8が捲回されて、極板群9となっている。
【0041】
正極6はコバルト酸リチウム粉末85重量%に対し、導電剤の炭素粉末10重量%と結着剤のポリ弗化ビニリデン樹脂(PVdF樹脂)5重量%を混合し、これらを脱水NMPに分散させてスラリーを作製し、厚さ15μmのアルミ(A1085)箔からなる正極芯材上に塗布し、乾燥後、圧延して作製した。この正極6の一方の端は未塗工部になっている。
【0042】
負極7は負極活物質として人造黒鉛粉末を用い、これの95重量%に対して、結着剤のPVdF樹脂を5重量%を混合し、これらを脱水NMPに分散させてスラリーを作製し、厚さ12μmの銅(C1100)箔からなる負極芯材上に塗布し、乾燥後、圧延して作製した。
【0043】
セパレータ8には厚さ27μmの微多孔性ポリエチレン単層膜を使用した。
【0044】
極板群9は、正極6の未塗工部が最外周になるように捲回されている。さらに、極板群9は、ケース10内に非水溶媒に電解質塩を溶解した電解液(図示せず)とともに内蔵されており、封口板11で密閉されている。ケース10は強度のあるアルミ系材料(A3005)で作製し、封口板11は、安価なアルミ系材料(A3003)で作製した。
【0045】
封口板11には、封栓12、正極端子13および負極端子14が組み込まれている。封栓12は、電池を組み立てた後、電解液を注液口から注入するが、その注液口を封じたもので、封口板11と同じ材質である。
【0046】
正極端子13は、アルミとニッケルのクラッド板から出来ている。ケース10および封口板11は、電気的に正極と繋がっているため、外部回路との接続はケース10および封口板11のどこから取っても良いが、アルミ系材料の場合、ニッケルリードとの溶接が難しい。そのため、クラッド板を用い、封口板11とは、アルミ側で溶接し、外部リードを取りやすいように外側がニッケルになっている。したがって、正極リード15は封口板11に溶接され、正極端子とは直接には接続されていない。
【0047】
この正極リード15は、正極6の未塗工部である終端に10mm幅で切り込み16を入れ、折り返して作製した。また、図4では、末端部を展開しているため図示していないが、実施例の電池においては、この正極リード15や切り込み16は、保護テープ(図示せず)にて極板群9に固定されている。
【0048】
負極端子14には、鉄系材料(SWCH)を用い、厚さ150μmのニッケルからなる負極リード17との接合部は、溶接しやすいようにニッケルメッキがされている。この負極端子14は、封口板11とは絶縁樹脂で絶縁されている。負極リード17は、負極7の巻き始めに未塗工部を作り、芯材にスポット溶接されている。
【0049】
ケース10内の極板群9は、樹脂製の枠体18で封口板と絶縁されており、正極リード15は枠体18の端の切り欠け19から引き出されて、封口板11と溶接されている。また、負極リード17は、枠体18の中央の角穴20から引き出されて負極端子14に接続されている。
【0050】
また、電解液には、ECとEMCの体積比1:1の混合溶媒にLiPF6を1モル/リットル溶解したものを使用した。電解液量は、約2.5mlとした。
【0051】
なお、この作製した角型電池は幅30mm、高さ48mm、厚み5mmである。設計容量は700mAhとした。
【0052】
本実施例の封口板について図5を用いてさらに詳細に説明する。
【0053】
図5は、本実施例の封口板11を裏側(電池の内部側)から見た斜視図である。封口板11は、厚さが0.6mmであり、周辺部と中央に高さが0.3mmの補強リブ21がある。このためアルミ製の薄型封口板でありながら強度が向上している。負極端子14は、絶縁樹脂22にて封口板11と絶縁されている。負極端子14のこちらの面は、ニッケルリードが溶接されやすいようにニッケルメッキがされている。この図は、組み立て前の封口板を示しているため、図4で示した封栓12は、まだ取りつけられていないので、注液口23が空いている。
【0054】
次に、本実施例において集電リードと封口板の溶接方法について図6および図7を用いて説明する。
【0055】
図4で説明した通りに、正極リード15および負極リード17を極板群9から引き出した。そして図6に示す通りに、負極リードは負極端子14に、そして正極リード15は封口板11に直接に密着させた。その後、図7に示す通りに厚さ0.15mmのアルミ(A3003)板からなる捨て材24を正極リード15の上にのせ、負極リード17ともに、2箇所づつレーザ溶接した。したがって、捨て材24と負極リード17は、それぞれ2個のレーザスポット25で固定されていることになる。正極リード15は、捨て材24で固定されているので、リード切れなどが起こりにくい。
【0056】
この後は、図4で説明した通りに、極板群9をケース10に挿入し、枠体18で極板群9を押さえた後、封口板11をケース10にはめ込み、レーザ溶接で封口した。そして注液口から電解液を注液し、封栓12で注液口を封じ、レーザ溶接で固定し、角型電池を完成させた。
【0057】
<実施例2>
本実施例においては、封口板の構造および正極リードと封口板の溶接構造のみが実施例1と違い、その他の構成は実施例1とまったく同じである角型電池を作製した。図8および図9を用いて封口板の構造および正極リードと封口板の溶接構造を説明する。
【0058】
図8において、封口板11’の構成材、厚さおよび外形は実施例1とまったく同じである。また、中央及び周辺の補強リブ21もまったく同じであり、組み込まれている負極端子14および絶縁樹脂22、また注液口23も同じである。違いは、封口板11’には位置決めリブ26が一体となって構成されている。
【0059】
実施例1と同様に負極リード17は負極端子14に、そして正極リード15は封口板11’に直接に密着させた。その後、位置決めリブ26を折り曲げて、正極リード15を挟みこみ、図9に示すような捨て材24’とした。このような作り方のため捨て材24’は、ちょうどその端が折れ曲がり、接合部27で封口板11’と一体になっている。このような構成をとると正極リード15の位置決めが行いやすい。
【0060】
その後は、実施例1と同様に捨て材24’および負極リード17を2箇所づつレーザ溶接した。したがって、実施例1と同様、捨て材24’と負極リード17は、それぞれ2個のレーザスポット25で固定されていることになり、正極リード15も、実施例1と同様、リード切れなどが起こりにくい。
【0061】
最後に、実施例1と同じ方法で角型電池を完成させた。
【0062】
<比較例1>
本比較例では、正極リードと封口板の溶接以外は、実施例1とまったく同じ構成を用い、正極リードと封口板の溶接の際に捨て材を用いずに、図6の状態からレーザ溶接を行った。
【0063】
その結果、レーザにより正極リードに穴があき、封口板との溶接が出来なかった。したがって角型電池も作製出来なかった。
【0064】
<比較例2>
本比較例では、比較例1で用いたレーザ溶接でなく、超音波溶接を用いて、正極リードと封口板を2箇所溶接した。それ以外の構成は実施例1とまったく同じにして角型電池を作製した。
【0065】
<比較例3>
本比較例では、正極リードは、封口板に溶接するのではなく、封口板とケースの間に挟みこんで、レーザ溶接で封口する際に同時に溶接した。この際、リード切れが起こりにくいように、図4の切り込み19から正極リード15をひきだして、切り込み19とは反対の面で封口板11とケース10の間に挟んだ。それ以外の構成は実施例1とまったく同じにして角型電池を作製した。
【0066】
<溶接および電池の評価>
溶接および電池の評価に関しては、前述の5種類の実施例1、2および比較例1から3の試作を100回行い、以下の評価をおこなった。
【0067】
(1)正極リードと封口板との溶接具合
正極リードを封口板に溶接した後、正極リードを手で引っ張り、外れなかったものは、正常に溶接されていると判断した。(表1)にその個数を示す。比較例1は、すべて外れてしまった。比較例3の電池は、この評価を行っていない。
【0068】
(2)封口時の溶接具合
(1)で正常に判断されたものを電池に組み立て封口した。比較例1は全ての試作が外れたので電池は組み立てなかった。したがって、以降の評価は行っていない。比較例3は、(1)の評価を行っていないので、100個すべて電池に組み立て封口した。外観検査を行い、穴などがあいていなく気密に封口されているものを良品と判断した。(表1)にその歩留まり(良品率)を示す。
【0069】
(3)落下試験
(2)で良品と判断されたものを、注液し、封栓で注液口を封じ、レーザ溶接で固定した。
【0070】
落下試験は、電池を、1.9mの高さからコンクリート上に落下させた。その際、角型電池の6面のそれぞれを下にして1回づつ、計6回落下させそれを1セットとした。これを、ケースが壊れ、漏液するまで行った。すべての電池は25セット以内に漏液した。初期の電池の内部抵抗(IR)と漏液時のIRをそれぞれ測定した。同じく(表1)に漏液までの平均回数(セット数)、初期の平均IR(IR0)、漏液時の平均IR(IRr)、その差(ΔIR)および変化率(ΔIR/IR0)を示す。
【0071】
【表1】

Figure 0004977932
【0072】
(表1)において、実施例1および2の電池は、比較例の電池に比べすべての評価が良かった。比較例2の超音波溶接方法は、最適溶接条件を一定にするのが難しく、(1)のリード溶接で歩留まりが悪かった。また、比較例2は、落下試験後のIRの上昇が大きく、ほとんどの電池でリードが外れていると考えられる。
【0073】
また、比較例3のリードを封口板とケースに挟み込むタイプの電池は、封口がやや悪く、落下試験でも漏液しやすい結果となった。実施例1より実施例2の電池の方がIRの上昇が少ないのは、位置決めリブによる位置決め精度の向上のために溶接がしっかりついているためと考えられる。
【0074】
なお、本実施例では、ケースおよび封口板がアルミ系材料からなり、集電リードが正極芯材から引き出されたものであるが、これ以外にも例えばケースおよび封口板が鉄系材料からなり、集電リードが負極芯材から引き出されたものでもおなじ作用、効果を生じる。
【0075】
【発明の効果】
以上述べたとおり、本発明のリチウムイオン二次電池およびその製造方法を使用すれば、集電リードが芯材のような薄型である電池においても封口部および集電リードの接続構造の信頼性が高いリチウムイオン二次電池を効率的に提供することが出来る。
【図面の簡単な説明】
【図1】本発明の溶接構造の一実施形態を示す構造模式図
【図2】本発明の溶接構造の別の実施形態を示す構造模式図
【図3】本発明の溶接方法の一実施形態の一中間工程を示す構造模式図
【図4】本発明の実施例で用いた角形電池の斜視図(一部断面図)
【図5】本発明の実施例で用いた封口板の斜視図
【図6】本発明の実施例で用いた溶接方法の中間工程を示す斜視図
【図7】本発明の実施例で用いた溶接方法の最終工程を示す斜視図
【図8】本発明の別の実施例で用いた溶接方法の中間工程を示す斜視図
【図9】本発明の別の実施例で用いた溶接方法の最終工程を示す斜視図
【符号の説明】
1 集電リード
2、2’ 捨て材
3、3’ 封口板
4 接合部
5 位置決めリブ
6 正極
7 負極
8 セパレータ
9 極板群
10 ケース
11、11’ 封口板
12 封栓
13 正極端子
14 負極端子
15 正極リード
16 切り込み
17 負極リード
18 枠体
19 切り欠け
20 角穴
21 補強リブ
22 絶縁樹脂
23 注液口
24、24’ 捨て材
25 レーザスポット
26 位置決めリブ
27 接合部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium ion secondary battery in which an electrode plate group and a sealing plate in a battery case are connected by a current collecting lead, and a manufacturing method thereof, and in particular, a connection structure in which the current collecting lead is thin like a core material About.
[0002]
[Prior art]
Conventionally, an iron case is often used as a battery case of a lithium ion secondary battery, like a nickel metal hydride storage battery. Recently, aluminum cases have been used to reduce the weight of prismatic batteries. In an iron case lithium ion secondary battery, the battery case also serves as a negative electrode terminal, and the positive electrode terminal is insulated from the battery case. Conversely, in a lithium ion secondary battery with an aluminum case, the battery case also serves as a positive electrode terminal and the negative electrode terminal is insulated from the battery case because of the difference in material polarity.
[0003]
There are various methods for connecting the battery case and the electrode plate current collector, such as a method in which the battery case is brought into direct contact for electrical connection, and a method in which spot welding is performed via a current collector lead. In addition to the bottom of the case, there are various types of welds. In a rectangular battery or the like, since the sealing plate is integrated with the case, the current collecting lead is welded to the sealing plate.
[0004]
In Japanese Patent Laid-Open No. 9-171809, in order to simplify the welding process for welding the current collector and to ensure the welding of the current collector, a metal foil that is a current collector of the electrode plate is disclosed. It is described that a foil lead is formed as a current collecting lead by pulling out the portion, and this foil lead is sandwiched between a battery case and a sealing plate and welded simultaneously with the laser sealing.
[0005]
This foil lead is also consistent with the recent R & D trend of lowering the cost by reducing the number of parts of lithium secondary batteries or increasing the capacity by reducing the volume of parts other than the power generation element. , Has been especially noted.
[0006]
By the way, the structure in which this foil lead is sandwiched between the battery case and the sealing plate and welded at the same time as the laser sealing has a problem that the lead is broken or short-circuited when the battery is dropped, and the structure for solving these problems Various proposals have also been made. (Japanese Unexamined Patent Publication No. 2000-200595 etc.)
[0007]
[Problems to be solved by the invention]
However, in the above configuration, since lead welding and sealing welding are performed at the same time, there is a problem that the sealing tends to be incomplete and the yield decreases. An object of the present invention is to solve this problem and to efficiently provide a lithium ion secondary battery having a highly reliable sealing portion.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, in the battery of the present invention, a part of the positive electrode core material or the negative electrode core material is an uncoated part in which an active material is not held, and a part of the uncoated part is an electrode. It is a current collecting lead that is drawn out from a group of plates, and the end of the current collecting lead is laser-welded by being sandwiched between the same material as the current collecting lead and the discarded material and the sealing plate It is characterized by.
[0009]
Here, the current collecting lead is preferably configured by cutting a part of the uncoated part and turning the notched part, and the uncoated part is formed at an end of the core material. In particular, it is particularly preferable that the current collecting lead is formed by cutting and turning the front end portion of the uncoated portion, that is, the front end portion of the core material.
[0010]
With the configuration described above, the sealing plate and the current collecting lead are reliably welded, and nothing is sandwiched between the sealing plate and the battery case, so that the sealing can be performed efficiently.
[0011]
As a second configuration of the battery of the present invention, a part of the discarded material is bent and integrated with the sealing plate, and the current collecting lead is sandwiched between the discarded material and the sealing plate and laser-welded. Features.
[0012]
In the method of manufacturing a battery having this configuration, a part of an uncoated part of the electrode is drawn from the electrode plate group to create a current collecting lead, and an end of the current collecting lead is previously installed on the sealing plate. A method of temporarily fixing the positioning rib by bending and sandwiching the positioning rib and fixing the temporary fixing portion by laser welding is used.
[0013]
This manufacturing method is suitable for mass production because the current collecting leads can be easily positioned.
[0014]
The sealing plate of the battery of the present invention is a thin sealing plate, and it is preferable that reinforcing ribs are formed around and around the thin sealing plate. With this configuration, it is possible to increase the space in the battery and improve the capacity while maintaining the strength of the sealing plate.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The lithium ion secondary battery according to the first configuration of the present invention includes a positive electrode group in which a positive electrode active material is held in a positive electrode core material and a negative electrode group in which a negative electrode active material is held in a negative electrode core material and a separator in a battery case. In the lithium ion secondary battery in which the electrode plate group and the sealing plate are connected by the current collecting lead, a part of the positive electrode core material or the negative electrode core material is not coated with an active material. Further, a part of the uncoated part is drawn out from the electrode plate group to become a current collecting lead, and the end part of the current collecting lead is a discarded material having the same main constituent material as the current collecting lead. Between the sealing plate and laser welding.
[0016]
As the positive electrode active material of the present invention, a conventionally known positive electrode material can be used. For example, Li X CoO 2, Li X NiO 2, Li X MnO 2, Li X Co Y Ni 1-Y O 2, Li X Mn 2 O 4 and the like. Here, the above-mentioned X value is a value before the start of charge / discharge, and is increased or decreased by charge / discharge. It is also possible to use a mixture of a plurality of different positive electrode materials.
[0017]
The positive electrode core material of the present invention may be any electronic conductor that does not cause a chemical change in the charge / discharge potential of the positive electrode material to be used, but aluminum or an aluminum alloy is particularly preferable. It is also desirable to make the core surface uneven by surface treatment. The shape is particularly preferably a foil.
[0018]
The active material is mixed with a conventionally known conductive agent and binder, pasted into a core material, dried and rolled, and held on the core material.
[0019]
As the negative electrode active material of the present invention, carbon such as natural graphite and artificial graphite is mainly used.
[0020]
The negative electrode core material used in the present invention may be anything as long as it is an electronic conductor that does not cause a chemical change in the constructed battery. In particular, copper or a copper alloy is preferable. The surface of these materials can be oxidized and used. Further, it is desirable to make the core surface uneven by surface treatment. The shape is particularly preferably a foil.
[0021]
Like the positive electrode, the active material is mixed with a conventionally known conductive agent and binder, pasted into a core material, dried and rolled, and held on the core material.
[0022]
As the separator used in the present invention, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. In addition, it is preferable to have a function of blocking the pores at a certain temperature or higher and increasing the resistance, and a sheet made of an olefin polymer such as polypropylene or polyethylene alone or in combination is used because of organic solvent resistance and hydrophobicity. . The pore diameter of the separator is desirably in a range in which the positive and negative electrode materials, the binder, and the conductive agent detached from the electrode sheet do not permeate, for example, 0.01 to 1 μm is desirable. The thickness of the separator is generally 5 to 50 μm. The porosity is determined in accordance with the permeability of electrons and ions, the material, and the film pressure, but is generally preferably 30 to 70%.
[0023]
The positive electrode, the negative electrode, and the separator described above are stacked or spirally wound to constitute the electrode plate group.
[0024]
The battery case of the present invention may be any material that does not cause a chemical change in the constructed battery, but is preferably an iron-based material such as aluminum killed steel or an aluminum-based material such as aluminum alloy. In particular, an aluminum-based material is preferable from the viewpoint of reducing the weight of the battery.
[0025]
Also for the sealing plate of the present invention, any material that does not cause a chemical change with respect to the electrolytic solution or the like may be used as in the battery case. The sealing with the battery case is roughly divided into caulking and welding, but when welding, the same material as the battery case is preferable. Moreover, an aluminum material is preferable from the viewpoint of weight reduction of the battery.
[0026]
In the current collecting lead of the present invention, a part of the uncoated portion of the core material is drawn out from the electrode plate group. There are various methods for producing the current collecting lead, such as a method of creating a current collecting lead by leaving a portion of the core material to be used as a current collecting lead in advance by cutting the core material. Among these, it is preferable that the current collecting lead is formed by cutting a part of the uncoated portion and turning the notch back.
[0027]
The above-described method includes a method of creating a current collecting lead by making a substantially U-shaped notch and turning it back as described in JP-A-9-171809. In addition to this, there is a method in which a cut is made from the end face in the width direction of the core material to the middle of the core material and not folded.
[0028]
Further, in these methods, the uncoated portion is at the end of the core material, and the current collecting lead is cut and folded at the front end portion of the uncoated portion, that is, the front end portion of the core material. It is particularly preferable that it is constituted by. By adopting this configuration, a portion to be processed is reduced as compared with a configuration in which notches or cuts are made in the middle of the core material. In particular, when the electrode plate group is a spiral winding type, the possibility that the current collecting lead is caught in the electrode plate group is extremely reduced, which is effective. That is, it is preferable that the electrode plate group is a spiral electrode plate group, and the uncoated portion and the current collecting lead are arranged on the outermost periphery of the spiral electrode plate group. However, the uncoated portion is not limited to the outermost periphery, and may be positioned at the winding start portion or the center portion of the electrode depending on the relationship with the sealing plate or the current collecting lead of the counter electrode.
[0029]
In addition, it is preferable that the said current collection lead is being fixed to the said uncoated part with the protective tape. With this configuration, the position of the current collecting lead, in particular, the end portion is fixed, and the subsequent welding process is facilitated.
[0030]
The material of the current collecting lead is naturally the same as the material of the core material, but the end of the current collecting lead of the present invention is sandwiched between the current collecting lead and the main constituent material between the discarded material and the sealing plate, and the laser. Since it is what is welded, it is preferable that it is the same material as a sealing board. That is, an aluminum-based material is preferable. At this time, the electrode plate from which the current collecting lead is taken out becomes the positive electrode.
[0031]
It is difficult to weld a metal foil such as the current collecting lead of the present invention to a metal plate such as a sealing plate because the foil is easily torn. Usually, an ultrasonic welding method or the like is often used, but it is difficult to make the welding conditions constant. For example, the welding temperature deviates immediately from a change in the temperature of the day. For this reason, the yield is poor, and it is unsuitable for the production of batteries for mass production of large numbers.
[0032]
Therefore, in the welding structure of the present invention, as shown in FIG. 1, the current collecting lead 1 is sandwiched between the discarded material 2 and the sealing plate 3 made of the same constituent material and laser-welded. In addition to the effect that the current collecting lead 1 is securely welded to the sealing plate 3 by using such a configuration, when the current collecting lead 1 is pulled by an impact such as when a battery is dropped, the discarded material is discarded. 2 suppresses the current collecting lead 1 to have a planar shape, so that an effect that it is difficult to cause lead breakage is produced.
[0033]
Furthermore, if the discarded material is bent at its end like the discarded material 2 ′ shown in FIG. 2 and integrated with the sealing plate 3 ′ at the joint portion 4, the sealing plate 3 ′ of the current collecting lead 1 sandwiched between them. This is preferable because the position inside can always be fixed at the place.
[0034]
As shown in FIG. 3, the welding method of this structure is temporarily installed as shown in FIG. 2 by bending and positioning the end portions of the current collecting leads of the present invention by bending the positioning ribs 5 previously installed on the sealing plate 3 ′. The part which overlaps with the current collection lead | read | reed 1 from the disposal material 2 'is fixed by laser welding. This method facilitates positioning of the current collecting lead 1 and improves accuracy. Further, as a result, since there is no need for a margin for misalignment, the size of the discarded material 2 'can be small.
[0035]
The lithium ion secondary battery according to the second configuration of the present invention includes a positive electrode group in which a positive electrode active material is held in a positive electrode core material, and a negative electrode group in which a negative electrode active material is held in a negative electrode core material and a separator in a battery case. In the lithium ion secondary battery in which the electrode plate group and the sealing plate are connected by current collecting leads, the sealing plate is a thin sealing plate, and reinforcing ribs are provided around and at the center of the thin sealing plate. Is formed. When the sealing plate is made thin, strength such as bending is weakened, but the sealing plate of the present invention has reinforcing ribs formed at the periphery and in the central portion, so that the strength is enhanced. This effect is significant when the sealing plate is made of an aluminum material.
[0036]
As described above, the main constituent material of the current collecting lead of the present invention and the sealing plate of the present invention is preferably aluminum. Such aluminum materials include pure aluminum such as A1085, A1080, A1070, and A1050 as defined in Japanese Industrial Standards (JIS H4000 (1988), JIS H4160 (1994), etc.), A3003, A3004, There are aluminum alloys with enhanced strength such as A3005 and A3105.
[0037]
【Example】
Next, specific examples of the present invention will be described using examples.
[0038]
<Example 1>
In order to evaluate the characteristics of the battery of the present invention, a square battery described below was produced.
[0039]
FIG. 4 is a structural view (partially sectional view) of the prismatic battery according to the first embodiment of the present invention.
[0040]
In FIG. 4, the lithium ion secondary battery is composed of a positive electrode group 6, a negative electrode 7, and a separator 8, thereby forming an electrode plate group 9.
[0041]
In the positive electrode 6, 10% by weight of carbon powder as a conductive agent and 5% by weight of polyvinylidene fluoride resin (PVdF resin) as a binder are mixed with 85% by weight of lithium cobalt oxide powder, and these are dispersed in dehydrated NMP. A slurry was prepared, applied on a positive electrode core material made of aluminum (A1085) foil having a thickness of 15 μm, dried and rolled. One end of the positive electrode 6 is an uncoated portion.
[0042]
The negative electrode 7 uses artificial graphite powder as a negative electrode active material, 95% by weight of this is mixed with 5% by weight of a PVdF resin as a binder, and these are dispersed in dehydrated NMP to produce a slurry. It apply | coated on the negative electrode core material which consists of 12-micrometer-thick copper (C1100) foil, dried and rolled and produced.
[0043]
The separator 8 was a microporous polyethylene monolayer film having a thickness of 27 μm.
[0044]
The electrode plate group 9 is wound so that the uncoated portion of the positive electrode 6 becomes the outermost periphery. Further, the electrode plate group 9 is built in the case 10 together with an electrolyte solution (not shown) in which an electrolyte salt is dissolved in a nonaqueous solvent, and is sealed with a sealing plate 11. The case 10 was made of a strong aluminum material (A3005), and the sealing plate 11 was made of an inexpensive aluminum material (A3003).
[0045]
In the sealing plate 11, a sealing plug 12, a positive electrode terminal 13, and a negative electrode terminal 14 are incorporated. The sealing plug 12, after assembling the battery, injects an electrolytic solution from the injection port, and seals the injection port, and is made of the same material as the sealing plate 11.
[0046]
The positive terminal 13 is made of a clad plate made of aluminum and nickel. Since the case 10 and the sealing plate 11 are electrically connected to the positive electrode, the connection to the external circuit may be taken from anywhere in the case 10 and the sealing plate 11. difficult. Therefore, a clad plate is used, and the sealing plate 11 is welded on the aluminum side, and the outside is nickel so that an external lead can be easily taken. Therefore, the positive electrode lead 15 is welded to the sealing plate 11 and is not directly connected to the positive electrode terminal.
[0047]
The positive electrode lead 15 was produced by making a notch 16 with a width of 10 mm at the end which is an uncoated portion of the positive electrode 6 and turning it back. Further, in FIG. 4, since the end portion is expanded, it is not shown, but in the battery of the example, the positive electrode lead 15 and the notch 16 are formed in the electrode plate group 9 with a protective tape (not shown). It is fixed.
[0048]
The negative electrode terminal 14 is made of an iron-based material (SWCH), and the joint portion with the negative electrode lead 17 made of nickel having a thickness of 150 μm is plated with nickel so as to be easily welded. The negative electrode terminal 14 is insulated from the sealing plate 11 with an insulating resin. The negative electrode lead 17 forms an uncoated part at the beginning of winding of the negative electrode 7 and is spot welded to the core material.
[0049]
The electrode plate group 9 in the case 10 is insulated from the sealing plate by a resin frame 18, and the positive electrode lead 15 is pulled out from a notch 19 at the end of the frame 18 and welded to the sealing plate 11. Yes. Further, the negative electrode lead 17 is pulled out from the central square hole 20 of the frame body 18 and connected to the negative electrode terminal 14.
[0050]
The electrolyte used was a solution of 1 mol / liter of LiPF 6 in a mixed solvent of EC and EMC at a volume ratio of 1: 1. The amount of the electrolyte was about 2.5 ml.
[0051]
The produced square battery has a width of 30 mm, a height of 48 mm, and a thickness of 5 mm. The design capacity was 700 mAh.
[0052]
The sealing plate of the present embodiment will be described in more detail with reference to FIG.
[0053]
FIG. 5 is a perspective view of the sealing plate 11 of this embodiment as viewed from the back side (inside the battery). The sealing plate 11 has a thickness of 0.6 mm, and has reinforcing ribs 21 having a height of 0.3 mm at the periphery and the center. For this reason, the strength is improved while being a thin sealing plate made of aluminum. The negative electrode terminal 14 is insulated from the sealing plate 11 by an insulating resin 22. This surface of the negative electrode terminal 14 is nickel-plated so that the nickel lead can be easily welded. Since this figure shows the sealing plate before assembly, the plug 12 shown in FIG. 4 is not yet attached, and therefore the liquid injection port 23 is vacant.
[0054]
Next, a method for welding the current collecting lead and the sealing plate in this embodiment will be described with reference to FIGS.
[0055]
As described with reference to FIG. 4, the positive electrode lead 15 and the negative electrode lead 17 were drawn from the electrode plate group 9. Then, as shown in FIG. 6, the negative electrode lead was brought into direct contact with the negative electrode terminal 14, and the positive electrode lead 15 was brought into direct contact with the sealing plate 11. Thereafter, as shown in FIG. 7, a discarded material 24 made of an aluminum (A3003) plate having a thickness of 0.15 mm was placed on the positive electrode lead 15, and both the negative electrode lead 17 were laser welded at two locations. Accordingly, the waste material 24 and the negative electrode lead 17 are fixed by the two laser spots 25, respectively. Since the positive electrode lead 15 is fixed by the discard material 24, the lead breakage or the like hardly occurs.
[0056]
Thereafter, as described with reference to FIG. 4, the electrode plate group 9 is inserted into the case 10, the electrode plate group 9 is pressed by the frame 18, and then the sealing plate 11 is fitted into the case 10 and sealed by laser welding. . Then, an electrolytic solution was injected from the injection port, the injection port was sealed with a sealing plug 12, and fixed by laser welding to complete a square battery.
[0057]
<Example 2>
In this example, a prismatic battery was manufactured, which differs from Example 1 only in the structure of the sealing plate and the welded structure of the positive electrode lead and the sealing plate, and the other configuration is exactly the same as in Example 1. The structure of the sealing plate and the welded structure of the positive electrode lead and the sealing plate will be described with reference to FIGS.
[0058]
In FIG. 8, the constituent material, thickness, and outer shape of the sealing plate 11 ′ are exactly the same as those in the first embodiment. The central and peripheral reinforcing ribs 21 are exactly the same, and the built-in negative electrode terminal 14, insulating resin 22, and liquid injection port 23 are also the same. The difference is that the positioning rib 26 is integrated with the sealing plate 11 ′.
[0059]
In the same manner as in Example 1, the negative electrode lead 17 and the positive electrode lead 15 were directly adhered to the negative electrode terminal 14 and the sealing plate 11 ′. Thereafter, the positioning rib 26 was bent to sandwich the positive electrode lead 15 to obtain a discarded material 24 ′ as shown in FIG. For such a method of making, the discarded material 24 ′ is bent at its end and is integrated with the sealing plate 11 ′ at the joint portion 27. With this configuration, the positive electrode lead 15 can be easily positioned.
[0060]
After that, similarly to Example 1, the discarded material 24 'and the negative electrode lead 17 were laser-welded in two places. Therefore, as in the first embodiment, the waste material 24 ′ and the negative electrode lead 17 are fixed by the two laser spots 25, respectively, and the positive lead 15 also breaks the lead as in the first embodiment. Hateful.
[0061]
Finally, a square battery was completed by the same method as in Example 1.
[0062]
<Comparative Example 1>
In this comparative example, except for the welding of the positive electrode lead and the sealing plate, the same configuration as in Example 1 is used, and laser welding is performed from the state of FIG. 6 without using a waste material when welding the positive electrode lead and the sealing plate. went.
[0063]
As a result, the positive electrode lead was perforated by laser and welding with the sealing plate could not be performed. Therefore, a square battery could not be produced.
[0064]
<Comparative example 2>
In this comparative example, the positive electrode lead and the sealing plate were welded at two locations using ultrasonic welding instead of the laser welding used in comparative example 1. Other than that, the rectangular battery was fabricated in exactly the same way as in Example 1.
[0065]
<Comparative Example 3>
In this comparative example, the positive electrode lead was not welded to the sealing plate, but was sandwiched between the sealing plate and the case and simultaneously welded when sealing by laser welding. At this time, the positive electrode lead 15 was pulled out from the notch 19 in FIG. 4 and sandwiched between the sealing plate 11 and the case 10 on the surface opposite to the notch 19 so that the lead breakage hardly occurred. Other than that, the rectangular battery was fabricated in exactly the same way as in Example 1.
[0066]
<Welding and battery evaluation>
Regarding the welding and battery evaluation, the above five types of Examples 1 and 2 and Comparative Examples 1 to 3 were made 100 times, and the following evaluations were performed.
[0067]
(1) Welding condition of positive electrode lead and sealing plate After the positive electrode lead was welded to the sealing plate, the positive electrode lead was pulled by hand and those that did not come off were judged to be normally welded. The number is shown in (Table 1). All of Comparative Examples 1 were removed. The battery of Comparative Example 3 did not perform this evaluation.
[0068]
(2) What was normally judged by the welding condition (1) at the time of sealing was assembled and sealed in the battery. In Comparative Example 1, since all prototypes were removed, no battery was assembled. Therefore, the subsequent evaluation is not performed. Since Comparative Example 3 did not evaluate (1), all 100 batteries were assembled and sealed into batteries. Appearance inspection was conducted and it was judged that the product was airtight and sealed with no holes. Table 1 shows the yield (non-defective rate).
[0069]
(3) What was judged to be a non-defective product in the drop test (2) was injected, the inlet was sealed with a cap, and was fixed by laser welding.
[0070]
In the drop test, the battery was dropped onto the concrete from a height of 1.9 m. At that time, each of the six faces of the prismatic battery was turned down and dropped once for a total of 6 times to make one set. This was done until the case broke and leaked. All batteries leaked within 25 sets. The internal resistance (IR) of the initial battery and the IR at the time of leakage were measured. Similarly (Table 1), the average number of times until leakage (number of sets), the initial average IR (IR 0 ), the average IR (IR r ) at the time of leakage, the difference (ΔIR) and the rate of change (ΔIR / IR 0 ).
[0071]
[Table 1]
Figure 0004977932
[0072]
In Table 1, all the evaluations of the batteries of Examples 1 and 2 were better than the batteries of the comparative examples. In the ultrasonic welding method of Comparative Example 2, it was difficult to make the optimum welding conditions constant, and the yield was poor in the lead welding of (1). In Comparative Example 2, the IR rise after the drop test is large, and it is considered that the lead is detached from most batteries.
[0073]
Further, the battery of the type in which the lead of Comparative Example 3 was sandwiched between the sealing plate and the case had a slightly poor sealing, and it was easy to leak even in a drop test. The reason why the increase in IR is smaller in the battery of Example 2 than in Example 1 is considered to be because welding is firmly performed in order to improve the positioning accuracy by the positioning rib.
[0074]
In this example, the case and the sealing plate are made of an aluminum-based material, and the current collecting lead is drawn out from the positive electrode core material. In addition to this, for example, the case and the sealing plate are made of an iron-based material, Even if the current collecting lead is drawn from the negative electrode core, the same action and effect are produced.
[0075]
【Effect of the invention】
As described above, if the lithium ion secondary battery and the manufacturing method thereof according to the present invention are used, the reliability of the sealing portion and the connection structure of the current collector lead can be improved even in a battery whose current collector lead is thin like a core material. A high lithium ion secondary battery can be provided efficiently.
[Brief description of the drawings]
FIG. 1 is a structural schematic diagram showing an embodiment of the welding structure of the present invention. FIG. 2 is a structural schematic diagram showing another embodiment of the welding structure of the present invention. FIG. 4 is a perspective view (partially sectional view) of a prismatic battery used in an example of the present invention.
5 is a perspective view of a sealing plate used in an embodiment of the present invention. FIG. 6 is a perspective view showing an intermediate process of a welding method used in the embodiment of the present invention. FIG. 7 is used in the embodiment of the present invention. FIG. 8 is a perspective view showing the intermediate process of the welding method used in another embodiment of the present invention. FIG. 9 is a final view of the welding method used in another embodiment of the present invention. Perspective view showing the process 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Current collecting lead 2, 2 'Discarding material 3, 3' Sealing plate 4 Joint part 5 Positioning rib 6 Positive electrode 7 Negative electrode 8 Separator 9 Electrode plate group 10 Case 11, 11 'Sealing plate 12 Sealing plug 13 Positive electrode terminal 14 Negative electrode terminal 15 Positive electrode lead 16 Notch 17 Negative electrode lead 18 Frame body 19 Notch 20 Square hole 21 Reinforcement rib 22 Insulating resin 23 Injection port 24, 24 'Waste material 25 Laser spot 26 Positioning rib 27 Joint part

Claims (8)

正極活物質を正極芯材に保持した正極および負極活物質を負極芯材に保持した負極とセパレータとからなる極板群が電池ケース内に挿入されており、極板群と封口板が集電リードにより接続されているリチウムイオン二次電池において、
前記正極芯材または負極芯材の一部分は、活物質が保持されていない未塗工部であり、さらに前記未塗工部の一部分は、極板群から引き出されて集電リードとなっており、
前記集電リードの端部は、前記集電リードと主たる構成材料が同じ捨て材と前記封口板の間に挟まれてレーザ溶接されていることを特徴とするリチウムイオン二次電池。
An electrode plate group composed of a positive electrode holding a positive electrode active material on a positive electrode core and a negative electrode holding a negative electrode active material on a negative electrode core material and a separator is inserted into the battery case, and the electrode plate group and the sealing plate are collected by a current collector. In lithium ion secondary batteries connected by leads,
A part of the positive electrode core material or the negative electrode core material is an uncoated part in which an active material is not held, and a part of the uncoated part is drawn from an electrode plate group to be a current collecting lead. ,
The lithium ion secondary battery is characterized in that an end portion of the current collecting lead is laser-welded with the current collecting lead and the main constituent material sandwiched between the same waste material and the sealing plate.
前記集電リードは前記未塗工部の一部分に切り欠けを入れて、前記切り欠けを折り返すことによって構成されていることを特徴とする請求項1記載のリチウムイオン二次電池。  2. The lithium ion secondary battery according to claim 1, wherein the current collecting lead is formed by cutting a part of the uncoated portion and turning the notch back. 前記未塗工部は前記芯材の端にあり、前記集電リードは前記未塗工部の先端部、すなわち芯材の先端部に、切り込みを入れて折り返すことによって構成されていることを特徴とする請求項1記載のリチウムイオン二次電池。  The uncoated portion is at the end of the core material, and the current collecting lead is formed by cutting and folding the tip of the uncoated portion, that is, the tip of the core material. The lithium ion secondary battery according to claim 1. 前記極板群は渦巻き極板群であり、前記渦巻き極板群の最外周に前記未塗工部および前記集電リードが配置されていることを特徴とする請求項1から3のいずれかに記載のリチウムイオン二次電池。  4. The electrode assembly according to claim 1, wherein the electrode plate group is a spiral electrode plate group, and the uncoated portion and the current collecting lead are disposed on an outermost periphery of the spiral electrode plate group. 5. The lithium ion secondary battery as described. 前記集電リードは、保護テープにより前記未塗工部に固定されていることを特徴とする請求項1から4のいずれかに記載のリチウムイオン二次電池。  The lithium ion secondary battery according to claim 1, wherein the current collecting lead is fixed to the uncoated portion with a protective tape. 前記捨て材は、その一部が折れ曲がり前記封口板と一体になっていることを特徴とする請求項1記載のリチウムイオン二次電池。  2. The lithium ion secondary battery according to claim 1, wherein a part of the discarded material is bent and integrated with the sealing plate. 前記集電リードおよび前記封口板の主たる構成材料はアルミニウムである請求項1からのいずれかに記載のリチウムイオン二次電池。The lithium ion secondary battery according to any one of claims 1 to 6 , wherein a main constituent material of the current collecting lead and the sealing plate is aluminum. 正極または負極の芯材に、未塗工部を残して活物質を塗着して極板を作成し、さらにもう一方の極性を持つ活物質を芯材に塗着して作成した極板とをセパレータを介して極板群を作成し、さらに前記未塗工部の一部分を、極板群から引き出して集電リードを作成し、前記集電リードの端部を、あらかじめ封口板に設置されている位置決めリブを折り曲げて挟みこむことで仮固定し、前記仮固定部分をレーザ溶接で固定した後、前記極板群を電池ケースに挿入し、前記電池ケース開口部と封口板をレーザを用いて溶接することにより封口する工程を含むことを特徴とするリチウムイオン二次電池の製造方法。  Create an electrode plate by applying an active material to the core material of the positive electrode or negative electrode, leaving an uncoated part, and applying an active material having the other polarity to the core material; The electrode plate group is created through a separator, and a part of the uncoated part is drawn out of the electrode plate group to create a current collecting lead, and the end of the current collecting lead is previously installed on the sealing plate. The positioning ribs are bent and sandwiched and temporarily fixed. After the temporary fixing portion is fixed by laser welding, the electrode plate group is inserted into the battery case, and the battery case opening and the sealing plate are used with a laser. A method for producing a lithium ion secondary battery comprising a step of sealing by welding.
JP2001207501A 2001-07-09 2001-07-09 Lithium ion secondary battery and manufacturing method thereof Expired - Fee Related JP4977932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207501A JP4977932B2 (en) 2001-07-09 2001-07-09 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207501A JP4977932B2 (en) 2001-07-09 2001-07-09 Lithium ion secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003022796A JP2003022796A (en) 2003-01-24
JP4977932B2 true JP4977932B2 (en) 2012-07-18

Family

ID=19043477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207501A Expired - Fee Related JP4977932B2 (en) 2001-07-09 2001-07-09 Lithium ion secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4977932B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160081B2 (en) 2011-01-31 2017-07-12 株式会社Gsユアサ Storage element and method for manufacturing the same
CN112310517B (en) * 2019-10-15 2024-02-20 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack, device, and manufacturing method
CN111037137B (en) * 2019-12-30 2022-01-25 宝鸡文理学院 Welding device for lamp strip and core column and lamp strip welding system applying same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4416203B2 (en) * 1999-03-31 2010-02-17 三洋電機株式会社 Welded sealing battery
JP4496563B2 (en) * 1999-04-13 2010-07-07 パナソニック株式会社 Battery manufacturing method

Also Published As

Publication number Publication date
JP2003022796A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
JP5583421B2 (en) Square sealed secondary battery and method for manufacturing square sealed secondary battery
CN107710459B (en) Battery and battery pack
JP5917407B2 (en) Prismatic secondary battery
EP3101723B1 (en) Secondary battery and secondary battery production method
JP5194070B2 (en) Secondary battery
CN109891640B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2009110751A (en) Secondary battery
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
JP3877619B2 (en) Sealed battery
JP2011171079A (en) Battery cell
US7153606B2 (en) Secondary battery
JP2006156365A (en) Lithium secondary battery
US9722215B2 (en) Cylindrical battery
JP5198134B2 (en) Method for manufacturing cylindrical battery
EP1643569A1 (en) Lithium rechargeable battery
JP2005209638A (en) Winding electrochemical element and battery comprising electrode group
JP5590410B2 (en) Cylindrical secondary battery
CN111902968A (en) Battery and method for manufacturing same
WO2020129881A1 (en) Rectangular secondary battery
CN216436083U (en) Roll core and battery
JP4977932B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4159383B2 (en) Cylindrical secondary battery
CN109891639B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2001307686A (en) Battery can, its manufacturing method and battery
JP4867210B2 (en) Winding type power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees