[go: up one dir, main page]

JP4959514B2 - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP4959514B2
JP4959514B2 JP2007292039A JP2007292039A JP4959514B2 JP 4959514 B2 JP4959514 B2 JP 4959514B2 JP 2007292039 A JP2007292039 A JP 2007292039A JP 2007292039 A JP2007292039 A JP 2007292039A JP 4959514 B2 JP4959514 B2 JP 4959514B2
Authority
JP
Japan
Prior art keywords
hub wheel
wheel
hub
convex
joint member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007292039A
Other languages
Japanese (ja)
Other versions
JP2009115292A (en
Inventor
茂明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007292039A priority Critical patent/JP4959514B2/en
Publication of JP2009115292A publication Critical patent/JP2009115292A/en
Application granted granted Critical
Publication of JP4959514B2 publication Critical patent/JP4959514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/076Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end by clamping together two faces perpendicular to the axis of rotation, e.g. with bolted flanges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/60Positive connections with threaded parts, e.g. bolt and nut connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device for a vehicular wheel capable of suppressing rattle in the circumferential direction and misalignment of axes, of reducing the manufacturing cost, and assuring practical applicability. <P>SOLUTION: The bearing device for vehicular wheel includes a hub wheel 1, double-row rolling bearing 2, and a constant speed universal joint 3 which are unitized, wherein an outer joint member of the universal joint 3 is furnished with a mouth part 11 to admit fitting-in of an inner joint member, and is structured so that the end of the hub wheel 1 is pressurized so as to give a preload to the inner ring 1 of the rolling bearing 2 to be fitted externally on the hub wheel 1 and that a hub wheel mating surface 40 of the mouth part 11 bottom wall 12 and the at-end pressurized portion 31 of the hub wheel 1 are integrated through a recessed-protruding fitting structure M. A protruding part 41 having a higher hardness than the at-end pressurized portion 31 and stretching in the radial direction is formed on the hub wheel mating surface 40 of the mouth part 11 while a recessed part 42 is formed in the at-end pressurized portion 31 owing to a pressure application thereto 31 of the protruding part 41 on the mouth part side so that the recess-protrusion fitting structure M is formed where the whole area of the fit-in contacting part between the protruding 41 and the recessed 42 is in tight contacting. The pressure angle of the protruding part 41 on the mouth part side is not larger than 20&deg;. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、自動車等の車両において車輪を車体に対して回転自在に支持するための車輪用軸受装置に関する。   The present invention relates to a wheel bearing device for rotatably supporting a wheel with respect to a vehicle body in a vehicle such as an automobile.

ハブ輪と複列の転がり軸受と等速自在継手とがユニット化された車輪用軸受装置(駆動車輪用軸受装置)において、ハブ輪と等速自在継手との組立・分解の利便化を図るため、ハブ輪と等速自在継手とをボルト結合を行うものがある(特許文献1)。   To facilitate the assembly and disassembly of the hub wheel and the constant velocity universal joint in the wheel bearing device (drive wheel bearing device) in which the hub wheel, the double row rolling bearing and the constant velocity universal joint are unitized. In some cases, a hub wheel and a constant velocity universal joint are bolted together (Patent Document 1).

この場合の車輪用軸受装置は、図7に示すように、外径方向に延びるフランジ101を有するハブ輪102と、このハブ輪102に外側継手部材103が固定される等速自在継手104と、ハブ輪102の外周側に配設される転がり軸受100とを備える。   As shown in FIG. 7, the wheel bearing device in this case includes a hub wheel 102 having a flange 101 extending in the outer diameter direction, a constant velocity universal joint 104 to which an outer joint member 103 is fixed to the hub wheel 102, And a rolling bearing 100 disposed on the outer peripheral side of the hub wheel 102.

等速自在継手104は、前記外側継手部材103と、この外側継手部材103の椀形部(マウス部)107内に配設される内側継手部材108と、この内側継手部材108と外側継手部材103との間に配設されるボール109と、このボール109を保持する保持器110とを備える。また、内側継手部材108の中心孔の内周面にはスプライン部111が形成され、この中心孔に図示省略のシャフトの端部スプライン部が挿入されて、内側継手部材108側のスプライン部111とシャフト側のスプライン部とが係合される。   The constant velocity universal joint 104 includes the outer joint member 103, an inner joint member 108 disposed in a hooked portion (mouse portion) 107 of the outer joint member 103, and the inner joint member 108 and the outer joint member 103. And a retainer 110 that holds the ball 109. Further, a spline portion 111 is formed on the inner peripheral surface of the center hole of the inner joint member 108, and an end spline portion of a shaft (not shown) is inserted into the center hole, and the spline portion 111 on the inner joint member 108 side The spline portion on the shaft side is engaged.

また、ハブ輪102は、筒部113と前記フランジ101とを有し、フランジ101の外端面114(反継手側の端面)には、図示省略のホイールおよびブレーキロータが装着される短筒状のパイロット部115が突設されている。   The hub wheel 102 has a cylindrical portion 113 and the flange 101, and a short cylindrical shape in which a wheel and a brake rotor (not shown) are mounted on the outer end surface 114 (end surface on the opposite joint side) of the flange 101. A pilot part 115 is provided in a protruding manner.

そして、筒部113の椀形部107側端部の外周面に切欠部116が設けられ、この切欠部116に前記転がり軸受100の内方部材を構成する内輪117が嵌合されている。ハブ輪102の筒部113の外周面のフランジ近傍には第1内側軌道面118が設けられ、内輪117の外周面に第2内側軌道面119が設けられている。なお、ハブ輪102のフランジ101にはボルト装着孔112が設けられて、ホイールおよびブレーキロータをこのフランジ101に固定するためのハブボルトがこのボルト装着孔112に装着される。   A notch 116 is provided on the outer peripheral surface of the end portion of the cylindrical portion 113 on the flange 107 side, and an inner ring 117 constituting the inner member of the rolling bearing 100 is fitted into the notch 116. A first inner raceway surface 118 is provided in the vicinity of the flange on the outer peripheral surface of the cylindrical portion 113 of the hub wheel 102, and a second inner raceway surface 119 is provided on the outer peripheral surface of the inner ring 117. A bolt mounting hole 112 is provided in the flange 101 of the hub wheel 102, and a hub bolt for fixing the wheel and the brake rotor to the flange 101 is mounted in the bolt mounting hole 112.

転がり軸受100の外方部材105は、その内周に2列の外側軌道面120、121が設けられる。外方部材105の第1外側軌道面120とハブ輪102の第1内側軌道面118とが対向し、外方部材105の第2外側軌道面121と、内輪117の軌道面119とが対向し、これらの間に転動体122が介装される。   The outer member 105 of the rolling bearing 100 is provided with two rows of outer raceway surfaces 120 and 121 on the inner periphery thereof. The first outer raceway surface 120 of the outer member 105 and the first inner raceway surface 118 of the hub wheel 102 face each other, and the second outer raceway surface 121 of the outer member 105 and the raceway surface 119 of the inner ring 117 face each other. The rolling element 122 is interposed between them.

ハブ輪102の筒部113には仕切壁124が設けられ、この仕切壁124の貫通孔124aに連結用ボルト部材125が挿通されている。また、椀形部107の底壁126にはねじ孔127が設けられ、このねじ孔127に前記ボルト部材125が螺着される。   A partition wall 124 is provided in the tube portion 113 of the hub wheel 102, and a connecting bolt member 125 is inserted into the through hole 124 a of the partition wall 124. Further, a screw hole 127 is provided in the bottom wall 126 of the bowl-shaped portion 107, and the bolt member 125 is screwed into the screw hole 127.

そして、椀形部107の底壁126のハブ輪対向面と、ハブ輪102の筒部113の椀形部対向面とに、それぞれフェーススプライン128、129を設け、これらが嵌合している。ここで、フェーススプライン128、129とは、径方向に延びる複数の凸条と径方向に延びる複数の凹条とが周方向に沿って交互に配設されたものである。   Then, face splines 128 and 129 are provided on the hub wheel facing surface of the bottom wall 126 of the hook-shaped portion 107 and the hook-shaped portion facing surface of the cylindrical portion 113 of the hub wheel 102, respectively, and these are fitted. Here, the face splines 128 and 129 are formed by alternately arranging a plurality of ridges extending in the radial direction and a plurality of recesses extending in the radial direction along the circumferential direction.

このフェーススプライン128、129によって、ハブ輪102側と等速自在継手側と
の周方向のずれを無くすようにしている。
アメリカ特許4893960号公報
The face splines 128 and 129 eliminate the circumferential displacement between the hub wheel 102 side and the constant velocity universal joint side.
US Pat. No. 4,893,960

しかしながら、等速自在継手側のフェーススプライン128と、ハブ輪側のフェーススプライン129はそれぞれ別個に機械加工にて形成される。このため、両スプラインの凹凸を合わせる必要があり、円周方向のガタや軸ズレ等が生じやすい。このように、円周方向のガタがあると、回転トルクの伝達性に劣るとともに、異音が発生するおそれもあった。また、周方向のガタおよび同軸度(ハブ輪と等速自在継手との軸ズレ)を所定の範囲(小範囲)に納めるためには、各フェーススプライン128、129を高精度に仕上げることが要求される。このため、コスト高となって実用化が困難である。   However, the face spline 128 on the constant velocity universal joint side and the face spline 129 on the hub wheel side are separately formed by machining. For this reason, it is necessary to match the unevenness of both splines, which tends to cause circumferential play and axial misalignment. As described above, when there is a backlash in the circumferential direction, the transmission performance of the rotational torque is inferior and abnormal noise may occur. Further, in order to keep the backlash and coaxiality in the circumferential direction (axial misalignment between the hub wheel and the constant velocity universal joint) within a predetermined range (small range), it is necessary to finish each face spline 128, 129 with high accuracy. Is done. For this reason, the cost is high and practical application is difficult.

本発明は、上記課題に鑑みて、円周方向のガタや軸心ずれの抑制を図ることができ、しかも、製作コストの低減を図ることができて実用化が可能な車輪用軸受装置を提供する。   In view of the above-described problems, the present invention provides a wheel bearing device that can suppress circumferential backlash and axial misalignment, and that can reduce the manufacturing cost and can be put to practical use. To do.

本発明の車輪用軸受装置は、ハブ輪と複列の転がり軸受と等速自在継手とがユニット化され、前記等速自在継手の外側継手部材は内側継手部材が内装されるマウス部を備え、ハブ輪の端部が加締られてハブ輪に外嵌される転がり軸受の内輪に対して予圧が付与されると共に、前記外側継手部材のマウス部の底壁のハブ輪対応面とハブ輪の端部加締部とが凹凸嵌合構造を介して一体化された車輪用軸受装置であって、前記外側継手部材のマウス部のハブ輪対応面に、径方向に延びる複数の凸条と径方向に延びる複数の凹条とが周方向に沿って交互に配設される外側継手部材側のフェーススプラインを形成するとともに、このフェーススプラインの各凸条の硬度をハブ輪の端部加締部の硬度よりも高く設定し、前記ハブ輪の端部加締部への外側継手部材側のフェーススプラインの押圧による形状の転写によって、この端部加締部に、外側継手部材側のフェーススプラインの嵌合するハブ輪側のフェーススプラインを形成して、凸条である凸部と凹条である凹部との嵌合接触部位全域が密接する前記凹凸嵌合構造を構成し、前記マウス部側の凸部の圧力角を20°以下としたものである。ここで、圧力角とは、凸部の歯面(側面)の1点(ピッチ点)において、その高さ方向線と歯形への接線との成す角度である。 In the wheel bearing device of the present invention, a hub wheel, a double row rolling bearing, and a constant velocity universal joint are unitized, and an outer joint member of the constant velocity universal joint includes a mouth portion in which an inner joint member is housed. A preload is applied to the inner ring of the rolling bearing fitted on the hub ring by crimping the end of the hub ring, and the hub ring corresponding surface of the bottom wall of the mouth portion of the outer joint member and the hub ring A bearing device for a wheel in which an end caulking portion is integrated via a concave-convex fitting structure, and a plurality of ridges and diameters extending in a radial direction on a hub wheel corresponding surface of a mouth portion of the outer joint member A plurality of concave stripes extending in the direction form a face spline on the outer joint member side that is alternately arranged along the circumferential direction, and the hardness of each convex stripe of the face spline is determined by the end caulking portion of the hub wheel. Set to be higher than the hardness of the outer ring. By transferring the shape by pressing the face spline on the member side, a face spline on the hub wheel side to which the face spline on the outer joint member side is fitted is formed on this end caulked portion, The concave- convex fitting structure in which the entire fitting contact portion with the concave portion which is a concave stripe is in close contact is configured, and the pressure angle of the convex portion on the mouse portion side is set to 20 ° or less. Here, the pressure angle is an angle formed by a height direction line and a tangent to the tooth profile at one point (pitch point) of the tooth surface (side surface) of the convex portion.

本発明の車輪用軸受装置によれば、凹凸嵌合構造は、マウス部側の凸部とその凸部に嵌合するハブ輪の端部加締部の凹部との嵌合接触部位全域が密着しているので、この嵌合構造において、円周方向においてガタが生じる隙間が形成されない。また、マウス部側の凸部をハブ輪の端部加締部に対して押圧することによって、前記凸部に嵌合する径方向に延びる凹部を形成することができ、ハブ輪の端部加締部には、別途凹部を形成しておく必要がない。しかも、マウス部側の凸部の圧力角を20°以下としたので、加工性(食込み性)の向上を図るとともに、凸部(歯部)の肉厚を比較的厚く設定することができ、凸部の強度向上を図ることができて、トルク伝達時の離反力の低減を図ることができる。これに対して、圧力角が20°を越えると、歯面(側面)が押圧方向に対して傾きすぎて食込み性に劣ることになる。   According to the wheel bearing device of the present invention, the concave / convex fitting structure is such that the entire contact area of the fitting between the convex portion on the mouse portion side and the concave portion of the end caulking portion of the hub wheel fitted to the convex portion is in close contact. Therefore, in this fitting structure, no gap is formed in which play occurs in the circumferential direction. Also, by pressing the convex portion on the mouth portion side against the end caulking portion of the hub wheel, a radially extending concave portion that fits into the convex portion can be formed. It is not necessary to form a separate recess in the fastening portion. Moreover, since the pressure angle of the convex part on the mouse part side is set to 20 ° or less, it is possible to improve workability (biting property) and set the thickness of the convex part (tooth part) to be relatively thick. The strength of the convex portion can be improved, and the separation force during torque transmission can be reduced. On the other hand, when the pressure angle exceeds 20 °, the tooth surface (side surface) is inclined too much with respect to the pressing direction, and the biting property is inferior.

ハブ輪の端部加締部の硬度を25HRCから35HRCとするのが好ましい。このように、ハブ輪の端部加締部側の硬度を設定することによって、ハブ輪の端部加締部が比較的柔らかくなる。   The hardness of the end caulking portion of the hub wheel is preferably 25 HRC to 35 HRC. Thus, by setting the hardness on the end caulking portion side of the hub wheel, the end caulking portion of the hub wheel becomes relatively soft.

マウス部側の凸部にて凹部が形成されたハブ輪の端部加締部に対してWPC処理やショットピーニング処理の金属表面処理を施すのが好ましい。ここで、WPC処理とは、金属の表面に40〜200ミクロンの特殊なショットを高速で噴射させ、局部的に再結晶温度まで高めることにより、熱処理効果、鍛錬効果の加工強化が瞬時に繰り返され、金属表面層の残留オーステナイトのマルテンサイト化や、再結晶、組織の微細化を行う処理である。これにより、金属表面は高硬度で靱性に富んだ微細な組織が形成され、内部圧縮残留応力も高めることができる。ショットピーニング処理とは、WPC処理と同様、ショットを打付けて圧縮残留応力を高める処理である。なお、ショットピーニングでは、圧縮残留応力を高めることはできるが、組織の微細化等は行うことはできない。また、ショットピーニングでは表面が粗くなり、摺動性を向上させることはできない。これに対して、WPC処理では、ショットピーニングで使用されているショットよりも微細なショットを高速で打ちつけることにより、組織の変化、つまり熱処理効果を出すことができる。WPCは正式には、Wide Peaning and Cleaningの略であり、Wonder Process Craft又はWonder Peaning Craftなどとも呼ばれている。   It is preferable to apply a metal surface treatment such as a WPC treatment or a shot peening treatment to the end crimping portion of the hub wheel in which the concave portion is formed at the convex portion on the mouse portion side. Here, the WPC treatment is a process in which a special shot of 40 to 200 microns is sprayed on a metal surface at a high speed and locally raised to the recrystallization temperature, so that the heat treatment effect and the forging effect are strengthened instantaneously. In this process, the retained austenite in the metal surface layer is converted into martensite, recrystallized, and the structure is refined. As a result, a fine structure with high hardness and toughness is formed on the metal surface, and the internal compressive residual stress can be increased. The shot peening process is a process for increasing the compressive residual stress by hitting a shot, similar to the WPC process. In shot peening, the compressive residual stress can be increased, but the structure cannot be refined. Moreover, the surface becomes rough in shot peening, and the slidability cannot be improved. On the other hand, in the WPC process, a change in structure, that is, a heat treatment effect can be obtained by hitting a shot finer than a shot used in shot peening at a high speed. WPC is formally an abbreviation for Wide Peering and Cleaning, and is also called Wonder Process Craft or Wonder Peering Craft.

WPC処理した表面の形状はなだらかで微細な凹凸ができ、またその凹凸も硬度が高く面圧に負けない組織になっている。このため、凹部分に潤滑油を保持させることができ、接触面積の減少により、油ぎれをなくすと同時に、摩耗を減らし、摺動性を向上させることができる。このように、WPC処理では表面の硬度を上げると同時に微細な凹凸を作って、摺動性を向上させることができる。   The surface of the WPC-treated surface has gentle and fine irregularities, and the irregularities have a high hardness and do not lose the surface pressure. For this reason, lubricating oil can be held in the concave portion, and by reducing the contact area, oil leakage can be eliminated, and at the same time, wear can be reduced and slidability can be improved. As described above, in the WPC treatment, the surface hardness can be increased and at the same time fine irregularities can be formed to improve the slidability.

しかも、WPC処理はショットをたたきつけているため、圧縮残留応力を高めることができる。WPC処理をした金属表面は非常に微細な炭化物組織になっており、その表面積は大きく結びつきも強いものになる。このように、結びつきが強ければ、クラックも入りにくく、入ったとしても広がりにくい。このため、WPC処理を施すと疲労に強くなり、折れや欠けが激減する。すなわち、WPC処理を施すことにより、疲労強度向上と耐摩擦性向上を図ることができる。   Moreover, since the WPC process strikes the shot, the compressive residual stress can be increased. The WPC-treated metal surface has a very fine carbide structure, and its surface area is large and strong. In this way, if the connection is strong, cracks are difficult to enter, and even if they enter, they are difficult to spread. For this reason, if WPC processing is performed, it will become strong to fatigue and a crease and a chip will reduce sharply. That is, by applying the WPC process, it is possible to improve fatigue strength and friction resistance.

また、マウス部側の凸部にて凹部が形成されたハブ輪の端部加締部に対してレーザ焼き入れによる熱処理を施してもよい。ここで、レーザ焼き入れとは、レーザ光を金属表面に照射することによって、表面焼き入れを行うものである。   Moreover, you may heat-process by the laser hardening with respect to the edge part crimping part of the hub ring in which the recessed part was formed in the convex part by the side of a mouse | mouth part. Here, the laser quenching is to quench the surface by irradiating the metal surface with laser light.

マウス部側の凸部にて凹部が形成されたハブ輪の端部加締部に対してレーザ焼き入れによる熱処理を施すとともに、レーザによる製品データのマーキングを外側継手部材とハブ輪の少なくとも一方に施すようにするもの好ましい。ここで、製品データとは、この製品の製造日時、製造場所(工場、ライン)、品名等である。また、マーキングの種類には、シリアルナンバー、バーコード等である。また、製品データをマーキングするレーザ加工機(レーザ照射機)等をレーザ焼き入れの際に使用したものを使用することができ、コスト低減及び作業時間の短縮を図ることができる。   Heat treatment by laser quenching is applied to the end caulking portion of the hub wheel in which the concave portion is formed at the convex portion on the mouse side, and marking of product data by laser is applied to at least one of the outer joint member and the hub wheel. It is preferable to apply. Here, the product data includes the manufacturing date and time, the manufacturing location (factory, line), the product name, and the like of this product. The marking type includes a serial number, a barcode, and the like. Further, a laser processing machine (laser irradiation machine) or the like that marks product data can be used at the time of laser quenching, thereby reducing costs and working time.

本発明では、凹凸嵌合構造において、円周方向においてガタが生じる隙間が形成されないので、回転トルクの伝達性に優れるとともに、異音の発生も生じさせない。また、周方向のガタおよび同軸度(ハブ輪と等速自在継手との軸ズレ)を所定の範囲(小範囲)に納めることが可能となって、トルク伝達性の向上を図ることができ、安定した回転伝達ができる。しかも、従来のように、別個に形成したフェーススプラインの噛み合わせでなく、マウス部側に凸部を形成しておいて、ハブ輪の端部加締部にこの凸部を押し付ければよいので、凸部を高精度に仕上げることが要求されない。このため、低コスト化を図れて、実用化を達成できる。さらに、凹凸嵌合構造は、その嵌合接触部位全域が隙間無く密着しているので、トルク伝達部位の強度が向上する。   According to the present invention, in the concave-convex fitting structure, no gap is generated in which the play is generated in the circumferential direction, so that the rotational torque transmission is excellent and no abnormal noise is generated. In addition, it is possible to keep the backlash and coaxiality in the circumferential direction (axial misalignment between the hub wheel and the constant velocity universal joint) within a predetermined range (small range), so that torque transmission can be improved. Stable rotation transmission is possible. Moreover, it is only necessary to form a convex part on the mouth part side and press the convex part against the end caulking part of the hub wheel, instead of meshing the face splines formed separately as in the prior art. It is not required to finish the convex portion with high accuracy. For this reason, cost reduction can be achieved and practical use can be achieved. Furthermore, since the uneven contact structure is in close contact with the entire contact area of the fitting, the strength of the torque transmission area is improved.

マウス部側の凸部の圧力角を20°以下としたことによって、加工性(食込み性)の向上を図るとともに、凸部(歯部)の肉厚を比較的厚く設定することができ、凸部の強度向上を図ることができて、トルク伝達時の離反力の低減を図ることができる。これによって、安定したトルク伝達が長期にわたって可能となる。   By setting the pressure angle of the convex part on the mouse side to 20 ° or less, it is possible to improve the workability (biting property) and set the convex part (tooth part) to be relatively thick. The strength of the portion can be improved, and the separation force during torque transmission can be reduced. This enables stable torque transmission over a long period.

フェーススプラインの径方向に延びる凸条を凹凸嵌合構造の凸部とすれば、凹凸嵌合構造の範囲が全周にわたって配設され、回転トルク伝達性の向上を図ることができる。しかも、フェーススプラインの形成も容易であり、コスト低減に寄与する。   If the ridges extending in the radial direction of the face spline are used as the convex portions of the concave / convex fitting structure, the range of the concave / convex fitting structure is disposed over the entire circumference, and the rotational torque transmission can be improved. In addition, face splines can be easily formed, contributing to cost reduction.

ハブ輪の端部加締部の硬度を25HRCから35HRCとすることによって、ハブ輪の端部加締部が比較的柔らかくなって、外側継手部材側の凸部の押し付けによるハブ輪の端部加締部側の凹部形成が容易となり、生産性の向上を図ることができる。   By setting the hardness of the end caulking portion of the hub wheel from 25 HRC to 35 HRC, the end caulking portion of the hub wheel becomes relatively soft, and the hub wheel end caulking by the pressing of the convex portion on the outer joint member side becomes relatively soft. Formation of the concave portion on the tightening portion side is facilitated, and productivity can be improved.

WPC処置やショットピーニング等の金属表面処理を施すことによって、凹凸嵌合構造を構成するための凸部の圧縮残留応力を高めることはできる。これによって、引張応力の集中を緩和し、疲れ限度を高めることができる。特に、WPC処置を行えば、疲労強度向上と耐摩擦性向上を図ることができ、高品質の製品を提供できる。   By applying a metal surface treatment such as WPC treatment or shot peening, the compressive residual stress of the convex portion for constituting the concave-convex fitting structure can be increased. Thereby, the concentration of tensile stress can be relaxed and the fatigue limit can be increased. In particular, if WPC treatment is performed, it is possible to improve fatigue strength and friction resistance, and to provide a high-quality product.

レーザ焼き入れによる熱処理によって、凸部の強度及び耐摩耗性の向上を図ることができ、信頼性のある車輪用軸受装置を提供できる。   The heat treatment by laser quenching can improve the strength and wear resistance of the protrusions, and provide a reliable wheel bearing device.

レーザによる製品データのマーキングを外側継手部材とハブ輪の少なくとも一方に施すことによって、製品のトレーサビリティを向上させることができる。トレーサビリティとは、製品の流通経路を生産段階から最終消費段階あるいは廃棄段階まで追跡が可能な状態をいう。また、製品データをマーキングするレーザ加工機(レーザ照射機)等に、レーザ焼き入れの際に使用したものを用いることができ、コスト低減及び作業時間の短縮を図ることができる。   By marking the product data with a laser on at least one of the outer joint member and the hub wheel, the traceability of the product can be improved. Traceability refers to a state in which the product distribution channel can be traced from the production stage to the final consumption stage or the disposal stage. In addition, a laser processing machine (laser irradiation machine) or the like for marking product data can be the same as that used for laser quenching, thereby reducing costs and working time.

以下本発明の実施の形態を図1〜図6に基づいて説明する。図1に車輪用軸受装置を示し、この車輪用軸受装置は、ハブ輪1と、複列の転がり軸受2と、等速自在継手3とが一体化されている。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a wheel bearing device, in which a hub wheel 1, a double row rolling bearing 2, and a constant velocity universal joint 3 are integrated.

等速自在継手3は、外側継手部材としての外輪5と、外輪5の内側に配された内側継手部材としての内輪6と、外輪5と内輪6との間に介在してトルクを伝達する複数のボール7と、外輪5と内輪6との間に介在してボール7を保持するケージ8とを主要な部材として構成される。内輪6はその軸孔内径6aに図示省略のシャフトの端部を圧入することによりスプライン嵌合してシャフトとトルク伝達可能に結合されている。   The constant velocity universal joint 3 includes a plurality of outer rings 5 serving as outer joint members, an inner ring 6 serving as an inner joint member disposed on the inner side of the outer ring 5, and a plurality of torque transmissions interposed between the outer ring 5 and the inner ring 6. The ball 7 and the cage 8 that is interposed between the outer ring 5 and the inner ring 6 and holds the ball 7 are configured as main members. The inner ring 6 is spline-fitted by press-fitting an end of a shaft (not shown) into the shaft hole inner diameter 6a and is coupled to the shaft so that torque can be transmitted.

外輪5は、底壁12を有するマウス部11を備え、その内球面13に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。内輪6は、その外球面15に、軸方向に延びた複数のトラック溝16が円周方向等間隔に形成されている。底壁12には、外径面17aが円筒面とされる円盤状の軸合わせ用突起部17が設けられている。   The outer ring 5 includes a mouth portion 11 having a bottom wall 12, and a plurality of track grooves 14 extending in the axial direction are formed on the inner spherical surface 13 at equal intervals in the circumferential direction. In the inner ring 6, a plurality of track grooves 16 extending in the axial direction are formed on the outer spherical surface 15 at equal intervals in the circumferential direction. The bottom wall 12 is provided with a disk-shaped axial alignment projection 17 whose outer diameter surface 17a is a cylindrical surface.

外輪5のトラック溝14と内輪6のトラック溝16とは対をなし、各対のトラック溝14,16で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール7が転動可能に組み込んである。ボール7は外輪5のトラック溝14と内輪6のトラック溝16との間に介在してトルクを伝達する。ケージ8は外輪5と内輪6との間に摺動可能に介在し、外球面8aにて外輪5の内球面13と接し、内球面8bにて内輪6の外球面15と接する。なお、この場合の等速自在継手は、各トラック溝14、16の溝底に直線状のストレート部を有さないツェパー型の等速自在継手を示しているが、各トラック溝14、16
の溝底にストレート部を有するアンダーカットフリー型等の他の等速自在継手であってもよい。
The track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 make a pair, and one ball 7 as a torque transmitting element can roll on each ball track constituted by the pair of track grooves 14 and 16. It is incorporated. The ball 7 is interposed between the track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 to transmit torque. The cage 8 is slidably interposed between the outer ring 5 and the inner ring 6, is in contact with the inner spherical surface 13 of the outer ring 5 at the outer spherical surface 8a, and is in contact with the outer spherical surface 15 of the inner ring 6 at the inner spherical surface 8b. The constant velocity universal joint in this case is a Zepper type constant velocity universal joint that does not have a straight straight portion at the groove bottom of each track groove 14, 16.
Other constant velocity universal joints such as an undercut free type having a straight portion at the groove bottom may be used.

ハブ輪1は、仕切壁19を有する筒部20と、筒部20の反継手側の端部に設けられるフランジ21とを有する。筒部20の仕切壁19よりも等速自在継手側の孔部20aは、前記底壁12の軸合わせ用突起部17が嵌合する円孔部47と、この円孔部47から反等速自在継手側に向かって縮径する第1テーパ部48と、第1テーパ部48から反等速自在継手側に向かって縮径する第2テーパ部49と、第2テーパ部49から反等速自在継手側に向かって縮径する第3テーパ部50を備える。図5に示すように、円孔部47の内径寸法Dを軸合わせ用突起部17の外径寸法D1よりも僅かに大きく設定する。   The hub wheel 1 includes a cylindrical portion 20 having a partition wall 19 and a flange 21 provided at an end of the cylindrical portion 20 on the opposite joint side. The hole 20 a on the constant velocity universal joint side of the partition wall 19 of the cylindrical portion 20 includes a circular hole portion 47 into which the shaft alignment protrusion 17 of the bottom wall 12 is fitted, and an anti-constant velocity from the circular hole portion 47. A first taper portion 48 that decreases in diameter toward the universal joint side, a second taper portion 49 that decreases in diameter from the first taper portion 48 toward the anti-constant velocity universal joint, and an anti-constant velocity from the second taper portion 49. A third taper portion 50 having a diameter reduced toward the universal joint side is provided. As shown in FIG. 5, the inner diameter dimension D of the circular hole portion 47 is set to be slightly larger than the outer diameter dimension D <b> 1 of the axis alignment projection portion 17.

また、ハブ輪1のフランジ21の外端面(反継手側の端面)には、図示省略のホイールおよびブレーキロータが装着される短筒状のパイロット部35が突設されている。フランジ21にはボルト装着孔32が設けられて、ホイールおよびブレーキロータをこのフランジ21に固定するためのハブボルト33がこのボルト装着孔32に装着される。   Further, a short cylindrical pilot portion 35 to which a wheel and a brake rotor (not shown) are mounted is projected from the outer end surface (the end surface on the anti-joint side) of the flange 21 of the hub wheel 1. The flange 21 is provided with a bolt mounting hole 32, and a hub bolt 33 for fixing the wheel and the brake rotor to the flange 21 is mounted in the bolt mounting hole 32.

転がり軸受2は、ハブ輪1の筒部20の継手側に設けられた段差部23に嵌合する内方部材24と、ハブ輪1の筒部20に外嵌される外方部材25とを備える。外方部材25は、その内周に2列の外側軌道面(アウターレース)26、27が設けられ、第1外側軌道面26とハブ輪1の筒部外周に設けられる第1内側軌道面(インナーレース)28とが対向し、第2外側軌道面27と、内輪24の外周面に設けられる第2内側軌道面(インナーレース)29とが対向し、これらの間に転動体30としてのボールが介装される。なお、外方部材25の両開口部にはシール部材Sが装着されている。   The rolling bearing 2 includes an inner member 24 that fits into a stepped portion 23 provided on the joint side of the tubular portion 20 of the hub wheel 1, and an outer member 25 that is fitted onto the tubular portion 20 of the hub wheel 1. Prepare. The outer member 25 is provided with two rows of outer raceways (outer races) 26, 27 on its inner circumference, and a first inner raceway (provided on the outer circumference of the first outer raceway 26 and the cylindrical portion of the hub wheel 1). The inner race) 28 is opposed to the second outer raceway surface 27 and the second inner raceway surface (inner race) 29 provided on the outer peripheral surface of the inner ring 24 is opposed to the ball as the rolling element 30 therebetween. Is installed. Note that seal members S are attached to both openings of the outer member 25.

この場合、ハブ輪1の継手側の端部を加締めて、その端部加締部31にて内方部材(内輪)24に予圧を付与するものである。これによって、内輪24をハブ輪1に締結することができる。また、仕切壁19には貫通孔36を設けるとともに、マウス部11の底壁12にはねじ孔37が設けられる。反等速自在継手側の孔部20bから貫通孔36に挿通されたボルト部材38は、そのねじ軸部38aがねじ孔37に螺着される。この際、ボルト部材38の頭部38bが孔部20b側の仕切壁19の端面39に当接する。   In this case, the end of the hub wheel 1 on the joint side is swaged, and a preload is applied to the inner member (inner ring) 24 by the end swaged portion 31. As a result, the inner ring 24 can be fastened to the hub wheel 1. The partition wall 19 is provided with a through hole 36 and the bottom wall 12 of the mouse part 11 is provided with a screw hole 37. The bolt member 38 inserted into the through hole 36 from the hole 20 b on the opposite constant velocity universal joint side is screwed into the screw hole 37. At this time, the head portion 38b of the bolt member 38 contacts the end surface 39 of the partition wall 19 on the hole 20b side.

外輪5のマウス部11の底壁12のハブ輪対応面40とハブ輪1の端部加締部31とが凹凸嵌合構造Mを介して一体化される。凹凸嵌合構造Mは、ハブ輪対応面40に設けた径方向に延びる凸部41と、端部加締部31の外端面31aに設けられて凸部41に嵌合する凹部42とからなり、凸部41とその凸部41に嵌合する凹部42との嵌合接触部位全域が密着している。すなわち、底壁12のハブ輪対応面40に図3に示すように、全周にわたって多数の凸部41が配置され、全凸部41とこれに嵌合する全凹部42とがタイトフィットしている。   The hub wheel corresponding surface 40 of the bottom wall 12 of the mouse part 11 of the outer ring 5 and the end caulking part 31 of the hub wheel 1 are integrated via the concave / convex fitting structure M. The concave / convex fitting structure M includes a radially extending convex portion 41 provided on the hub wheel corresponding surface 40, and a concave portion 42 provided on the outer end surface 31 a of the end caulking portion 31 and fitted to the convex portion 41. The entire fitting contact portion between the convex portion 41 and the concave portion 42 fitted into the convex portion 41 is in close contact. That is, as shown in FIG. 3 on the hub wheel corresponding surface 40 of the bottom wall 12, a large number of convex portions 41 are arranged over the entire circumference, and the total convex portions 41 and all the concave portions 42 fitted thereto are tight-fitted. Yes.

ところで、各凸部41は、図4に示すように、その断面形状が側面高さ方向中央部が膨出した略三角形とされ、その圧力角αが20°以下に設定される。ここで、圧力角αとは、凸部41の歯面(側面)の1点(ピッチ点)Pにおいて、その高さ方向線Lと歯形への接線L1との成す角度である。なお、基準円(ピッチ円)の接線L2と、歯面の法線L3との成す角度α´も圧力角と呼ぶことができる。すなわち、90°−α=90°−α´となり、α=α´となる。   By the way, as shown in FIG. 4, each convex part 41 is made into the substantially triangular shape which the cross-sectional shape bulged in the center part in the side surface height direction, and the pressure angle (alpha) is set to 20 degrees or less. Here, the pressure angle α is an angle formed by the height direction line L and the tangent line L1 to the tooth profile at one point (pitch point) P of the tooth surface (side surface) of the convex portion 41. The angle α ′ formed between the tangent line L2 of the reference circle (pitch circle) and the normal line L3 of the tooth surface can also be called a pressure angle. That is, 90 ° −α = 90 ° −α ′, and α = α ′.

次に、凹凸嵌合構造Mの嵌合方法を説明する。この場合、底壁12のハブ輪対応面40に、径方向に延びる複数の凸条43と径方向に延びる複数の凹条44とが周方向に沿って交互に配設されるフェーススプライン45を形成する。このフェーススプライン45に熱硬化処理を施す。そして、この硬化処理されたフェーススプライン45の凸条43を凹凸嵌合構造Mの凸部41とする。また、ハブ輪1の端部加締部31は熱硬化処理を行わない生材としておく。具体的には、ハブ輪1の端部加締部31の硬度を25HRC〜35HRC程度とする。   Next, the fitting method of the uneven fitting structure M will be described. In this case, a face spline 45 in which a plurality of ridges 43 extending in the radial direction and a plurality of ridges 44 extending in the radial direction are alternately arranged in the circumferential direction on the hub wheel corresponding surface 40 of the bottom wall 12. Form. The face spline 45 is subjected to a thermosetting process. The convex line 43 of the face spline 45 that has been subjected to the curing process is used as the convex part 41 of the concave-convex fitting structure M. Further, the end caulking portion 31 of the hub wheel 1 is a raw material that is not subjected to thermosetting. Specifically, the hardness of the end caulking portion 31 of the hub wheel 1 is set to about 25 HRC to 35 HRC.

この熱硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原
理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。この場合、凸部41の硬度を端部加締部31の硬度よりもHRCで20ポイント以上大きくするのが好ましい。フェーススプライン45の硬度を50HRCから65HRC程度とする。
As this thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. Here, induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there. In addition, carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low carbon material and then quenched. In this case, it is preferable that the hardness of the convex portion 41 is larger by 20 points or more in HRC than the hardness of the end caulking portion 31. The hardness of the face spline 45 is about 50 HRC to 65 HRC.

そして、図5に示すように、外輪5とハブ輪1との軸心を合わせて、外輪5の軸合わせ用突起部17をハブ輪1の孔部20aの円孔部47に嵌入する。この際、円孔部47の内径寸法Dを軸合わせ用突起部17の外径寸法D1よりも僅かに大きく設定しているので、軸合わせ用突起部17の外径面17aがパイロット部(調芯用)として機能し、外輪5とハブ輪1とは軸心が合った状態で、軸合わせ用突起部17を円孔部47に嵌入することができる。   Then, as shown in FIG. 5, the axial centers of the outer ring 5 and the hub wheel 1 are aligned, and the shaft alignment protrusion 17 of the outer ring 5 is fitted into the circular hole 47 of the hole 20 a of the hub wheel 1. At this time, since the inner diameter dimension D of the circular hole portion 47 is set slightly larger than the outer diameter dimension D1 of the shaft alignment projection portion 17, the outer diameter surface 17a of the shaft alignment projection portion 17 becomes the pilot portion (adjustment). The shaft alignment protrusion 17 can be fitted into the circular hole portion 47 in a state where the outer ring 5 and the hub wheel 1 are aligned with each other.

そして、マウス部11のフェーススプライン45、すなわち、凹凸嵌合構造Mのステム側の凸部41を端部加締部31の外端面31aに押圧する。この際、凸部41の硬度が端部加締部31の硬度よりもHRCで20ポイント以上大きいので、押圧していけば、この凸部41が端部加締部31の外端面31aに食い込んでいき、凸部41が、この凸部41が嵌合する凹部42を、周方向全周に沿って形成していくことになる。すなわち、ハブ輪1の端部加締部31の外端面31aに、マウス部11のフェーススプライン45が嵌合するフェーススプライン46が形成される。なお、マウス部11の開口端面に軸方向荷重を付与することによって、押圧することになるが、この軸方向荷重の付与は、例えば、シリンダ機構、ボールネジ機構等の種々の軸方向往復動機構を用いることができる。また、フェーススプライン45は、従来からの公知公用の手段である転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。   Then, the face spline 45 of the mouse part 11, that is, the convex part 41 on the stem side of the concave-convex fitting structure M is pressed against the outer end surface 31 a of the end caulking part 31. At this time, the hardness of the convex portion 41 is 20 points or more higher in HRC than the hardness of the end caulking portion 31, so if the pressure is applied, the convex portion 41 bites into the outer end surface 31 a of the end caulking portion 31. Thus, the convex portion 41 forms the concave portion 42 into which the convex portion 41 is fitted along the entire circumference in the circumferential direction. That is, a face spline 46 that fits the face spline 45 of the mouth portion 11 is formed on the outer end surface 31 a of the end caulking portion 31 of the hub wheel 1. In addition, although it will press by giving an axial load to the opening end surface of the mouse | mouth part 11, this axial load is given to various axial reciprocation mechanisms, such as a cylinder mechanism and a ball screw mechanism, for example. Can be used. The face spline 45 can be formed by various processing methods such as rolling, cutting, pressing, drawing, etc., which are known publicly known means.

これによって、マウス部11側の凸部41と、これに嵌合する凹部42との嵌合接触部位の全体が密着する。すなわち、端部加締部31の外端面31aに凸部41の形状の転写を行うことになる。このように、転写を行った後は、反等速自在継手側の孔部20bからボルト部材38を仕切壁19の貫通孔36に挿通し、そのねじ軸部38aを外輪5のねじ孔37に螺着する。これによって、ハブ輪1と外輪5とが一体化される。   Thereby, the whole fitting contact site | part of the convex part 41 by the side of the mouse | mouth part 11 and the recessed part 42 fitted to this closely_contact | adheres. That is, the shape of the convex portion 41 is transferred to the outer end surface 31a of the end caulking portion 31. In this way, after the transfer, the bolt member 38 is inserted into the through hole 36 of the partition wall 19 from the hole portion 20b on the opposite constant velocity universal joint side, and the screw shaft portion 38a is inserted into the screw hole 37 of the outer ring 5. Screw it on. Thereby, the hub wheel 1 and the outer ring 5 are integrated.

ところで、ハブ輪1側にフェーススプライン46を成形した後、ボルト部材38による螺着を行う前に、このフェーススプライン46(マウス部側の凸部にて凹部が形成されたハブ輪1の端部加締部31)に対して、WPC処理やショットピーニング処理の金属表面処理を施すのが好ましい。この場合、図6のHの範囲において金属表面処理が施される。   By the way, after forming the face spline 46 on the hub wheel 1 side and before screwing with the bolt member 38, the face spline 46 (the end portion of the hub wheel 1 in which the concave portion is formed at the convex portion on the mouse portion side). It is preferable to perform metal surface treatment such as WPC treatment or shot peening treatment on the crimping portion 31). In this case, the metal surface treatment is performed in the range H in FIG.

ここで、WPC処理とは、金属の表面に40〜200ミクロンの特殊なショットを高速で噴射させ、局部的に再結晶温度まで高めることにより、熱処理効果、鍛錬効果の加工強化が瞬時に繰り返され、金属表面層の残留オーステナイトのマルテンサイト化や、再結晶、組織の微細化を行う処理である。これにより、金属表面は高硬度で靱性に富んだ微細な組織が形成され、内部圧縮残留応力も高めることができる。ショットピーニング処理とは、WPC処理と同様、ショットを打付けて圧縮残留応力を高める処理である。なお、ショットピーニングでは、圧縮残留応力を高めることはできるが、組織の微細化等は行うことはできない。また、ショットピーニングでは表面が粗くなり、摺動性を向上させることはできない。これに対して、WPC処理では、ショットピーニングで使用されているショットよりも微細なショットを高速で打付けることにより、組織の変化、つまり熱処理効果を出すことができる。   Here, the WPC treatment is a process in which a special shot of 40 to 200 microns is sprayed on a metal surface at a high speed and locally raised to the recrystallization temperature, so that the heat treatment effect and the forging effect are strengthened instantaneously. In this process, the retained austenite in the metal surface layer is converted into martensite, recrystallized, and the structure is refined. As a result, a fine structure with high hardness and toughness is formed on the metal surface, and the internal compressive residual stress can be increased. The shot peening process is a process for increasing the compressive residual stress by hitting a shot, similar to the WPC process. In shot peening, the compressive residual stress can be increased, but the structure cannot be refined. Moreover, the surface becomes rough in shot peening, and the slidability cannot be improved. On the other hand, in the WPC process, a change in structure, that is, a heat treatment effect can be obtained by hitting a shot finer than a shot used in shot peening at a high speed.

WPC処理した表面の形状はなだらかで微細な凹凸ができ、またその凹凸も硬度が高く面圧に負けない組織になっている。このため、凹部分に潤滑油を保持させることができ、接触面積の減少により、油ぎれをなくすと同時に、摩耗を減らし、摺動性を向上させることができる。このように、WPC処理では表面の硬度を上げると同時に微細な凹凸を作って、摺動性を向上させることができる。   The surface of the WPC-treated surface has gentle and fine irregularities, and the irregularities have a high hardness and do not lose the surface pressure. For this reason, lubricating oil can be held in the concave portion, and by reducing the contact area, oil leakage can be eliminated, and at the same time, wear can be reduced and slidability can be improved. As described above, in the WPC treatment, the surface hardness can be increased and at the same time fine irregularities can be formed to improve the slidability.

しかも、WPC処理はショットをたたきつけているため、圧縮残留応力を高めることができる。WPC処理をした金属表面は非常に微細な炭化物組織になっており、その表面積は大きく結びつきも強いものになる。このように、結びつきが強ければ、クラックも入りにくく、入ったとしても広がりにくい。このため、WPC処理を施すと疲労に強くなり、折れや欠けが激減する。   Moreover, since the WPC process strikes the shot, the compressive residual stress can be increased. The WPC-treated metal surface has a very fine carbide structure, and its surface area is large and strong. In this way, if the connection is strong, cracks are difficult to enter, and even if they enter, they are difficult to spread. For this reason, if WPC processing is performed, it will become strong to fatigue and a crease and a chip will reduce sharply.

本発明では、凹凸嵌合構造Mは、マウス部側の凸部41とその凸部41に嵌合するハブ輪1の端部加締部31の凹部42との嵌合接触部位全域が密着しているので、この嵌合構造において、円周方向においてガタが生じる隙間が形成されない。このため、回転トルクの伝達性に優れるとともに、異音の発生も生じさせない。また、周方向のガタおよび同軸度(ハブ輪と等速自在継手との軸ズレ)を所定の範囲(小範囲)に納めることが可能となって、トルク伝達性の向上を図ることができ、安定した回転伝達ができる。   In the present invention, the concave-convex fitting structure M is in close contact with the entire fitting contact site between the convex portion 41 on the mouse portion side and the concave portion 42 of the end crimping portion 31 of the hub wheel 1 fitted to the convex portion 41. Therefore, in this fitting structure, there is no gap in which play occurs in the circumferential direction. For this reason, it is excellent in the transmission property of rotational torque, and an abnormal noise is not produced. In addition, it is possible to keep the backlash and coaxiality in the circumferential direction (axial misalignment between the hub wheel and the constant velocity universal joint) within a predetermined range (small range), so that torque transmission can be improved. Stable rotation transmission is possible.

また、マウス部側の凸部41をハブ輪の端部加締部31に対して押圧することによって、前記凸部41に嵌合する径方向に延びる凹部42を形成することができ、ハブ輪1の端部加締部31には、別途凹部を形成しておく必要がない。すなわち、従来のように、別個に形成したフェーススプラインの噛み合わせでなく、マウス部側に凸部41を形成しておいて、ハブ輪1の端部加締部31にこの凸部42を押し付ければよいので、凸部42を高精度に仕上げることが要求されない。このため、低コスト化を図れて、実用化を達成できる。さらに、凹凸嵌合構造Mは、その嵌合接触部位全域が隙間無く密着しているので、トルク伝達部位の強度が向上する。   Further, by pressing the convex portion 41 on the mouse portion side against the end caulking portion 31 of the hub wheel, it is possible to form a radially extending concave portion 42 that fits into the convex portion 41. It is not necessary to form a separate recess in the one end caulking portion 31. That is, instead of meshing the face splines that are separately formed as in the prior art, the convex portion 41 is formed on the mouth portion side, and the convex portion 42 is pressed against the end caulking portion 31 of the hub wheel 1. Therefore, it is not required to finish the convex portion 42 with high accuracy. For this reason, cost reduction can be achieved and practical use can be achieved. Furthermore, since the entire fitting contact portion of the concave / convex fitting structure M is in close contact with the gap, the strength of the torque transmission portion is improved.

フェーススプライン45の径方向に延びる凸条43を凹凸嵌合構造Mの凸部41とするので、凹凸嵌合構造Mの範囲が全周にわたって配設され、回転トルク伝達性の向上を図ることができる。しかも、フェーススプライン45の形成も容易であり、コスト低減に寄与する。   Since the ridges 43 extending in the radial direction of the face spline 45 are used as the convex portions 41 of the concave / convex fitting structure M, the range of the concave / convex fitting structure M is arranged over the entire circumference, thereby improving rotational torque transmission. it can. In addition, the face spline 45 can be easily formed, which contributes to cost reduction.

マウス部側の凸部の圧力角を20°以下としたので、加工性(食込み性)の向上を図るとともに、凸部(歯部)の肉厚を比較的厚く設定することができ、凸部の強度向上を図ることができて、トルク伝達時の離反力の低減を図ることができる。これによって、安定したトルク伝達が長期にわたって可能となる。これに対して、圧力角が20°を越えると、歯面(側面)が押圧方向に対して傾きすぎて食込み性に劣ることになる。   Since the pressure angle of the convex part on the mouse side is set to 20 ° or less, the workability (biting property) can be improved and the thickness of the convex part (tooth part) can be set relatively thick. Strength can be improved, and the separation force during torque transmission can be reduced. This enables stable torque transmission over a long period. On the other hand, when the pressure angle exceeds 20 °, the tooth surface (side surface) is inclined too much with respect to the pressing direction, and the biting property is inferior.

フェーススプライン45の径方向に延びる凸条が凹凸嵌合構造Mの凸部41であるので、凹凸嵌合構造Mの範囲が全周にわたって配設され、回転トルク伝達性の向上を図ることができる。しかも、フェーススプライン45の形成も容易であり、コスト低減に寄与する。   Since the convex line extending in the radial direction of the face spline 45 is the convex portion 41 of the concave-convex fitting structure M, the range of the concave-convex fitting structure M is arranged over the entire circumference, and the rotational torque transmission performance can be improved. . In addition, the face spline 45 can be easily formed, which contributes to cost reduction.

ハブ輪1の端部加締部31の硬度を25HRCから35HRCとすることによって、ハブ輪1の端部加締部31が比較的柔らかくなって、外側継手部材側の凸部41の押し付けによるハブ輪1の端部加締部側の凹部形成が容易となり、生産性の向上を図ることができる。   By setting the hardness of the end caulking portion 31 of the hub wheel 1 to 25 HRC to 35 HRC, the end caulking portion 31 of the hub wheel 1 becomes relatively soft, and the hub is pressed by the convex portion 41 on the outer joint member side. Formation of the recess on the end caulking portion side of the wheel 1 is facilitated, and productivity can be improved.

軸合わせ用突起部17を設けているので、マウス部11とハブ輪1との同軸度を確保しつつ押圧することができる。このため、安定した押圧が可能となって、凹凸嵌合構造Mを高精度に形成できる。   Since the axial alignment protrusion 17 is provided, the mouse portion 11 and the hub wheel 1 can be pressed while maintaining the coaxiality. For this reason, stable pressing is possible, and the concave-convex fitting structure M can be formed with high accuracy.

WPC処置やショットピーニング等の金属表面処理を施すことによって、凹凸嵌合構造Mを構成するための凸部41の圧縮残留応力を高めることはできる。これによって、引張応力の集中を緩和し、疲れ限度を高めることができる。特に、WPC処置を行えば、疲労強度向上と耐摩擦性向上を図ることができ、高品質の製品を提供できる。   By applying a metal surface treatment such as WPC treatment or shot peening, the compressive residual stress of the convex portion 41 for forming the concave-convex fitting structure M can be increased. Thereby, the concentration of tensile stress can be relaxed and the fatigue limit can be increased. In particular, if WPC treatment is performed, it is possible to improve fatigue strength and friction resistance, and to provide a high-quality product.

ところで、WPC処置やショットピーニング等の金属表面処理に代えて、レーザ焼き入れによる熱処理をおこなってもよい。ここで、レーザ焼き入れとは、レーザ光を金属表面に照射することによって、表面焼き入れを行うものである。例えば、レーザビームを広げ、表面に高エネルギーを照射する。これによって、材料自身の熱拡散によって表面が急速冷却される。この際、ノズルからは酸化、スパッタ防止用のヘリウム、アルゴンガス等を流すようにするのが好ましい。   By the way, instead of metal surface treatment such as WPC treatment or shot peening, heat treatment by laser quenching may be performed. Here, the laser quenching is to quench the surface by irradiating the metal surface with laser light. For example, the laser beam is spread and the surface is irradiated with high energy. As a result, the surface is rapidly cooled by the thermal diffusion of the material itself. At this time, it is preferable to flow helium, argon gas, or the like for preventing oxidation or sputtering from the nozzle.

レーザ焼き入れによる熱処理によって、凸部の強度及び耐摩耗性の向上を図ることができ、信頼性のある車輪用軸受装置を提供できる。レーザ焼き入れの際、製品データをレーザによるマーキングを外輪5とハブ輪1の少なくとも一方に施すことができる。すなわち、マーキングとしては、外輪5のみ、ハブ輪1のみ、外輪5及びハブ輪1に施してもよい。ここで、製品データとは、この製品の製造日時、製造場所(工場、ライン)、品名等である。また、マーキングの種類には、シリアルナンバー、バーコード等である。このように、製品データをマーキングすることによって、製品のトレーサビリティを向上させることができる。トレーサビリティとは、製品の流通経路を生産段階から最終消費段階あるいは廃棄段階まで追跡が可能な状態をいう。また、製品データをマーキングするレーザ加工機(レーザ照射機)等に、レーザ焼き入れの際に使用したものを用いることができ、コスト低減及び作業時間の短縮を図ることができる。   The heat treatment by laser quenching can improve the strength and wear resistance of the protrusions, and provide a reliable wheel bearing device. At the time of laser quenching, product data can be marked with laser on at least one of the outer ring 5 and the hub ring 1. That is, as marking, only the outer ring 5, only the hub ring 1, the outer ring 5 and the hub ring 1 may be provided. Here, the product data includes the manufacturing date and time, the manufacturing location (factory, line), the product name, and the like of this product. The marking type includes a serial number, a barcode, and the like. In this way, the product traceability can be improved by marking the product data. Traceability refers to a state in which the product distribution channel can be traced from the production stage to the final consumption stage or the disposal stage. In addition, a laser processing machine (laser irradiation machine) or the like for marking product data can be the same as that used for laser quenching, thereby reducing costs and working time.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造Mの凸部41の数、周方向配設ピッチ等は任意に変更できる。すなわち、前記実施形態では、凹凸嵌合構造Mの凸部41を、フェーススプライン45の凸条43で構成していたが、このような凸条43で構成することなく、径方向に延びる凸部41が周方向に沿って所定ピッチで配設されたものであってもよい。金属表面処理やレーザ焼き入れ処理を施す場合、前記実施形態では、フェーススプライン45全体に施していたが、トルク伝達時に寄与度の高い径方向中央位置よりも内径側の範囲のみ施すようにしてもよい。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the number of the convex portions 41 of the concave-convex fitting structure M, the circumferential arrangement The installation pitch can be arbitrarily changed. That is, in the said embodiment, although the convex part 41 of the uneven | corrugated fitting structure M was comprised by the convex strip 43 of the face spline 45, it is a convex part extended in radial direction, without comprising such a convex strip 43. 41 may be arranged at a predetermined pitch along the circumferential direction. In the case of performing the metal surface treatment or the laser quenching treatment, the entire face spline 45 is applied in the embodiment, but only the range on the inner diameter side of the radial center position having a high contribution at the time of torque transmission may be applied. Good.

なお、凸部41側と、凸部41にて形成される端部加締部31との硬度差としては、前記したようにHRCで20ポイント以上とするのが好ましいが、凸部41が圧入可能であれば20ポイント未満であってもよい。また、フェーススプライン45は、特表2001−514969号公報に記載の方法を用いても形成することができる。   The hardness difference between the convex portion 41 side and the end crimped portion 31 formed by the convex portion 41 is preferably 20 points or more in HRC as described above, but the convex portion 41 is press-fitted. If possible, it may be less than 20 points. The face spline 45 can also be formed by using the method described in JP-T-2001-514969.

本発明の実施形態を示す車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus which shows embodiment of this invention. 前記車輪用軸受装置の等速自在継手の断面図である。It is sectional drawing of the constant velocity universal joint of the said wheel bearing apparatus. 前記車輪用軸受装置の等速自在継手の側面図である。It is a side view of the constant velocity universal joint of the said wheel bearing apparatus. 凹凸嵌合構造Mの凸部の拡大断面図である。It is an expanded sectional view of the convex part of uneven | corrugated fitting structure M. FIG. 前記車輪用軸受装置の分解状態の断面図である。It is sectional drawing of the decomposition | disassembly state of the said wheel bearing apparatus. フェーススプラインを成形した状態のハブ輪の断面図である。It is sectional drawing of the hub wheel of the state which shape | molded the face spline. 従来の車輪用軸受装置の断面図である。It is sectional drawing of the conventional wheel bearing apparatus.

符号の説明Explanation of symbols

1 ハブ輪
2 軸受
3 等速自在継手
11 マウス部
12 底壁
13 内球面
31 端部加締部
31a 外端面
40 ハブ輪対応面
41 凸部
42 凹部
45 フェーススプライン
DESCRIPTION OF SYMBOLS 1 Hub wheel 2 Bearing 3 Constant velocity universal joint 11 Mouse | mouth part 12 Bottom wall 13 Inner spherical surface 31 End crimping part 31a Outer end surface 40 Hub wheel corresponding surface 41 Convex part 42 Concave part 45 Face spline

Claims (5)

ハブ輪と複列の転がり軸受と等速自在継手とがユニット化され、前記等速自在継手の外側継手部材は内側継手部材が内装されるマウス部を備え、ハブ輪の端部が加締られてハブ輪に外嵌される転がり軸受の内輪に対して予圧が付与されると共に、前記外側継手部材のマウス部の底壁のハブ輪対応面とハブ輪の端部加締部とが凹凸嵌合構造を介して一体化された車輪用軸受装置であって、
前記外側継手部材のマウス部のハブ輪対応面に、径方向に延びる複数の凸条と径方向に延びる複数の凹条とが周方向に沿って交互に配設される外側継手部材側のフェーススプラインを形成するとともに、このフェーススプラインの各凸条の硬度をハブ輪の端部加締部の硬度よりも高く設定し、前記ハブ輪の端部加締部への外側継手部材側のフェーススプラインの押圧による形状の転写によって、この端部加締部に、外側継手部材側のフェーススプラインの嵌合するハブ輪側のフェーススプラインを形成して、凸条である凸部と凹条である凹部との嵌合接触部位全域が密接する前記凹凸嵌合構造を構成し、前記マウス部側の凸部の圧力角を20°以下としたことを特徴とする車輪用軸受装置。
A hub wheel, a double row rolling bearing and a constant velocity universal joint are unitized, and the outer joint member of the constant velocity universal joint has a mouth portion in which the inner joint member is housed, and the end of the hub wheel is crimped. Preload is applied to the inner ring of the rolling bearing that is fitted on the hub ring, and the hub ring corresponding surface of the bottom wall of the mouth portion of the outer joint member and the end caulking part of the hub ring are unevenly fitted. A wheel bearing device integrated through a joint structure,
A face on the outer joint member side in which a plurality of ridges extending in the radial direction and a plurality of ridges extending in the radial direction are alternately arranged along the circumferential direction on the hub wheel corresponding surface of the mouth portion of the outer joint member The spline is formed, and the hardness of each protrusion of the face spline is set higher than the hardness of the end caulking portion of the hub ring, and the face spline on the outer joint member side to the end caulking portion of the hub ring is formed. By forming the shape by pressing, a face spline on the hub wheel side to which the face spline on the outer joint member side is fitted is formed on this end caulking portion, and a convex portion that is a convex strip and a concave portion that is a concave strip The wheel bearing device is characterized in that the concave-convex fitting structure in which the entire fitting contact part is closely contacted with each other and the pressure angle of the convex part on the mouse part side is 20 ° or less.
ハブ輪の端部加締部の硬度を25HRCから35HRCとしたことを特徴とする請求項1に記載の車輪用軸受装置。 The wheel bearing device according to claim 1, wherein the hardness of the end caulking portion of the hub wheel is 25 HRC to 35 HRC . マウス部側の凸部にて凹部が形成されたハブ輪の端部加締部に対してWPC処理やショットピーニング処理の金属表面処理を施したことを特徴とする請求項1又は請求項2に記載の車輪用軸受装置。 To claim 1 or claim 2, characterized in that it has facilities for metal surface treatment of WPC treatment and shot peening relative to the end crimped portion of the hub wheel having a recess formed in the convex portion of the mouth portion side The wheel bearing device described. マウス部側の凸部にて凹部が形成されたハブ輪の端部加締部に対してレーザ焼き入れによる熱処理を施したことを特徴とする請求項1又は請求項2に記載の車輪用軸受装置。 Wheel bearing according to claim 1 or claim 2, characterized in that it has facilities to heat treatment by laser quenching to the end crimped portion of the hub wheel having a recess formed in the convex portion of the mouth portion side apparatus. マウス部側の凸部にて凹部が形成されたハブ輪の端部加締部に対してレーザ焼き入れによる熱処理を施すとともに、レーザによる製品データのマーキングを外側継手部材とハブ輪の少なくとも一方に施したことを特徴とする請求項1又は請求項2に記載の車輪用軸受装置。 Heat treatment by laser quenching is applied to the end caulking portion of the hub wheel in which the concave portion is formed at the convex portion on the mouse side, and marking of product data by laser is applied to at least one of the outer joint member and the hub wheel. a bearing device for a wheel according to claim 1 or claim 2, characterized in that the facilities.
JP2007292039A 2007-11-09 2007-11-09 Wheel bearing device Active JP4959514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292039A JP4959514B2 (en) 2007-11-09 2007-11-09 Wheel bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292039A JP4959514B2 (en) 2007-11-09 2007-11-09 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2009115292A JP2009115292A (en) 2009-05-28
JP4959514B2 true JP4959514B2 (en) 2012-06-27

Family

ID=40782638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292039A Active JP4959514B2 (en) 2007-11-09 2007-11-09 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP4959514B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376234B2 (en) * 2009-07-30 2013-12-25 株式会社ジェイテクト Manufacturing method of rolling bearing device for wheel
JP5471496B2 (en) * 2010-01-21 2014-04-16 日本精工株式会社 Wheel drive bearing unit
KR101573023B1 (en) 2014-04-23 2015-11-30 주식회사 일진글로벌 A driving wheel bearing and manufacturing method thereof
JP2017180522A (en) * 2016-03-28 2017-10-05 台灣精鋭科技股▲ふん▼有限公司 Coupler of gear box output shaft
JP7475304B2 (en) 2021-03-25 2024-04-26 Ntn株式会社 Wheel bearing device
JP7641152B2 (en) 2021-03-25 2025-03-06 Ntn株式会社 Wheel bearing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636243A1 (en) * 1986-10-24 1988-05-11 Loehr & Bromkamp Gmbh WHEEL BEARING (NY) SMOOTH JOINT UNIT
JP2000015383A (en) * 1998-06-29 2000-01-18 Toyota Motor Corp Forging method of two-step inner groove member and two-step inner groove member
JP2002227863A (en) * 2001-02-06 2002-08-14 Koyo Seiko Co Ltd Bearing
JP2002283806A (en) * 2001-03-29 2002-10-03 Ntn Corp Bearing device for drive axle
JP2005240879A (en) * 2004-02-25 2005-09-08 Nsk Ltd Rolling bearing unit for wheel supporting
JP2005331066A (en) * 2004-05-21 2005-12-02 Koyo Seiko Co Ltd Roller bearing with pin type retainer
JP2006189132A (en) * 2005-01-07 2006-07-20 Nsk Ltd Cam follower
JP2007062647A (en) * 2005-09-01 2007-03-15 Ntn Corp Bearing device for driving wheel
JP4868891B2 (en) * 2006-03-02 2012-02-01 Ntn株式会社 Wheel bearing device
JP2007276780A (en) * 2007-06-06 2007-10-25 Jtekt Corp Vehicle bearing device

Also Published As

Publication number Publication date
JP2009115292A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
US7452136B2 (en) Bearing apparatus for a wheel of vehicle
JP5355938B2 (en) Drive wheel bearing device
EP1190870A2 (en) Wheel bearing device
US7695195B2 (en) Bearing apparatus for a wheel of vehicle
WO2012035925A1 (en) Vehicle-wheel bearing device
JP5269347B2 (en) Wheel bearing device
JP4959514B2 (en) Wheel bearing device
JP2009149183A (en) Bearing device for wheel
JP2010047058A (en) Wheel bearing device and axle module
JP2007211987A (en) Wheel bearing device and method for manufacturing same
JP2010047042A (en) Bearing device for driving wheel
WO2012128278A1 (en) Bearing device for wheel and method of manufacturing same
JP2013141861A (en) Bearing device for wheel
JP2010047057A (en) Wheel bearing device and axle module
JP2002283806A (en) Bearing device for drive axle
JP2009234480A (en) Bearing device for wheel
WO2009122855A1 (en) Bearing device for wheel, and axle module
JP3902392B2 (en) Drive wheel bearing device
JP2004132552A (en) Rolling bearing unit for supporting wheel
JP2008207586A (en) Wheel bearing device and its manufacturing method
JP2008168797A (en) Bearing device for driving wheel
JP5301175B2 (en) Drive wheel bearing device
JP2004263835A (en) Bearing device for wheel
JP5295644B2 (en) Wheel bearing device and axle module
WO2024043097A1 (en) Wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250