[go: up one dir, main page]

JP4940680B2 - Resin composition and prepreg and laminate using the same - Google Patents

Resin composition and prepreg and laminate using the same Download PDF

Info

Publication number
JP4940680B2
JP4940680B2 JP2006028130A JP2006028130A JP4940680B2 JP 4940680 B2 JP4940680 B2 JP 4940680B2 JP 2006028130 A JP2006028130 A JP 2006028130A JP 2006028130 A JP2006028130 A JP 2006028130A JP 4940680 B2 JP4940680 B2 JP 4940680B2
Authority
JP
Japan
Prior art keywords
resin
weight
epoxy resin
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006028130A
Other languages
Japanese (ja)
Other versions
JP2007204697A (en
Inventor
征弘 大石
充 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006028130A priority Critical patent/JP4940680B2/en
Publication of JP2007204697A publication Critical patent/JP2007204697A/en
Application granted granted Critical
Publication of JP4940680B2 publication Critical patent/JP4940680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition based on a cyanate resin excellent in high thermal resistance while sustaining flame retardancy, and to provide a prepreg and a laminated plate using the same. <P>SOLUTION: The invention relates to the resin composition comprising (a) the cyanate resin, (b) a bismaleimide compound, (c) an brominated epoxy resin, and (d) non-halogenated epoxy resin, wherein the bromine content in the solid content of the resin is 4-10 wt.%., and to the resin composition compounded with an inorganic filler to the resin composition. The invention relates to the prepreg obtained by impregnating the resin composition into a base or coating the same. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、電気回路を形成するプリント配線板材料などに使用されるシアン酸エステル樹脂系の樹脂組成物及びそれを用いたプリプレグ及び積層板に関するものである。   The present invention relates to a cyanate ester resin-based resin composition used as a printed wiring board material for forming an electric circuit, a prepreg and a laminate using the same.

シアン酸エステル樹脂は、耐熱性や電気特性に優れる熱硬化性樹脂として古くから知られており、シアン酸エステル樹脂にビスマレイミド化合物やエポキシ樹脂などを併用した樹脂組成物が、近年半導体プラスチックパッケージ用などの高機能のプリント配線板用材料などに幅広く使用されている(例えば特許文献1参照)。現在、環境対応のために溶融温度が高い鉛フリー半田が使用され始めている(例えば特許文献2参照)が、この鉛フリー半田の実装時には、これまでの積層板を使用したプリント配線板では、耐熱性が不足して剛性が弱くなり、反りなどが起こるため、この実装温度に対応できる、より高い耐熱性を有する積層板が求められている(例えば特許文献3参照)。シアン酸エステル樹脂組成物を使用した積層板では、高耐熱性を実現するため、ガラス転移温度を高めることが考えられ、プレス温度の高温化、長時間化、プレス後のベーキングという方法が検討された。しかしながら、これらの樹脂組成物には、難燃性を付与するため、通常12〜18重量%程度の臭素が臭素化エポキシ樹脂などとして配合(例えば特許文献1、4:実施例参照)されており、これら樹脂組成物を硬化して得られる積層板は、高温に長時間曝されると、脹れが発生し易くなることから、上記の方法でのガラス転移温度の向上は困難であった。   Cyanate ester resin has long been known as a thermosetting resin with excellent heat resistance and electrical characteristics. Resin compositions using a combination of a cyanate ester resin with a bismaleimide compound or an epoxy resin have recently been used for semiconductor plastic packages. It is widely used for high-performance printed wiring board materials such as (see, for example, Patent Document 1). Currently, lead-free solder having a high melting temperature has begun to be used for environmental reasons (see, for example, Patent Document 2). When mounting this lead-free solder, printed wiring boards using conventional laminated boards are heat resistant. Therefore, a laminate having higher heat resistance that can cope with the mounting temperature is demanded (see, for example, Patent Document 3). In order to achieve high heat resistance in laminated boards using cyanate ester resin compositions, it is conceivable to increase the glass transition temperature, and methods such as increasing the press temperature, increasing the press time, and baking after pressing have been studied. It was. However, in order to impart flame retardancy to these resin compositions, usually about 12 to 18% by weight of bromine is blended as a brominated epoxy resin or the like (for example, see Patent Documents 1 and 4: Examples). Since the laminates obtained by curing these resin compositions are likely to swell when exposed to high temperatures for a long time, it has been difficult to improve the glass transition temperature by the above method.

特開平08−204061号公報Japanese Patent Laid-Open No. 08-240661 特開2001−308509号公報JP 2001-308509 A 特開2005−112981号公報JP 2005-112981 A 特開2001−329080号公報JP 2001-329080 A

本発明は、プリント配線板材料などに使用されるシアン酸エステル樹脂系組成物において、難燃性を保持しつつ、高耐熱性に優れる樹脂組成物の提供を目的とするものであり、併せてこれを用いたプリプレグ及び積層板を提供するものである。   The present invention aims to provide a resin composition excellent in high heat resistance while maintaining flame retardancy in a cyanate ester resin composition used for printed wiring board materials and the like. A prepreg and a laminate using the same are provided.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、シアン酸エステル樹脂にビスマレイミド化合物を配合した樹脂組成物において、臭素含有量を抑制することにより、高耐熱性を実現する難燃性の銅張積層板が得られることを見出し、本発明に到達した。すなわち、本発明は、シアン酸エステル樹脂(a)、ビスマレイミド化合物(b)、臭素化エポキシ樹脂(c)、非ハロゲン系エポキシ樹脂(d)を含有し、且つ樹脂固形分中の臭素含有量が4〜10重量%である樹脂組成物であり、好ましくは、臭素化エポキシ樹脂(c)が、樹脂固形分の10〜25重量%である樹脂組成物であり、これら樹脂組成物に無機充填材(e)を配合した樹脂組成物であり、より好ましくは、これら樹脂組成物を基材(f)に含浸又は塗布してなるプリプレグ、及びそのプリプレグを金属箔と組み合わせ、硬化して得られる金属箔張積層板である。   As a result of intensive studies to solve the above problems, the present inventor has found it difficult to achieve high heat resistance by suppressing the bromine content in a resin composition in which a bismaleimide compound is blended with a cyanate ester resin. The inventors have found that a flammable copper-clad laminate can be obtained and have reached the present invention. That is, the present invention contains a cyanate ester resin (a), a bismaleimide compound (b), a brominated epoxy resin (c), a non-halogen epoxy resin (d), and a bromine content in the resin solid content. Is a resin composition having 4 to 10% by weight, preferably a brominated epoxy resin (c) is a resin composition having a resin solid content of 10 to 25% by weight, and these resin compositions are inorganicly filled. A resin composition containing the material (e), more preferably a prepreg obtained by impregnating or applying the resin composition to the substrate (f), and the prepreg combined with a metal foil and cured. It is a metal foil-clad laminate.

本発明による樹脂組成物から得られるプリプレグを硬化してなる金属箔張積層板は、難燃性を保持しつつ、高耐熱性に優れる特徴を有することから、鉛フリー半田の実装にも適用が可能となり、高密度化対応のプリント配線板材料に好適であり、工業的な実用性は極めて高いものである。   The metal foil-clad laminate obtained by curing the prepreg obtained from the resin composition according to the present invention has a feature of excellent heat resistance while maintaining flame retardancy, and therefore can be applied to lead-free solder mounting. Therefore, it is suitable for the printed wiring board material corresponding to high density, and the industrial practicality is extremely high.

本発明に使用するシアン酸エステル樹脂(a)とは、1分子中に2個以上のシアネート基を有する化合物であれば特に限定されない。その具体例としては、1,3-又は1,4-ジシアネートベンゼン、1,3,5-トリシアネートベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアネートナフタレン、1,3,6-トリシアネートナフタレン、4,4-ジシアネートビフェニル、ビス(4-シアネートフェニル)メタン、ビス(3,5-ジメチルー4-シアネートフェニル)メタン、2,2-ビス(4-シアネートフェニル)プロパン、2,2-ビス(3,5-ジメチルー4-シアネートフェニル)プロパン、ビス(4-シアネートフェニル)エーテル、各種ノボラック類や水酸基含有熱可塑性樹脂(例えばヒドロキシポリフェニレンエーテル、ヒドロキシポリスチレン、ヒドロキシポリカーボネートなど)のオリゴマーなどとハロゲン化シアンとの反応により得られるシアン酸エステル類、フェノールをジシクロペンタジエンで結合してなる多官能フェノールとハロゲン化シアンとを反応させて得られるシアン酸エステル(特公表61−501094号)などが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。好ましいシアン酸エステル樹脂(a)としては、2,2-ビス(4-シアネートフェニル)プロパン、フェノールノボラック型のシアン酸エステル樹脂、ナフトールアラルキル型のシアン酸エステル樹脂が挙げられる。シアン酸エステル樹脂(a)の配合量は特に限定されないが、配合量が過小になると、得られる積層板の耐熱性が低下し、多くなりすぎると、耐湿性が低下するため、樹脂固形分の10〜70重量%の範囲が好ましく、20〜50重量%の範囲が特に好適である。   The cyanate ester resin (a) used in the present invention is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule. Specific examples thereof include 1,3- or 1,4-dicyanate benzene, 1,3,5-tricyanate benzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanate naphthalene, 1,3,6-tricyanate naphthalene, 4,4-dicyanate biphenyl, bis (4-cyanatephenyl) methane, bis (3,5-dimethyl-4-cyanatephenyl) ) Methane, 2,2-bis (4-cyanatephenyl) propane, 2,2-bis (3,5-dimethyl-4-cyanatephenyl) propane, bis (4-cyanatephenyl) ether, various novolaks and hydroxyl group-containing heat Cyanate esters obtained by reacting oligomers of plastic resins (for example, hydroxypolyphenylene ether, hydroxypolystyrene, hydroxypolycarbonate, etc.) with cyanogen halides, polyfunctional phenols formed by bonding phenol with dicyclopentadiene and Gen cyanide and cyanate esters obtained by reacting (Japanese publication No. 61-501094) and the like, can also be used by mixing one or two or more appropriately. Preferred cyanate ester resins (a) include 2,2-bis (4-cyanatephenyl) propane, phenol novolac type cyanate ester resins, and naphthol aralkyl type cyanate ester resins. The blending amount of the cyanate ester resin (a) is not particularly limited. However, if the blending amount is too small, the heat resistance of the resulting laminate is lowered, and if it is too much, the moisture resistance is lowered. A range of 10 to 70% by weight is preferred, and a range of 20 to 50% by weight is particularly suitable.

本発明に使用するビスマレイミド化合物(b)とは、1分子中に2個以上のマレイミド基を有する化合物であれば、特に限定されない。その具体例としては、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、これらビスマレイミド化合物のプレポリマー、もしくはビスマレイミド化合物とアミン化合物のプレポリマーなどが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。より好適なものとしては、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタンが挙げられる。ビスマレイミド化合物(b)の配合量は特に限定されないが、配合量が過小になると、得られる積層板の耐熱性が低下し、多くなりすぎると吸湿特性が低下するため、樹脂固形分の2〜50重量%の範囲が好ましく、3〜40重量%の範囲が特に好適である。   The bismaleimide compound (b) used in the present invention is not particularly limited as long as it is a compound having two or more maleimide groups in one molecule. Specific examples thereof include bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, prepolymers of these bismaleimide compounds, or prepolymers of bismaleimide compounds and amine compounds, etc. It is also possible to use one kind or a mixture of two or more kinds as appropriate. More preferred are bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) Methane is mentioned. The blending amount of the bismaleimide compound (b) is not particularly limited, but if the blending amount is too small, the heat resistance of the resulting laminated plate is lowered, and if it is too much, the hygroscopic property is lowered. A range of 50% by weight is preferred, and a range of 3-40% by weight is particularly suitable.

本発明において使用される臭素化エポキシ樹脂(c)とは、1分子中に2個以上のエポキシ基を有する臭素化合物であれば、特に限定されない。具体的には、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂などが挙げられる。これらの臭素化エポキシ樹脂(c)は、1種もしくは2種以上を適宜混合して使用することも可能である。臭素化エポキシ樹脂(c)の配合量は、樹脂固形分の臭素含有量が、4〜10重量%の範囲となる配合量であり、好ましくは5〜8重量%の範囲となる配合量であり、より好ましくは、臭素化エポキシ樹脂(c)が樹脂固形分の10〜25重量%である樹脂組成物である。   The brominated epoxy resin (c) used in the present invention is not particularly limited as long as it is a bromine compound having two or more epoxy groups in one molecule. Specific examples include brominated bisphenol A type epoxy resins and brominated phenol novolac type epoxy resins. These brominated epoxy resins (c) can be used alone or in admixture of two or more. The amount of the brominated epoxy resin (c) is such that the bromine content of the resin solids is in the range of 4 to 10% by weight, preferably in the range of 5 to 8% by weight. More preferably, it is a resin composition in which the brominated epoxy resin (c) is 10 to 25% by weight of the resin solid content.

本発明において使用される非ハロゲン系エポキシ樹脂(d)とは、1分子中に2個以上のエポキシ基を有する非ハロゲン系化合物であれば特に限定されない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。好適なものとして、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂が挙げられる。これらの非ハロゲン系エポキシ樹脂(d)は、1種もしくは2種以上を適宜混合して使用することも可能である。非ハロゲン系エポキシ樹脂(d)の配合量は、樹脂固形分の15〜60重量%の範囲が好ましく、25〜50重量%の範囲が特に好適である。   The non-halogen epoxy resin (d) used in the present invention is not particularly limited as long as it is a non-halogen compound having two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy Resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, cycloaliphatic epoxy resin, polyol type epoxy resin, glycidylamine, glycidyl ester, butadiene and other double bonds And compounds obtained by the reaction of hydroxyl group-containing silicon resins with epichlorohydrin. Preferable examples include phenol novolac type epoxy resins, biphenyl type epoxy resins, phenol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, and naphthol aralkyl type epoxy resins. These non-halogen epoxy resins (d) can be used alone or in combination of two or more. The blending amount of the non-halogen epoxy resin (d) is preferably in the range of 15 to 60% by weight, particularly preferably in the range of 25 to 50% by weight, based on the resin solid content.

本発明の樹脂組成物には、必要に応じ、硬化速度を適宜調節するために硬化促進剤を併用することも可能である。これらは、シアン酸エステル樹脂(a)やエポキシ樹脂の硬化促進剤として一般に使用されるものであれば、特に限定されない。これらの具体例としては、銅、亜鉛、コバルト、ニッケル等の有機金属塩類、イミダゾール類及びその誘導体、第3級アミン等が挙げられる。   If necessary, the resin composition of the present invention can be used in combination with a curing accelerator in order to adjust the curing rate as appropriate. These are not particularly limited as long as they are generally used as curing accelerators for cyanate ester resins (a) and epoxy resins. Specific examples thereof include organic metal salts such as copper, zinc, cobalt and nickel, imidazoles and derivatives thereof, and tertiary amines.

本発明の樹脂組成物には、無機充填剤(e)を併用することが好ましい。無機充填剤(e)の具体例としては、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラスなどが挙げられる。無機充填剤(e)の平均粒子径としては、0.1〜10μm、好ましくは0.2〜5μmであり、粒度分布や平均粒子径を変化させたものを適宜組み合わせて使用することも出来る。無機充填剤(e)の配合割合は、特に限定されないが、樹脂固形分100重量部に対し、10〜150重量部が好ましく、特に30〜100重量部が好適である。   It is preferable to use an inorganic filler (e) in combination with the resin composition of the present invention. Specific examples of the inorganic filler (e) include natural silica, fused silica, amorphous silica, silica such as hollow silica, molybdenum compounds such as molybdenum oxide and zinc molybdate, alumina, clay, kaolin, talc, calcined clay, Examples include calcined kaolin, calcined talc, mica, short glass fibers (fine glass powders such as E glass and D glass), and hollow glass. The average particle size of the inorganic filler (e) is 0.1 to 10 μm, preferably 0.2 to 5 μm, and those having a changed particle size distribution or average particle size can be used in appropriate combination. The blending ratio of the inorganic filler (e) is not particularly limited, but is preferably 10 to 150 parts by weight, and particularly preferably 30 to 100 parts by weight with respect to 100 parts by weight of the resin solid content.

本発明において使用される無機充填材(e)に関して、シランカップリング剤を併用することも可能である。これらのシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されない。具体例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系、γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系、γ-メタアクリロキシプロピルトリメトキシシランなどのビニルシラン系、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、フェニルシラン系などが挙げられ、1種もしくは2種以上を適宜組み合わせて使用することも可能である。   A silane coupling agent can be used in combination with the inorganic filler (e) used in the present invention. These silane coupling agents are not particularly limited as long as they are silane coupling agents generally used for inorganic surface treatment. Specific examples include aminosilanes such as γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ Vinyl silanes such as -methacryloxypropyltrimethoxysilane, cationic silanes such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, phenylsilanes, etc. It is also possible to use one kind or a combination of two or more kinds as appropriate.

本発明の樹脂組成物には、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、添加剤などの併用も可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等、所望に応じて適宜組み合わせて使用することも可能である。   The resin composition of the present invention may be used in combination with other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, additives, etc., as long as the desired properties are not impaired. Is possible. These are not particularly limited as long as they are generally used. For example, as additives, ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, A brightener, a polymerization inhibitor, and the like can be used in appropriate combination as desired.

本発明の樹脂組成物には、必要に応じて、有機溶剤を使用することが可能である。この有機溶剤としては、シアン酸エステル樹脂(a)とビスマレイミド化合物(b)と臭素化エポキシ樹脂(c)及び非ハロゲン系エポキシ樹脂(d)との混合物が相溶するものであれば、特に限定されるものではない。具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジメチルホルムアミドやジメチルアセトアミドなどのアミド類等が挙げられる。   In the resin composition of the present invention, an organic solvent can be used as necessary. As the organic solvent, in particular, a mixture of the cyanate ester resin (a), the bismaleimide compound (b), the brominated epoxy resin (c), and the non-halogen epoxy resin (d) is compatible. It is not limited. Specific examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, and xylene, amides such as dimethylformamide and dimethylacetamide, and the like.

本発明において使用される基材(f)には、各種プリント配線板材料に用いられている公知のものを使用することが出来る。例えば、Eガラス、Dガラス、Sガラス、NEガラス、クォーツ等の無機繊維、ポリイミド、ポリアミド、ポリエステルなどの有機繊維が挙げられ、目的とする用途や性能により適宜選択し、単独もしくは2種類以上を組み合わせて使用することも可能である。形状としては織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。厚みについては、特に制限はされないが、通常は0.01〜0.3mm程度を使用する。また、シランカップリング剤などで表面処理したものや、織布において物理的に開繊処理を行ったものは、吸湿耐熱性の面から好適に使用できる。また基材(f)としてポリイミド、ポリアミド、ポリエステルなどのフィルムも使用可能であり、フィルムの厚みは、特に制限されないが、0.002〜0.05mm程度が好ましく、プラズマ処理などで表面処理したものがより好ましい。   As the base material (f) used in the present invention, known materials used for various printed wiring board materials can be used. For example, inorganic fibers such as E glass, D glass, S glass, NE glass, and quartz, and organic fibers such as polyimide, polyamide, and polyester can be used. It is also possible to use in combination. Examples of the shape include woven fabric, non-woven fabric, roving, chopped strand mat, and surfacing mat. The thickness is not particularly limited, but usually about 0.01 to 0.3 mm is used. Moreover, what surface-treated with the silane coupling agent etc., and what carried out the fiber opening process physically in the woven fabric can use it suitably from the surface of moisture absorption heat resistance. In addition, a film of polyimide, polyamide, polyester or the like can be used as the base material (f), and the thickness of the film is not particularly limited, but is preferably about 0.002 to 0.05 mm, and more preferably surface-treated by plasma treatment or the like. .

本発明のプリプレグの製造方法は、シアン酸エステル樹脂(a)とビスマレイミド化合物(b)と臭素化エポキシ樹脂(c)及び非ハロゲン系エポキシ樹脂(d)とを必須成分として含有する樹脂組成物と基材(f)とを組み合わせてプリプレグが製造できる方法であれば、特に限定されない。例えば、上記樹脂組成物を基材(f)に含浸または塗布させた後、100〜200℃の乾燥機中で、1〜60分加熱させる方法などにより半硬化させ、プリプレグを製造する方法などが挙げられる。基材(f)に対する樹脂組成物の付着量は、プリプレグの樹脂量(無機充填剤を含む)で20〜95重量%の範囲が好ましい。   The method for producing a prepreg of the present invention comprises a resin composition comprising a cyanate ester resin (a), a bismaleimide compound (b), a brominated epoxy resin (c) and a non-halogen epoxy resin (d) as essential components. If it is a method which can manufacture a prepreg combining a base material and a base material (f), it will not specifically limit. For example, after impregnating or applying the resin composition to the base material (f), it is semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes, etc. to produce a prepreg, etc. Can be mentioned. The amount of the resin composition attached to the substrate (f) is preferably in the range of 20 to 95% by weight in terms of the amount of prepreg resin (including inorganic filler).

本発明の金属箔張積層板は、上述のプリプレグを用いて積層成形したものである。具体的には前述のプリプレグを1枚あるいは複数枚以上を重ね、所望によりその片面もしくは両面に、銅やアルミニウムなどの金属箔を配置した構成で、積層成形することにより製造する。使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されない。成形条件としては、通常のプリント配線板用積層板および多層板の手法が適用できる。例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度は150〜300℃、圧力は2〜100kgf/cm2、加熱時間は0.05〜5時間の範囲が一般的である。また、本発明のプリプレグと、別途作成した内層用の配線板を組み合わせ、積層成形することにより、多層板とすることも可能である。
以下に実施例、比較例を示し、本発明を詳細に説明する。
The metal foil-clad laminate of the present invention is formed by lamination using the above prepreg. Specifically, it is manufactured by laminating one or more of the above-described prepregs and laminating with a configuration in which a metal foil such as copper or aluminum is arranged on one or both sides as desired. The metal foil to be used is not particularly limited as long as it is used for a printed wiring board material. As a molding condition, a general laminated board for a printed wiring board and a multilayer board can be applied. For example, using a multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc., the temperature is generally 150 to 300 ° C., the pressure is 2 to 100 kgf / cm 2 , and the heating time is generally in the range of 0.05 to 5 hours. . Moreover, it is also possible to make a multilayer board by combining the prepreg of the present invention and a separately prepared wiring board for an inner layer, and performing lamination molding.
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

(実施例1)
2,2-ビス(4-シアネートフェニル)プロパン(三菱ガス化学製)60重量部、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70、ケイ・アイ化成製)40重量部を160℃で加熱溶融させ、攪拌しながら6時間反応させ、オリゴマー樹脂組成物を得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解したものに、フェノールノボラック型エポキシ樹脂(エピクロンN-770、大日本インキ化学工業製)70重量部、臭素化フェノールノボラック型エポキシ樹脂(BREN-S、Br含有量:35.5重量%、日本化薬製)30重量部、シランカップリング剤(シランA187、日本ユニカー製) 2重量部をメチルエチルケトンで溶解・混合し、更に焼成タルク(BST-200L、日本タルク製) 100重量部、オクチル酸亜鉛 0.08重量部を混合してワニス(樹脂固形分中の臭素含有量5.3重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 8分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを 4枚重ね、厚さ12μmの電解銅箔を上下に配置し、圧力 30 kgf/cm2、温度 220℃で120分間プレスを行い、厚さ0.4mmの銅張積層板Aを得た。次に、この積層板Aを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Bを得た。得られた銅張積層板の物性測定結果を表1と表2に示す。
Example 1
2,2-bis (4-cyanatephenyl) propane (Mitsubishi Gas Chemical Co., Ltd.) 60 parts by weight, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane (BMI-70, manufactured by Kay Kasei) 40 A part by weight was heated and melted at 160 ° C. and reacted for 6 hours with stirring to obtain an oligomer resin composition. Dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, 70 parts by weight of phenol novolac epoxy resin (Epicron N-770, manufactured by Dainippon Ink and Chemicals), brominated phenol novolac epoxy resin (BREN-S, Br Content: 35.5 wt%, Nippon Kayaku 30 parts by weight, silane coupling agent (Silane A187, Nihon Unicar) 2 parts by weight dissolved and mixed with methyl ethyl ketone, and further calcined talc (BST-200L, Nippon Talc) ) 100 parts by weight and 0.08 parts by weight of zinc octylate were mixed to obtain a varnish (bromine content 5.3% by weight in the resin solid content). This varnish was diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 8 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four sheets of this prepreg are stacked, and 12 μm thick electrolytic copper foil is placed one above the other, and pressed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes, a 0.4 mm thick copper clad laminate A Got. Next, this laminate A was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper clad laminate B having a further increased degree of resin curing. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

(実施例2)
実施例1において、フェノールノボラック型エポキシ樹脂70重量部、臭素化フェノールノボラック型エポキシ樹脂30重量部の代わりに、フェノールノボラック型エポキシ樹脂(エピクロンN-770)50重量部、臭素化フェノールノボラック型エポキシ樹脂(BREN-S)30重量部、臭素化ビスフェノールA型エポキシ樹脂(DER515、Br含有量:23重量%、ダウケミカル製)20重量部を用いた以外は、実施例1と同様に行い、ワニス(樹脂固形分中の臭素含有量7.6重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 10分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、実施例1と同様に行い、厚さ0.4mmの銅張積層板Cを得た。次に、この積層板Cを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Dを得た。得られた銅張積層板の物性測定結果を表1と表2に示す。
(Example 2)
In Example 1, instead of 70 parts by weight of phenol novolac type epoxy resin and 30 parts by weight of brominated phenol novolac type epoxy resin, 50 parts by weight of phenol novolac type epoxy resin (Epiclon N-770), brominated phenol novolak type epoxy resin (BREN-S) The procedure of Example 1 was repeated except that 30 parts by weight and 20 parts by weight of brominated bisphenol A type epoxy resin (DER515, Br content: 23% by weight, manufactured by Dow Chemical) were used. The bromine content in the resin solids was 7.6% by weight). This varnish was diluted with methyl ethyl ketone, impregnated on 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four prepregs were stacked and performed in the same manner as in Example 1 to obtain a copper clad laminate C having a thickness of 0.4 mm. Next, this laminate C was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper clad laminate D having a further increased degree of resin curing. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

(実施例3)
実施例1において、フェノールノボラック型エポキシ樹脂70重量部の代わりに、クレゾールノボラック型エポキシ樹脂(エピクロンN-680、大日本インキ化学工業製)70重量部を用い、焼成タルク 100重量部の代わりに、溶融シリカ(SC−2050、アドマテック製)150重量部を用いた以外は、実施例1と同様に行い、ワニス(樹脂固形分中の臭素含有量5.3重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 12分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、実施例1と同様に行い、厚さ0.4mmの銅張積層板Eを得た。次に、この積層板Eを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Fを得た。得られた銅張積層板の物性測定結果を表1と表2に示す。
(Example 3)
In Example 1, instead of 70 parts by weight of phenol novolac type epoxy resin, 70 parts by weight of cresol novolac type epoxy resin (Epicron N-680, manufactured by Dainippon Ink & Chemicals) was used, and instead of 100 parts by weight of calcined talc, Except for using 150 parts by weight of fused silica (SC-2050, manufactured by Admatech), the same procedure as in Example 1 was carried out to obtain a varnish (bromine content in resin solid content: 5.3% by weight). This varnish was diluted with methyl ethyl ketone, impregnated on 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 12 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four prepregs were stacked and performed in the same manner as in Example 1 to obtain a copper clad laminate E having a thickness of 0.4 mm. Next, this laminate E was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper clad laminate F with a further increased degree of resin curing. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

(実施例4)
2,2-ビス(4-シアネートフェニル)プロパン(三菱ガス化学製)36重量部、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70)54重量部を160℃で加熱溶融させ、攪拌しながら6時間反応させ、オリゴマー樹脂組成物を得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解したものに、フェノールノボラック型エポキシ樹脂(エピクロンN-770)70重量部、臭素化フェノールノボラック型エポキシ樹脂(BREN-S)40重量部、シランカップリング剤(シランA187) 2重量部をメチルエチルケトンで溶解・混合し、更に焼成タルク(BST-200L) 80重量部、オクチル酸亜鉛 0.10重量部を混合してワニス(樹脂固形分中の臭素含有量7.1重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 7分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、実施例1と同様に行い、厚さ0.4mmの銅張積層板Gを得た。次に、この積層板Gを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Hを得た。得られた銅張積層板の物性測定結果を表1と表2に示す。
Example 4
36 parts by weight of 2,2-bis (4-cyanatephenyl) propane (Mitsubishi Gas Chemical) and 54 parts by weight of bis (3-ethyl-5-methyl-4-maleimidophenyl) methane (BMI-70) at 160 ° C The mixture was heated and melted and reacted for 6 hours with stirring to obtain an oligomer resin composition. Dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, 70 parts by weight of phenol novolac epoxy resin (Epiclon N-770), 40 parts by weight of brominated phenol novolac epoxy resin (BREN-S), silane coupling agent (Silane A187) 2 parts by weight is dissolved and mixed with methyl ethyl ketone, and further 80 parts by weight of calcined talc (BST-200L) and 0.10 parts by weight of zinc octylate are mixed to form varnish (bromine content 7.1% by weight in resin solids) ) This varnish was diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 7 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four prepregs were stacked and performed in the same manner as in Example 1 to obtain a copper clad laminate G having a thickness of 0.4 mm. Next, this laminated board G was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper clad laminated board H in which the degree of curing of the resin was further increased. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

(実施例5)
2,2-ビス(4-シアネートフェニル)プロパン(三菱ガス化学製)48重量部、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70)28重量部、ビス(4-マレイミドフェニル)メタン(BMI-H)4重量部を160℃に溶融させ、攪拌しながら6時間反応させ、オリゴマー樹脂組成物を得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解したものに、フェノールノボラック型エポキシ樹脂(エピクロンN-770)20重量部、ビフェニルアラルキル型エポキシ樹脂(NC-3000-H、日本化薬製)60重量部、臭素化フェノールノボラック型エポキシ樹脂(BREN-S)40重量部、シランカップリング剤(シランA187) 2重量部をメチルエチルケトンで溶解混合し、更に焼成タルク(BST-200L) 80重量部、オクチル酸亜鉛 0.12重量部を混合してワニス(樹脂固形分中の臭素含有量7.1重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 15分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、実施例1と同様に行い、厚さ0.4mmの銅張積層板Iを得た(実施例9)。次に、この積層板Iを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Jを得た。得られた銅張積層板の物性測定結果を表1と表2に示す。
(Example 5)
48 parts by weight of 2,2-bis (4-cyanatephenyl) propane (Mitsubishi Gas Chemical), 28 parts by weight of bis (3-ethyl-5-methyl-4-maleimidophenyl) methane (BMI-70), bis (4 -Maleimidophenyl) methane (BMI-H) 4 parts by weight was melted at 160 ° C. and reacted for 6 hours with stirring to obtain an oligomer resin composition. Dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, 20 parts by weight of phenol novolac type epoxy resin (Epiclon N-770), 60 parts by weight of biphenyl aralkyl type epoxy resin (NC-3000-H, Nippon Kayaku) , 40 parts by weight of brominated phenol novolac type epoxy resin (BREN-S), 2 parts by weight of silane coupling agent (silane A187) are dissolved and mixed with methyl ethyl ketone, and further 80 parts by weight of calcined talc (BST-200L), zinc octylate 0.12 part by weight was mixed to obtain a varnish (bromine content in resin solid content: 7.1% by weight). This varnish was diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth, and heated and dried at 160 ° C. for 15 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four prepregs were stacked and performed in the same manner as in Example 1 to obtain a copper clad laminate I having a thickness of 0.4 mm (Example 9). Next, this laminated board I was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper-clad laminated board J in which the degree of curing of the resin was further increased. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

(実施例6)
2,2-ビス(4-シアネートフェニル)プロパン(三菱ガス化学製)、72重量部、ビス(4-マレイミドフェニル)メタン(BMI-H)8重量部を150℃で加熱溶融させ、攪拌しながら4時間反応させ、プレポリマーを得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解し、クレゾールノボラック型エポキシ樹脂(エピクロン N-680)74重量部、ビスフェノールA型エポキシ樹脂(エピコート1001、ジャパンエポキシレジン製)6重量部、臭素化フェノールノボラック型エポキシ樹脂(BREN-S)40重量部、シランカップリング剤(シランA187) 2重量部をメチルエチルケトンで溶解混合し、更に焼成タルク(BST-200L) 80重量部、オクチル酸亜鉛 0.08重量部を混合してワニス(樹脂固形分中の臭素含有量7.1重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 8分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、実施例1と同様に行い、厚さ0.4mmの銅張積層板Kを得た。次に、この積層板Kを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Lを得た。得られた銅張積層板の物性測定結果を表1と表2に示す。
(Example 6)
2,2-bis (4-cyanatephenyl) propane (manufactured by Mitsubishi Gas Chemical), 72 parts by weight, 8 parts by weight of bis (4-maleimidophenyl) methane (BMI-H) are heated and melted at 150 ° C. with stirring. The mixture was reacted for 4 hours to obtain a prepolymer. This is dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, 74 parts by weight of cresol novolac type epoxy resin (Epiclon N-680), 6 parts by weight of bisphenol A type epoxy resin (Epicoat 1001, made by Japan Epoxy Resin), brominated phenol novolak Type epoxy resin (BREN-S) 40 parts by weight, silane coupling agent (silane A187) 2 parts by weight dissolved and mixed with methyl ethyl ketone, and further calcined talc (BST-200L) 80 parts by weight, zinc octylate 0.08 parts by weight Thus, a varnish (bromine content in the resin solid content: 7.1% by weight) was obtained. This varnish was diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 8 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four prepregs were stacked and performed in the same manner as in Example 1 to obtain a copper clad laminate K having a thickness of 0.4 mm. Next, this laminated board K was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper clad laminated board L in which the degree of curing of the resin was further increased. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

(比較例1)
実施例1において、フェノールノボラック型エポキシ樹脂70重量部、臭素化フェノールノボラック型エポキシ樹脂30重量部の代わりに、フェノールノボラック型エポキシ樹脂(エピクロンN-770)30重量部、臭素化フェノールノボラック型エポキシ樹脂(BREN-S)70重量部を使用し、オクチル酸亜鉛の配合量を 0.04重量部に変更する以外は、実施例1と同様に行い、ワニス(樹脂固形分中の臭素含有量12.4重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 10分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、実施例1と同様に行い、厚さ0.4mmの銅張積層板Mを得た。次に、この積層板Mを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Nを得たが、一部に膨れが認められた。得られた銅張積層板の物性測定結果を表1と表2に示す。
(Comparative Example 1)
In Example 1, instead of 70 parts by weight of phenol novolac type epoxy resin and 30 parts by weight of brominated phenol novolac type epoxy resin, 30 parts by weight of phenol novolac type epoxy resin (Epiclon N-770), brominated phenol novolak type epoxy resin (BREN-S) The same procedure as in Example 1 was conducted except that 70 parts by weight and the amount of zinc octylate was changed to 0.04 parts by weight. Varnish (12.4% by weight bromine content in the resin solids) Got. This varnish was diluted with methyl ethyl ketone, impregnated on 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four prepregs were stacked and performed in the same manner as in Example 1 to obtain a copper clad laminate M having a thickness of 0.4 mm. Next, this laminated board M was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper-clad laminated board N with a further increased degree of resin curing, but some swelling was observed. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

(比較例2)
比較例1において、フェノールノボラック型エポキシ樹脂30重量部、臭素化フェノールノボラック型エポキシ樹脂70重量部の代わりに、臭素化ビスフェノールA型エポキシ樹脂(DER515)100重量部を用いた以外は、比較例1と同様に行い、ワニス(樹脂固形分中の臭素含有量11.5重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 8分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、比較例1と同様に行い、厚さ0.4mmの銅張積層板Oを得た。次に、この積層板Oを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Pを得たが、一部に膨れが認められた。得られた銅張積層板の物性測定結果を表1と表2に示す。
(Comparative Example 2)
In Comparative Example 1, Comparative Example 1 except that 100 parts by weight of brominated bisphenol A type epoxy resin (DER515) was used instead of 30 parts by weight of phenol novolac type epoxy resin and 70 parts by weight of brominated phenol novolac type epoxy resin. In the same manner as above, a varnish (bromine content in the resin solid content 11.5% by weight) was obtained. This varnish was diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 8 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four prepregs were stacked and performed in the same manner as in Comparative Example 1 to obtain a copper clad laminate O having a thickness of 0.4 mm. Next, this laminated board O was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper-clad laminated board P in which the degree of curing of the resin was further increased, but some swelling was observed. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

(比較例3)
実施例2において、臭素化ビスフェノールA型エポキシ樹脂100重量部の代わりに、ビスフェノールA型エポキシ樹脂(エピコート1001)100重量部を用いた以外は、比較例2と同様に行い、ワニス(樹脂固形分中の臭素含有量0重量%)を得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 9分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、比較例1と同様に行い、厚さ0.4mmの銅張積層板Qを得た。次に、この積層板Qを240℃の恒温槽で2時間加熱し、樹脂の硬化度を更に高めた銅張積層板Rを得た。得られた銅張積層板の物性測定結果を表1と表2に示す。
(Comparative Example 3)
In Example 2, instead of 100 parts by weight of brominated bisphenol A type epoxy resin, 100 parts by weight of bisphenol A type epoxy resin (Epicoat 1001) was used. The bromine content was 0% by weight. This varnish was diluted with methyl ethyl ketone, impregnated on 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 9 minutes to obtain a prepreg having a resin content of 48% by weight. Next, four prepregs were stacked and performed in the same manner as in Comparative Example 1 to obtain a copper clad laminate Q having a thickness of 0.4 mm. Next, this laminated board Q was heated in a constant temperature bath at 240 ° C. for 2 hours to obtain a copper-clad laminated board R in which the degree of curing of the resin was further increased. Tables 1 and 2 show the physical property measurement results of the obtained copper-clad laminate.

Figure 0004940680
Figure 0004940680

Figure 0004940680
Figure 0004940680

(測定方法)
1)気中耐熱性:サイズ150mm×150mmの両面銅箔付試験片を使用し、240℃の恒温槽で、各々1時間、2時間加熱した後の、外観の膨れの有無を目視で判定。(膨れ板数/試験数(n=4))
2)ガラス転移温度:サイズ40mm×13mmの銅箔をエッチング除去した試験片を使用し、DMA測定装置(TA Instrument 2980型)にて、昇温速度5℃/分の条件下で測定。(n=2の平均値)
3)半田耐熱性:サイズ50mm×50mmの両面銅箔付試験片を使用し、280℃のハンダ槽に浮かせ、膨れが発生するまで時間を測定。但し最大で30分とし、その時点で膨れが発生しなかった場合は>30と表示。(n=3)
4)吸湿耐熱性:サイズ50mm×50mmの片面の半分以外の銅箔をエッチング除去した試験片を使用し、プレシッヤークッカー試験機(平山製作所製、PC-3型)で121℃、2気圧で5時間処理後、260℃のハンダ中に60秒間浸漬した後の外観の膨れの有無を目視で判定。(膨れ板数/試験数(n=3))
5)耐燃性:UL94垂直試験法に準拠して測定。(n=5)

なお、銅張積層板N,Pについては、膨れが発生していない部分を使用して測定した。
(Measuring method)
1) Heat resistance in the air: Using a test piece with double-sided copper foil of size 150mm x 150mm, visually check for the presence of blistering after heating for 1 hour and 2 hours in a constant temperature bath at 240 ° C. (Number of swelling plates / number of tests (n = 4))
2) Glass transition temperature: Measured with a DMA measuring device (TA Instrument 2980 type) under a temperature rising rate of 5 ° C./min using a test piece obtained by etching away a copper foil of size 40 mm × 13 mm. (Average value of n = 2)
3) Solder heat resistance: Using a test piece with double-sided copper foil of size 50 mm x 50 mm, float it in a solder bath at 280 ° C and measure the time until blistering occurs. However, the maximum time is 30 minutes. If no swelling occurs at that time,> 30 is displayed. (N = 3)
4) Moisture absorption and heat resistance: Use a test piece from which copper foil other than half of one side of size 50mm x 50mm is removed by etching, and pressurize cooker tester (Hirayama Seisakusho, PC-3 type) at 121 ° C, 2 atm. After 5 hours of treatment, visually check for the appearance of blisters after being immersed in 260 ° C solder for 60 seconds. (Number of swelling plates / number of tests (n = 3))
5) Flame resistance: Measured according to UL94 vertical test method. (N = 5)

In addition, about copper clad laminated board N and P, it measured using the part which has not generate | occur | produced.

Claims (5)

シアン酸エステル樹脂(a)、ビスマレイミド化合物(b)、臭素化エポキシ樹脂(c)、非ハロゲン系エポキシ樹脂(d)及び無機充填材(e)を含有し、該無機充填材の配合量が樹脂固形分100重量部に対し、10〜150重量部であり、且つ樹脂固形分中の臭素含有量が4〜10重量%である樹脂組成物。 It contains a cyanate ester resin (a), a bismaleimide compound (b), a brominated epoxy resin (c), a non-halogen epoxy resin (d) and an inorganic filler (e), and the blending amount of the inorganic filler is The resin composition which is 10-150 weight part with respect to 100 weight part of resin solid content, and the bromine content in resin solid content is 4-10 weight%. 臭素化エポキシ樹脂(c)の含有量が、樹脂固形分の10〜25重量%である請求項1記載の樹脂組成物。   The resin composition according to claim 1, wherein the content of the brominated epoxy resin (c) is 10 to 25% by weight of the resin solid content. 請求項1または2に記載の樹脂組成物にシランカップリング剤を配合した樹脂組成物。The resin composition which mix | blended the silane coupling agent with the resin composition of Claim 1 or 2. 請求項1〜3のいずれかに記載の樹脂組成物を基材(f)に含浸又は塗布してなるプリプレグ。   A prepreg obtained by impregnating or coating the base material (f) with the resin composition according to claim 1. 請求項4に記載のプリプレグと金属箔を組み合わせ、硬化して得られる金属箔張積層板。   A metal foil-clad laminate obtained by combining and curing the prepreg according to claim 4 and a metal foil.
JP2006028130A 2006-02-06 2006-02-06 Resin composition and prepreg and laminate using the same Active JP4940680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028130A JP4940680B2 (en) 2006-02-06 2006-02-06 Resin composition and prepreg and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028130A JP4940680B2 (en) 2006-02-06 2006-02-06 Resin composition and prepreg and laminate using the same

Publications (2)

Publication Number Publication Date
JP2007204697A JP2007204697A (en) 2007-08-16
JP4940680B2 true JP4940680B2 (en) 2012-05-30

Family

ID=38484431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028130A Active JP4940680B2 (en) 2006-02-06 2006-02-06 Resin composition and prepreg and laminate using the same

Country Status (1)

Country Link
JP (1) JP4940680B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396805B2 (en) * 2008-10-07 2014-01-22 味の素株式会社 Epoxy resin composition
KR101318456B1 (en) * 2008-12-16 2013-10-16 다우 글로벌 테크놀로지스 엘엘씨 Homogeneous bismaleimide-triazine-epoxy compositions useful for the manufacture of electrical laminates
EP2412759B1 (en) * 2009-03-27 2019-02-27 Mitsubishi Gas Chemical Company, Inc. Method of storing resin solution and processes for producing prepreg and laminate
CN101885900A (en) * 2010-07-02 2010-11-17 广东生益科技股份有限公司 Resin composition, bonding sheet and copper-clad plate manufactured by using same and manufacturing method thereof
KR20130141449A (en) 2010-08-31 2013-12-26 미츠비시 가스 가가쿠 가부시키가이샤 Resin Compositions, Prepregs, and Laminates
JP5587730B2 (en) * 2010-10-25 2014-09-10 パナソニック株式会社 Insulating resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
JP2013234328A (en) * 2013-06-18 2013-11-21 Ajinomoto Co Inc Epoxy resin composition
KR102231098B1 (en) * 2014-02-24 2021-03-23 삼성전기주식회사 Method of manufacturing copper clad laminates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354419A (en) * 1986-08-26 1988-03-08 Mitsubishi Gas Chem Co Inc Thermosetting resin composition

Also Published As

Publication number Publication date
JP2007204697A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
KR101466181B1 (en) Resin composition, prepreg and laminate using the same
JP5999369B2 (en) Resin composition and prepreg and laminate using the same
JP4843944B2 (en) Resin composition and prepreg and laminate using the same
TWI605078B (en) Resin composition, prepreg using the resin composition, and laminate
JP5849948B2 (en) Resin composition and prepreg and laminate using the same
JP5692062B2 (en) Method for storing resin solution, and method for producing prepreg and laminate
JP4940680B2 (en) Resin composition and prepreg and laminate using the same
WO2016072404A1 (en) Resin composition, prepreg, metal-foil-clad laminated board, resin composite sheet, and printed circuit board
JP2004182850A (en) Prepreg having excellent balance of characteristics and laminated sheet
JP5499544B2 (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminated board, and multilayer printed wiring board using the same
JP6249345B2 (en) Resin composition, prepreg, laminate and printed wiring board
JP7488513B2 (en) Curable composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP4997727B2 (en) Flame retardant resin composition, and prepreg and laminate using the same
JP2004175925A (en) Prepreg and laminate
JP6819921B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2015151483A (en) Resin sheet, metal foil clad laminate sheet and printed wiring board
TWI700328B (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP6593739B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2019203291A1 (en) Thermosetting composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP2017200966A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR101181948B1 (en) Resin composition, and prepreg and laminate using the same
JP2019119812A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet, and printed wiring board
WO2018047724A1 (en) Resin composition, prepreg, metal-foil-clad laminated board, resin sheet, and printed circuit board
JP6829808B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2018165368A (en) Resin sheet, metal foil-clad laminated plate, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R151 Written notification of patent or utility model registration

Ref document number: 4940680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3