JP4936639B2 - Free-cutting steel for machine structure - Google Patents
Free-cutting steel for machine structure Download PDFInfo
- Publication number
- JP4936639B2 JP4936639B2 JP2004037423A JP2004037423A JP4936639B2 JP 4936639 B2 JP4936639 B2 JP 4936639B2 JP 2004037423 A JP2004037423 A JP 2004037423A JP 2004037423 A JP2004037423 A JP 2004037423A JP 4936639 B2 JP4936639 B2 JP 4936639B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- cutting
- free
- effect
- machinability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、アスペクト比が小さく機械的性質の異方性が小さく広範な被削性に優れた機械構造用快削鋼に関する。 The present invention relates to a free-cutting steel for machine structures having a small aspect ratio, a small anisotropy of mechanical properties, and a wide range of machinability.
従来から自動車用部品をはじめとする機械構造用鋼は、切削コスト削減を目的として種々の快削物質を含有させる場合が多い。代表的な快削鋼としてPb快削鋼、S快削鋼、Ca脱酸快削鋼、および、これらの複合快削鋼がある。Pb快削鋼はその基本となる鋼と比較して機械的性質の劣化が小さく被削性改善効果、特に低速切削時の工具寿命や切屑処理性が良好であることから、最も一般的に用いられている。しかし、Pbは人体に有害であるため、近年の環境問題への関心の高まりから世界的に使用量削減の方向にあり、Pb快削鋼においてもそれに代わる快削鋼の要求が高まっている。その場合、S快削鋼への移行が考えられるが、Sは圧延方向に延伸するMnS介在物として存在するため、多量のSを添加させると機械的性質の異方性が増大するという欠点がある。また、Ca脱酸快削鋼は鋼中に低融点のCaO・Al2O3・SiO2系酸化物を含有しており、この酸化物が工具刃先に保護膜を生成し、切屑と工具の直接接触を妨げることにより被削性を改善するものである。しかし、Ca脱酸快削鋼は超硬工具旋削等の比較的高速切削時にしか効果が認められない。Pb、S、Caをすべて複合したPb三元快削鋼も多く使用されているが、快削性は非常に優れているものの上述のPbとSの欠点は改善されたものでなく、新たな快削鋼が要求されている。 Conventionally, steel for machine structures including automobile parts often contains various free-cutting substances for the purpose of reducing cutting costs. Typical free-cutting steels include Pb free-cutting steel, S free-cutting steel, Ca deoxidized free-cutting steel, and composite free-cutting steels thereof. Pb free-cutting steel is the most commonly used because it has less deterioration in mechanical properties than the basic steel and has good machinability improvement effects, especially tool life and chip disposal during low-speed cutting. It has been. However, since Pb is harmful to the human body, it is in the direction of reducing the amount of use worldwide due to the recent increase in interest in environmental problems, and the demand for free cutting steel as an alternative to Pb free cutting steel is also increasing. In that case, transition to S free-cutting steel can be considered, but since S exists as MnS inclusions extending in the rolling direction, the addition of a large amount of S has the disadvantage that the anisotropy of mechanical properties increases. is there. Ca deoxidized free-cutting steel contains low-melting point CaO.Al 2 O 3 .SiO 2 -based oxide in the steel, and this oxide forms a protective film on the tool edge. The machinability is improved by preventing direct contact. However, Ca deoxidized free-cutting steel is only effective during relatively high-speed cutting such as carbide tool turning. Pb ternary free-cutting steel, which is a composite of all of Pb, S, and Ca, is also used in many cases. Free-cutting steel is required.
S快削鋼の機械的性質を改善するために、Caを含有させている(例えば、特許文献1、特許文献2、特許文献3参照。)。この場合、さらにAl2O3をCaO・Al2O3に変化させたり、硫化物で覆うため無害化されることも報告されている。また、六方晶BN、CaO・Al2O3、Ca−Mn−Sを含有させ、被削性改善を図っている(例えば、特許文献4参照。)。しかしこれらの場合、機械的性質の異方性は硫化物の形態制御により基本鋼からの劣化度合いは改善されるが、被削性については種々の切削条件において必ずしも充分な結果が得られるものではない。 In order to improve the mechanical properties of S free-cutting steel, Ca is contained (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). In this case, further or changing the Al 2 O 3 to CaO · Al 2 O 3, has also been reported to be harmless to cover at sulfides. Hexagonal BN, CaO.Al 2 O 3 , and Ca—Mn—S are contained to improve machinability (see, for example, Patent Document 4). However, in these cases, the mechanical property anisotropy improves the degree of deterioration from the basic steel by controlling the morphology of the sulfide, but the machinability does not always give satisfactory results under various cutting conditions. Absent.
一方、Caによる形態制御とは異なり、新たな被削性改善メカニズムの快削鋼の発明がある(例えば、特許文献5参照。)。この場合、Al、B、Nを含有させ、切削中に工具上に付着したAlNにより被削性を改善しているが、この場合は200m/min以上の比較的高速切削でしか、被削性改善効果は期待できない。また、必ずBを含有させる必要があるため焼入性や結晶粒調整が困難である。 On the other hand, unlike the form control by Ca, there is an invention of free-cutting steel with a new machinability improving mechanism (for example, see Patent Document 5). In this case, Al, B, and N are included, and the machinability is improved by AlN adhering to the tool during cutting. In this case, the machinability can be achieved only by relatively high-speed cutting of 200 m / min or more. The improvement effect cannot be expected. Moreover, since it is necessary to always contain B, hardenability and crystal grain adjustment are difficult.
本発明は、基本鋼と比較した場合に機械的性質劣化を最小限に留め、良好な被削性を得ることができる機械構造用快削鋼を提供することであり、産業上非常に有益な鋼を提供することである。 The present invention is to provide a free-cutting steel for machine structure that can minimize deterioration of mechanical properties and obtain good machinability when compared with a basic steel, and is very useful industrially. Is to provide steel.
上記の課題を解決するための本発明の手段は、質量%で、C:0.01〜0.70%、Si:0.05〜1.80%、Mn:0.30〜3.50%、Ca:0.0003〜0.02%、S:0.02〜0.20%、Al:0.003〜0.10%、N:0.003〜0.025%を含有し、かつ、Ca、S、Al、Nの間では、0.1≦[1000(Al+N)×Ca/S]≦4.5の関係を満足し、残部がFeおよび不可避不純物からなり、長径が0.5μm以上の硫化物の長径/短径の平均アスペクト比が5以下であり、機械的性質の異方性が小さく、広範な被削性に優れる快削鋼である。 Means of the present invention for solving the above-mentioned problems are, in mass%, C: 0.01 to 0.70%, Si: 0.05 to 1.80%, Mn: 0.30 to 3.50%. Ca: 0.0003 to 0.02%, S: 0.02 to 0.20%, Al: 0.003 to 0.10%, N: 0.003 to 0.025%, and Among Ca, S, Al, and N, the relationship of 0.1 ≦ [1000 (Al + N) × Ca / S] ≦ 4.5 is satisfied, the balance is made of Fe and inevitable impurities, and the major axis is 0.5 μm or more. This free-cutting steel has an average aspect ratio of major axis / minor axis of 5 or less, a small anisotropy of mechanical properties, and a wide range of machinability.
以下に本発明鋼の合金元素成分の成分限定理由を説明する。なお、以下%は質量%を示す。 The reason for limiting the component of the alloy element component of the steel of the present invention will be described below. Hereinafter, “%” represents “% by mass”.
Cは、鋼の強度を確保するために添加する。0.01%未満では強度の確保が不十分であり、0.70%を超えると靱性が低下するので、0.01〜0.70%とする。 C is added to ensure the strength of the steel. If it is less than 0.01%, securing of strength is insufficient, and if it exceeds 0.70%, the toughness decreases, so the content is made 0.01 to 0.70%.
Siは、製鋼での脱酸のためと強度確保のために添加する。0.05%未満では脱酸効果が不十分であり、1.80%を超えると熱間加工性が低下するので、0.05〜1.80%とする。 Si is added for deoxidation in steel making and for ensuring strength. If it is less than 0.05%, the deoxidation effect is insufficient, and if it exceeds 1.80%, the hot workability deteriorates, so 0.05 to 1.80%.
Mnは、焼入性の向上のために添加する。またSと硫化物を生成して切削性を向上させるために不可欠な元素である。さらにMnSはオーステナイト粒成長を抑制し、組織を微細化する効果もある。0.3%未満ではこの効果が小さく、3.50%を超えると加工性が低下するので、0.30〜3.50%とする。 Mn is added to improve hardenability. In addition, it is an indispensable element for generating S and sulfides to improve machinability. Furthermore, MnS also has the effect of suppressing austenite grain growth and refining the structure. If it is less than 0.3%, this effect is small, and if it exceeds 3.50%, the workability deteriorates, so 0.30 to 3.50%.
Caは、本発明で最も重要な元素であり、硫化物形態抑制による異方性改善および工具上に(Mn、Ca)SとAlNの保護膜を付着させるために不可欠な元素である。この効果は0.0003%以上で得られ、望ましくは0.001%以上であり、0.02%を超えて含有させても効果は飽和し、むしろCa添加歩留りが悪くなるので、0.0003〜0.02%とする。 Ca is the most important element in the present invention, and is an indispensable element for improving anisotropy by suppressing sulfide morphology and for attaching a protective film of (Mn, Ca) S and AlN on the tool. This effect is obtained at 0.0003% or more, desirably 0.001% or more, and even if contained over 0.02%, the effect is saturated, and rather the Ca addition yield deteriorates. -0.02%.
Sは、MnSや(Mn、Ca)Sなどの硫化物を形成し、さらに、工具上に(Mn、Ca)SとAlNの保護膜を形成して被削性を改善する。また熱間加工のために1000°C以上に加熱した場合、オーステナイト粒成長を抑制するため非調質鋼では靱性を高める効果もある。これらの効果を得るには最低0.02%以上必要であり、望ましくは0.05%以上必要である。しかし、0.20%を超えると硫化物の応用集中効果により靱性を悪化させるので、0.02〜0.20%とする。 S forms sulfides such as MnS and (Mn, Ca) S, and further forms a protective film of (Mn, Ca) S and AlN on the tool to improve machinability. Further, when heated to 1000 ° C. or higher for hot working, non-heat treated steel also has an effect of increasing toughness in order to suppress austenite grain growth. In order to obtain these effects, at least 0.02% or more is required, and desirably 0.05% or more is necessary. However, if it exceeds 0.20%, the toughness deteriorates due to the application concentration effect of sulfide, so 0.02 to 0.20%.
Alは、Siと同様に製鋼での脱酸のために添加する。また切削工具上にAlNとして付着し、(Ca、Mn)Sと同様に保護膜を形成し、工具寿命を改善するために不可欠な元素である。さらに、鋼中においてはAlNを形成し、オーステナイト粒微細化に寄与する。その効果を得るには0.003%以上必要であり、0.20%を超えて添加するとAl酸化物により靱性や被削性が劣化するので、0.003〜0.10%とする。 Al is added for deoxidation in steel making, similar to Si. Moreover, it adheres as AlN on a cutting tool, forms a protective film like (Ca, Mn) S, and is an indispensable element for improving the tool life. Furthermore, AlN is formed in the steel and contributes to austenite grain refinement. In order to obtain the effect, 0.003% or more is necessary, and if added over 0.20%, toughness and machinability deteriorate due to Al oxide, so 0.003 to 0.10%.
Nは、強靱化のために添加する。また切削工具上にAlNとして付着し、(Ca、Mn)Sと同様に保護膜を形成し、工具寿命を改善するために不可欠な元素である。さらに、鋼中においてはAlNを形成し、オーステナイト粒微細化の効果がある。その効果を得るには0.003%以上必要であり、0.025%を超えて添加してもその効果は飽和するので、0.003〜0.025%とする。 N is added for toughening. Moreover, it adheres as AlN on a cutting tool, forms a protective film like (Ca, Mn) S, and is an indispensable element for improving the tool life. Further, AlN is formed in the steel, and there is an effect of austenite grain refinement. In order to obtain the effect, 0.003% or more is necessary, and even if added over 0.025%, the effect is saturated, so 0.003 to 0.025%.
Ca、S、Al、Nは、上述のように被削性を改善するために不可欠な元素であるが、それぞれの元素のバランスが重要である。1000(Al+N)×Ca/Sが0.1未満では(Ca、Mn)SとAlNによる工具被覆効果が小さく、4.5を超えて含有させるとその効果は飽和あるいはむしろ低下するので、1000(Al+N)×Ca/Sの値は0.1〜4.5とする。 Ca, S, Al, and N are indispensable elements for improving the machinability as described above, but the balance of each element is important. When 1000 (Al + N) × Ca / S is less than 0.1, the effect of tool covering by (Ca, Mn) S and AlN is small, and when it exceeds 4.5, the effect is saturated or rather lowered. The value of (Al + N) × Ca / S is 0.1 to 4.5.
さらに、本発明における被削性改善効果について説明する。本発明では、S量増量による硫化物の切欠効果を増大させ、かつ、Caを含有させることにより、硫化物が(Mn、Ca)Sとなるため、さらに切欠効果を上昇させ、比較的低速切削時でも良好な被削性を得ることが可能となる。また、150m/min以上の切削速度域では工具刃先に(Mn、Ca)SとAlNの保護膜が付着し、拡散摩耗や凝着剥離摩耗を抑制する効果がある。この保護膜生成は、S、Ca、Mn、Al、Nのうち、一つでも欠けると生成できない。 Furthermore, the machinability improving effect in the present invention will be described. In the present invention, the notch effect of the sulfide by increasing the amount of S is increased, and by adding Ca, since the sulfide becomes (Mn, Ca) S, the notch effect is further increased, and relatively low speed cutting is performed. Even at times, good machinability can be obtained. Further, in the cutting speed range of 150 m / min or more, a protective film of (Mn, Ca) S and AlN adheres to the tool edge, and has an effect of suppressing diffusion wear and adhesion peeling wear. This protective film cannot be generated if one of S, Ca, Mn, Al, and N is missing.
また、本発明における機械的性質の異方性改善について説明する。本発明ではCa添加で硫化物形態制御を行う。長径が0.5μm以上の硫化物の長径/短径の平均アスペクト比を5以下に抑えることにより、機械的性質の異方性を軽減する。 Further, the improvement of the anisotropy of mechanical properties in the present invention will be described. In the present invention, sulfide form control is performed by adding Ca. By suppressing the average aspect ratio of the major axis / minor axis of a sulfide having a major axis of 0.5 μm or more to 5 or less, anisotropy of mechanical properties is reduced.
以上に説明したとおり、本発明の機械構造用快削鋼は機械的異方性の劣化が小さく、Pbのような有害物質を含有すること無く、非常に良好な被削性を得ることが可能であり、従来にない優れた効果を奏するものである。 As described above, the free-cutting steel for machine structure according to the present invention has little deterioration in mechanical anisotropy and can obtain very good machinability without containing harmful substances such as Pb. Thus, the present invention has an excellent effect that has never been achieved.
本発明の実施の形態を表1により説明する。先ず、100kg真空溶解炉で表1に示す合金成分元素を含有する非調質鋼を溶製した。 An embodiment of the present invention will be described with reference to Table 1. First, non-tempered steel containing the alloy component elements shown in Table 1 was melted in a 100 kg vacuum melting furnace.
表1においてNo.1〜4は本発明の実施の形態に係る鋼である。一方、No.5〜10は比較のための鋼である。すなわち、No.5はC量が規定より多く、No.6はMn量が規定より多い。No.7はCa量及びAl量が規定より少なく、かつPbを含有し、No.8はMo量が規定より多く、No.9はTi量が規定より多く、No.10はS量が規定より少ないものである。さらに、Ca、S、Al、Nのバランスについては、No.7は1000(Al+N)×Ca/Sが規定より少なく、No.9およびNo.10は規定よりも多いものである。 In Table 1, no. 1-4 is steel which concerns on embodiment of this invention. On the other hand, no. 5 to 10 are steels for comparison. That is, no. No. 5 has more C than specified. 6 has more Mn than prescribed. No. No. 7 contains less Ca and Al than specified, and contains Pb. No. 8 has more Mo than specified. No. 9 has more Ti than specified. 10 is the amount of S less than prescribed. Further, regarding the balance of Ca, S, Al, and N, No. No. 7 has 1000 (Al + N) × Ca / S less than specified. 9 and no. 10 is more than specified.
以上の化学成分からなる鋼は鋼塊に鋳造され、鋼塊は1200℃で直径45mmの棒鋼に鍛伸して放冷した。さらにこれらのうち、No.1、No.2、No.3、No.4、No.6及びNo.9の鋼塊については、1200℃に再加熱し、1時間保持後空冷し、それ以外のNo.5、No.7、No.8およびNo.10の鋼塊は焼入焼戻し処理を行い、全鋼種とも27〜33HRCに調整した。 The steel composed of the above chemical components was cast into a steel ingot, and the steel ingot was forged into a steel bar having a diameter of 45 mm at 1200 ° C. and allowed to cool. Further, among these, No. 1, no. 2, no. 3, no. 4, no. 6 and no. No. 9 steel ingot was reheated to 1200 ° C., held for 1 hour and then air-cooled. 5, no. 7, no. 8 and no. Ten steel ingots were quenched and tempered, and all steel types were adjusted to 27 to 33 HRC.
上記の調整した鋼は下記の各試験に供した。
(1)L方向、T方向のシャルピー衝撃試験:圧延方向をL方向と表示し、圧延方向に垂直方向をT方向とも表示する。シャルピー衝撃性試験は常温で、JIS2mmUノッチ衝撃試験片で行うものとする。
(2)旋削超硬工具摩耗試験:P20工具で、切削速度150m/minと300m/minで、送り0.1mm/rev、切込み0.5mmとして行い、評価方法を乾式で3分間切削後の逃げ面摩耗量、VBとする。
(3)ドリル寿命試験:φ5mmハイスドリルで、切削速度25m/min、送り0.1mm/rev、穴深さ15mmとし、評価方法を乾式でドリル折損までの穿孔穴数とする。
(4)硫化物アスペクト比測定:L方向と平行な面(L面)を機械研磨後、×400の光学顕微鏡写真を20枚撮影し、画像解析装置にて測定する。そして各鋼種の硫化物アスペクト比の平均値を計算する。
The adjusted steel was subjected to the following tests.
(1) Charpy impact test in L direction and T direction: The rolling direction is indicated as L direction, and the direction perpendicular to the rolling direction is also indicated as T direction. The Charpy impact test is performed at room temperature using a JIS 2 mm U notch impact test piece.
(2) Turning carbide tool wear test: P20 tool, cutting speed 150m / min and 300m / min, feed 0.1mm / rev, cutting depth 0.5mm. The surface wear amount is VB.
(3) Drill life test: φ5 mm high-speed drill, cutting speed 25 m / min, feed 0.1 mm / rev, hole depth 15 mm, and the evaluation method is the dry method and the number of drill holes until drill breakage.
(4) Sulfide aspect ratio measurement: After mechanical polishing of the plane parallel to the L direction (L plane), 20 x400 optical micrographs are taken and measured with an image analyzer. And the average value of the sulfide aspect ratio of each steel type is calculated.
以上の試験結果を表2に示す。 The test results are shown in Table 2.
本発明の請求項に係る発明の鋼であるNo.1〜4の発明鋼中に存在する、長径が0.5μm以上の硫化物の平均アスペクト比は5以下であり、常温シャルピー衝撃異方性はT/Lが0.5以上となっている。しかし、比較鋼のNo.7、No.8は平均アスペクト比が5を超えており、衝撃異方性は0.5未満であるため、機械的構造用部品としてNo.7、No.8を使用する場合、方向性を考慮する必要があることがわかる。 No. 1 which is steel of the invention according to the claims of the present invention. The average aspect ratio of sulfides having a major axis of 0.5 μm or more present in the invention steels 1 to 4 is 5 or less, and the normal temperature Charpy impact anisotropy has T / L of 0.5 or more. However, no. 7, no. No. 8 has an average aspect ratio of more than 5 and an impact anisotropy of less than 0.5. 7, no. It can be seen that when 8 is used, it is necessary to consider the directionality.
本発明に係る鋼のドリル寿命は少なくとも70穴以上であるが、比較鋼のNo.5〜7、No.9はこれに達しない。旋削による超硬工具摩耗試験では、切削速度150m/minの場合、本発明に係る鋼は0.12mm以下の摩耗量であるが、比較材のNo.5、No.7〜9はそれ以上摩耗が進行している。No.6、No.10については、切削速度150m/minの摩耗量は比較的少ないが切削速度300m/minとなると本発明鋼のように0.25mm以下に摩耗量を抑えることは不可能となる。 The drill life of the steel according to the present invention is at least 70 holes or more. 5-7, no. 9 does not reach this. In the carbide tool wear test by turning, when the cutting speed is 150 m / min, the steel according to the present invention has a wear amount of 0.12 mm or less. 5, no. 7 to 9 are more worn out. No. 6, no. For No. 10, the wear amount at a cutting speed of 150 m / min is relatively small, but when the cutting speed is 300 m / min, it is impossible to suppress the wear amount to 0.25 mm or less as in the steel of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004037423A JP4936639B2 (en) | 2004-02-13 | 2004-02-13 | Free-cutting steel for machine structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004037423A JP4936639B2 (en) | 2004-02-13 | 2004-02-13 | Free-cutting steel for machine structure |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000152286A Division JP4049969B2 (en) | 2000-05-24 | 2000-05-24 | Free-cutting steel for machine structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004169189A JP2004169189A (en) | 2004-06-17 |
JP4936639B2 true JP4936639B2 (en) | 2012-05-23 |
Family
ID=32709520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004037423A Expired - Fee Related JP4936639B2 (en) | 2004-02-13 | 2004-02-13 | Free-cutting steel for machine structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4936639B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5379511B2 (en) * | 2009-02-16 | 2013-12-25 | 株式会社神戸製鋼所 | Machine structural steel and cold work steel parts with excellent cold workability |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5845351A (en) * | 1981-09-14 | 1983-03-16 | Daido Steel Co Ltd | Structural steel |
JP3587348B2 (en) * | 1998-07-14 | 2004-11-10 | 大同特殊鋼株式会社 | Machine structural steel with excellent turning workability |
-
2004
- 2004-02-13 JP JP2004037423A patent/JP4936639B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004169189A (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4568362B2 (en) | Machine structural steel with excellent machinability and strength characteristics | |
JP5138991B2 (en) | Machine structural steel with excellent machinability | |
KR20100099749A (en) | Steel for machine structural use with excellent machinability | |
JP5181619B2 (en) | Hardened steel with excellent machinability and hardenability | |
JP2008013788A (en) | Machine structural steel with excellent machinability and strength characteristics | |
US20040223867A1 (en) | Free machining steel for machine structural use having improved chip disposability | |
JPH10152746A (en) | Boron steel gear excellent in fatigue resistance and its production | |
JP3736721B2 (en) | High corrosion resistance free-cutting stainless steel | |
JP6477382B2 (en) | Free-cutting steel | |
JP4936639B2 (en) | Free-cutting steel for machine structure | |
JP4049969B2 (en) | Free-cutting steel for machine structure | |
JP5323369B2 (en) | Case-hardened steel with excellent machinability and grain coarsening prevention properties | |
JP2017057475A (en) | Free cutting steel | |
JP3791664B2 (en) | Austenitic Ca-added free-cutting stainless steel | |
JP4964060B2 (en) | Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability | |
JP4263648B2 (en) | Ti-added high strength steel with excellent machinability | |
JP3874557B2 (en) | Free-cutting non-tempered steel with excellent toughness | |
JP2001220645A (en) | Lead-free mechanical structural steel with excellent machinability and low strength anisotropy | |
JP2000328182A (en) | Free-cutting steel for machine structure excellent in hot workability | |
JP2006316310A (en) | Material for component in electronic equipment | |
JP7489811B2 (en) | Non-tempered forging steel and non-tempered forging parts | |
JP4544442B2 (en) | Free cutting high toughness case hardening steel | |
JP5318638B2 (en) | Machine structural steel with excellent machinability | |
JP4282459B2 (en) | Machine structural steel with excellent machinability used for quenching and tempering | |
JP7544489B2 (en) | Alloy steel for machine structures with an excellent balance of hardness and toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101102 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4936639 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |