[go: up one dir, main page]

JP4934907B2 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP4934907B2
JP4934907B2 JP2001138276A JP2001138276A JP4934907B2 JP 4934907 B2 JP4934907 B2 JP 4934907B2 JP 2001138276 A JP2001138276 A JP 2001138276A JP 2001138276 A JP2001138276 A JP 2001138276A JP 4934907 B2 JP4934907 B2 JP 4934907B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
dielectric
adsorbed
contact surface
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001138276A
Other languages
Japanese (ja)
Other versions
JP2002334920A (en
Inventor
清 川畑
渉 生方
勇治 小笠原
潔 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2001138276A priority Critical patent/JP4934907B2/en
Publication of JP2002334920A publication Critical patent/JP2002334920A/en
Application granted granted Critical
Publication of JP4934907B2 publication Critical patent/JP4934907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス製造装置、液晶デバイス製造装置等の半導体・液晶分野に用いられる静電チャックに関する。
【0002】
【従来の技術】
半導体デバイスや液晶デバイスを製造する際、特に真空雰囲気においてはシリコンウェーハ、ガラス基板等を保持するために、従来のメカクランプ方式から、面吸着が可能な静電チャックが検討されている。
静電チャックを構成する誘電体材料は、厚さと電極面積で決まる固有の抵抗値を有しており、吸着時に数百V以上の電圧を印加すると誘電体の固有抵抗に応じた漏れ電流が流れる。
【0003】
漏れ電流は数1mA以下であっても微細回路が形成されたウェーハなどの被吸着物内を流れる為、形成された微細素子や回路を破壊させることがある。また表面電流は数μAであっても、例えば電子線を用いた装置のように微少な電磁界の影響を受ける装置では無視できない。このため漏れ電流の低減が望まれている。
【0004】
漏れ電流を低減するため、静電チャックの吸着面を凹凸形状に加工し、被吸着物との接触面積を減らし漏れ電流を小さくすることが行われている。このような構造の静電チャックは、被吸着物を吸着する際に誘電体と被吸着物の接触による、被吸着物へのパーティクルの転写も減じる効果も得られる。
【0005】
しかしながら、上記に示す構造の静電チャックは、接触面積の減少に伴う吸着力の低下に比較して、漏れ電流の減少が少ない。また吸着時の真空度によっては被吸着物と静電チャック表面凹部の間で放電が生じ、漏れ電流が増大する場合があるなどの問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、静電チャックの誘電体を通して流れる漏れ電流を、安定して低減し、かつ被吸着物と静電チャック表面の凹部での放電に対する耐性を著しく向上させる静電チャックを提供するものである。
【0007】
【課題を解決するための手段】
本発明は、誘電体を有し、かつ誘電体の被吸着物との接触面側を凹凸形状に加工し、前記接触面側の凹凸形状の凸部で前記被吸着物を吸着させる静電チャックにおいて、前記凸部が前記被吸着物に接触する接触面側の凹部の全面又は一部を誘電体より高い体積固有抵抗を有する絶縁体で被覆してなる静電チャックに関する。
【0008】
【発明の実施の形態】
本発明の静電チャックに用いられる誘電体の材料としては、Al、Si、AlN、SiC、BaTiO等のセラミックス材料が用いられる。
誘電体に形成する電圧印加電極としては、例えばAg−Pd、W、Ag、Au等の金属を含むガラスペーストを焼き付けたり、Al、Cu、SUS等の金属板又は金属箔を密着させて形成することができる。
【0009】
凹凸形状に加工した被吸着物との接触面側の凹部の全面又は一部を被覆する絶縁体は、誘電体よりも高い体積固有抵抗を有する絶縁体であれば、その材質及び形成法は特に制限はない。例えば被吸着物との接触面側を凹凸形状に加工後、絶縁抵抗の高い高純度Al(純度90%以上)、SiO等を溶射、気相反応等の方法によって全面に形成した後、凸部の表面を研磨して誘電体を再度露出させてもよく、被吸着物との接触面側を凹凸形状に加工後、凹部にエポキシ樹脂、ポリイミド樹脂等を塗布して硬化さてもよい。
【0010】
誘電体の被吸着物との接触面側に形成した凹部の全面又は一部を被覆する絶縁体は、静電チャックの誘電体より体積固有抵抗が大きいことが必要とされ、誘電体より10倍以上大きいことが好ましく、50倍以上であればより好ましく、上限については特に制限はない。
絶縁体の厚さについては特に制限はないが、5〜20μmの範囲であることが好ましく、5〜10μmの範囲であることがさらに好ましい。
【0011】
以下、本発明の実施の形態を図面を引用して説明する。
図1は本発明の実施例になる静電チャックの要部を示す断面図、図2はその電気的等価回路を示す図、図3は従来の静電チャックの要部を示す断面図、図4はその電気的等価回路を示す図及び図5は漏れ電流を測定するための測定回路を示す図であり、1は誘電体、2は絶縁体、3は電圧印加電極、4は被吸着物、5は真空容器及び6は静電チャックである。
【0012】
図1に示す本発明になる静電チャックは、図2に示す従来の静電チャックで生じる誘電体1の凹部の表面抵抗Rsに起因する漏れ表面電流を絶縁体2の大きな抵抗Rz(Rz>Rs)を介在させることにより低減できる。また絶縁体2の抵抗値Rzを誘電体の表面抵抗Rsよりも甚だ大きくすれば(Rz》Rs)誘電体の表面抵抗Rsに起因する表面電流を遮断することもできる。さらに真空度によっては従来の静電チャックでは凹部の空間において気体分子密度と電界により決まる条件で放電が生じるが、本発明になる静電チャックでは絶縁体2の大きな抵抗値により放電も防止することができる。
【0013】
【実施例】
以下、実施例により本発明を説明するが、本発明はこれに制限されるものではない。
実施例1
図1に示すように、誘電体1として体積固有抵抗が1×10Ωmで直径が30mm及び厚さが2mmのSiC(日立化成工業(株)製、商標名ヘキサロイ)を準備した。次いでこの誘電体1の片側の面(被吸着物との接触面の反対側の面)に、直径が28mmの大きさに速乾性導電ペースト((株)徳力化学研究所製、商標名シルベスト)を塗布し、自然乾燥して厚さが20μmの電圧印加電極3を形成した。
なお、図示しないが、誘電体1の電圧印加電極3を形成した側には体積固有抵抗が1×1014Ωmの絶縁材料 (Al使用…日立化成工業(株)製、商標名ハロックス)を接着剤で固着した。
【0014】
次に、誘電体1の被吸着物との接触面側に凹部の深さが30μm及び凸部の直径が1mmの寸法に、4mmのピッチ幅で格子状に凹凸部を形成した。
この後、凹凸部全面に絶縁ワニス(サンハヤト(株)製、商品名VA−30)を塗布し、硬化後凸部の表面に付着した絶縁ワニスの硬化物を削り落として、凸部表面に誘電体1を露出させ、凹部の全面に7.5±2.5μmの厚さに被覆した絶縁体2を有する静電チャックを得た。
【0015】
比較例1
実施例1で誘電体の被吸着物との接触面側に形成した凹凸部に絶縁ワニスを塗布しない以外は、実施例1と同様の工程を経て静電チャックを得た。
【0016】
次に、上記の実施例1及び比較例1で得た静電チャックにおいて、各々吸着時に流れる全漏れ電流を測定した。そのときの測定回路を図5に示す。
なお、測定は、被吸着物として直径が100mmで厚さが0.5mmのシリコンウェーハの裏面を吸着し、各々吸着時に流れる全漏れ電流を測定した。また、真空度は0.1Paと10Paとに変化させて測定した。測定結果を表1に示す。
【0017】
【表1】

Figure 0004934907
【0018】
表1に示されるように本発明になる静電チャックは、比較例の静電チャックに比較して漏れ電流が少なく、また、真空度の影響もなく安定していることが明らかである。
なお、実施例では単極型の静電チャックで説明したが、双極型の静電チャックでも同様の効果が得ることができる。
【0019】
【発明の効果】
本発明における静電チャックは、静電チャックの誘電体を通して流れる漏れ電流を、安定して低減し、かつ被吸着物と静電チャック表面の凹部での放電に対する耐性を著しく向上させることができ、半導体デバイス製造装置、液晶デバイス製造装置、特に電子線を使用した装置に好適である。
【図面の簡単な説明】
【図1】本発明の実施例になる静電チャックの要部を示す断面図である。
【図2】図1の電気的等価回路を示す図である。
【図3】従来の静電チャックの要部を示す断面図である。
【図4】図3の電気的等価回路を示す図である。
【図5】漏れ電流を測定するための測定回路を示す図である。
【符号の説明】
1 誘電体
2 絶縁体
3 電圧印加電極
4 被吸着物
5 真空容器
6 静電チャック[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic chuck used in a semiconductor / liquid crystal field such as a semiconductor device manufacturing apparatus and a liquid crystal device manufacturing apparatus.
[0002]
[Prior art]
When manufacturing semiconductor devices and liquid crystal devices, electrostatic chucks capable of surface adsorption have been studied from the conventional mechanical clamp system in order to hold a silicon wafer, a glass substrate, etc., particularly in a vacuum atmosphere.
The dielectric material constituting the electrostatic chuck has a specific resistance value determined by the thickness and the electrode area. When a voltage of several hundred volts or more is applied during adsorption, a leakage current corresponding to the specific resistance of the dielectric flows. .
[0003]
Even if the leakage current is several milliamperes or less, it flows in an adsorbed object such as a wafer on which a fine circuit is formed, and thus the formed fine element or circuit may be destroyed. Even if the surface current is several μA, it cannot be ignored in a device affected by a minute electromagnetic field, such as a device using an electron beam. For this reason, reduction of leakage current is desired.
[0004]
In order to reduce the leakage current, the surface of the electrostatic chuck is processed into a concavo-convex shape to reduce the contact area with the object to be attracted and reduce the leakage current. The electrostatic chuck having such a structure can also reduce the transfer of particles to the object to be adsorbed due to the contact between the dielectric and the object to be adsorbed when adsorbing the object to be adsorbed.
[0005]
However, the electrostatic chuck having the above-described structure has a small decrease in leakage current as compared with a decrease in attracting force accompanying a decrease in contact area. Further, depending on the degree of vacuum at the time of suction, there is a problem that discharge occurs between the object to be attracted and the concave portion of the electrostatic chuck surface, which may increase the leakage current.
[0006]
[Problems to be solved by the invention]
The present invention provides an electrostatic chuck that stably reduces the leakage current flowing through the dielectric of the electrostatic chuck and significantly improves resistance to discharge at the object to be attracted and the recesses on the surface of the electrostatic chuck. is there.
[0007]
[Means for Solving the Problems]
The present invention relates to an electrostatic chuck having a dielectric, processing the contact surface side of the dielectric with the object to be adsorbed into a concavo-convex shape, and adsorbing the object to be adsorbed by the concavo-convex convex portion on the contact surface side The electrostatic chuck is formed by covering the entire or part of the concave portion on the contact surface side where the convex portion comes into contact with the object to be attracted with an insulator having a volume resistivity higher than that of the dielectric.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a dielectric material used for the electrostatic chuck of the present invention, ceramic materials such as Al 2 O 3 , Si 3 N 4 , AlN, SiC, BaTiO 3 are used.
As the voltage application electrode formed on the dielectric, for example, a glass paste containing a metal such as Ag-Pd, W, Ag, or Au is baked, or a metal plate or metal foil such as Al, Cu, or SUS is adhered to the electrode. be able to.
[0009]
If the insulator covering the whole or part of the concave portion on the contact surface side with the object to be adsorbed processed into a concavo-convex shape is an insulator having a volume resistivity higher than that of the dielectric, its material and formation method are particularly There is no limit. For example, after processing the contact surface side with the object to be adsorbed into a concavo-convex shape, high purity Al 2 O 3 (purity 90% or more), SiO 2 or the like having high insulation resistance is formed on the entire surface by a method such as thermal spraying or gas phase reaction Later, the surface of the convex portion may be polished to expose the dielectric again, or the contact surface side with the object to be adsorbed may be processed into an uneven shape, and then the epoxy resin, polyimide resin, etc. may be applied to the concave portion and cured. Good.
[0010]
The insulator covering the whole or part of the recess formed on the contact surface side of the dielectric to be adsorbed is required to have a volume specific resistance larger than that of the dielectric of the electrostatic chuck, and 10 times that of the dielectric. The upper limit is preferably larger, more preferably 50 times or larger, and there is no particular upper limit.
Although there is no restriction | limiting in particular about the thickness of an insulator, It is preferable that it is the range of 5-20 micrometers, and it is more preferable that it is the range of 5-10 micrometers.
[0011]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 is a cross-sectional view showing a main part of an electrostatic chuck according to an embodiment of the present invention, FIG. 2 is a view showing an electrical equivalent circuit thereof, and FIG. 3 is a cross-sectional view showing a main part of a conventional electrostatic chuck. 4 is a diagram showing an electrical equivalent circuit thereof, and FIG. 5 is a diagram showing a measurement circuit for measuring leakage current. 1 is a dielectric, 2 is an insulator, 3 is a voltage application electrode, and 4 is an object to be adsorbed. 5 is a vacuum vessel and 6 is an electrostatic chuck.
[0012]
The electrostatic chuck according to the present invention shown in FIG. 1 has a leakage surface current caused by the surface resistance Rs of the concave portion of the dielectric 1 generated in the conventional electrostatic chuck shown in FIG. Rs) can be reduced. If the resistance value Rz of the insulator 2 is made much larger than the surface resistance Rs of the dielectric (Rz >> Rs), the surface current caused by the surface resistance Rs of the dielectric can be cut off. Furthermore, depending on the degree of vacuum, in the conventional electrostatic chuck, discharge occurs in the space of the concave portion under conditions determined by the gas molecule density and the electric field, but in the electrostatic chuck according to the present invention, discharge is also prevented by the large resistance value of the insulator 2. Can do.
[0013]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to this.
Example 1
As shown in FIG. 1, SiC (trade name: Hexalloy, manufactured by Hitachi Chemical Co., Ltd.) having a volume resistivity of 1 × 10 9 Ωm, a diameter of 30 mm, and a thickness of 2 mm was prepared as the dielectric 1. Next, a quick-drying conductive paste having a diameter of 28 mm is formed on one surface of the dielectric 1 (the surface opposite to the contact surface with the object to be adsorbed) (trade name: Sylbest). Was applied and dried naturally to form a voltage application electrode 3 having a thickness of 20 μm.
Although not shown, an insulating material having a volume resistivity of 1 × 10 14 Ωm is used on the side of the dielectric 1 on which the voltage application electrode 3 is formed (using Al 2 O 3, manufactured by Hitachi Chemical Co., Ltd., trade name Harox) ) Was fixed with an adhesive.
[0014]
Next, on the contact surface side of the dielectric 1 with the object to be adsorbed, concave and convex portions were formed in a lattice shape with a pitch width of 4 mm and a depth of the concave portion of 30 μm and a diameter of the convex portion of 1 mm.
After this, an insulating varnish (trade name VA-30, manufactured by Sanhayato Co., Ltd.) is applied to the entire surface of the concavo-convex portion, and the cured product of the insulating varnish adhering to the surface of the convex portion after curing is scraped off to form a dielectric on the surface of the convex portion. The body 1 was exposed, and an electrostatic chuck having an insulator 2 covered with a thickness of 7.5 ± 2.5 μm over the entire surface of the recess was obtained.
[0015]
Comparative Example 1
An electrostatic chuck was obtained through the same steps as in Example 1, except that the insulating varnish was not applied to the uneven portion formed on the contact surface side with the dielectric object to be adsorbed in Example 1.
[0016]
Next, in the electrostatic chucks obtained in Example 1 and Comparative Example 1 described above, the total leakage current flowing during the adsorption was measured. The measurement circuit at that time is shown in FIG.
The measurement was performed by adsorbing the back surface of a silicon wafer having a diameter of 100 mm and a thickness of 0.5 mm as an object to be adsorbed, and measuring the total leakage current flowing during the adsorption. Further, the degree of vacuum was measured by changing between 0.1 Pa and 10 Pa. Table 1 shows the measurement results.
[0017]
[Table 1]
Figure 0004934907
[0018]
As shown in Table 1, it is clear that the electrostatic chuck according to the present invention has less leakage current than the electrostatic chuck of the comparative example and is stable without being affected by the degree of vacuum.
In addition, although the embodiment has been described with a single-pole electrostatic chuck, the same effect can be obtained with a bipolar electrostatic chuck.
[0019]
【Effect of the invention】
The electrostatic chuck in the present invention can stably reduce the leakage current flowing through the dielectric of the electrostatic chuck, and can significantly improve the resistance to discharge in the object to be attracted and the concave portion of the electrostatic chuck surface, It is suitable for a semiconductor device manufacturing apparatus, a liquid crystal device manufacturing apparatus, particularly an apparatus using an electron beam.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of an electrostatic chuck according to an embodiment of the present invention.
FIG. 2 is a diagram showing an electrical equivalent circuit of FIG. 1;
FIG. 3 is a cross-sectional view showing a main part of a conventional electrostatic chuck.
4 is a diagram showing an electrical equivalent circuit of FIG. 3;
FIG. 5 is a diagram showing a measurement circuit for measuring leakage current.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dielectric body 2 Insulator 3 Voltage application electrode 4 Adsorbed object 5 Vacuum container 6 Electrostatic chuck

Claims (1)

誘電体を有し、かつ誘電体の被吸着物との接触面側を凹凸形状に加工し、前記接触面側の凹凸形状の凸部で前記被吸着物を吸着させる静電チャックにおいて、前記凸部が前記被吸着物に接触する接触面側の凹部の全面又は一部を誘電体より高い体積固有抵抗を有する絶縁体で被覆してなる静電チャック。Has a dielectric, and a contact surface with the adsorbate dielectric processed into irregularities, the electrostatic chuck for attracting the adsorbate at the convex portion of the concavo-convex shape of the contact surface, the protrusion An electrostatic chuck formed by covering the whole or part of the concave portion on the contact surface side where the portion contacts the object to be adsorbed with an insulator having a volume resistivity higher than that of the dielectric.
JP2001138276A 2001-05-09 2001-05-09 Electrostatic chuck Expired - Fee Related JP4934907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138276A JP4934907B2 (en) 2001-05-09 2001-05-09 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138276A JP4934907B2 (en) 2001-05-09 2001-05-09 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2002334920A JP2002334920A (en) 2002-11-22
JP4934907B2 true JP4934907B2 (en) 2012-05-23

Family

ID=18985241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138276A Expired - Fee Related JP4934907B2 (en) 2001-05-09 2001-05-09 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4934907B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890421B2 (en) * 2006-10-31 2012-03-07 太平洋セメント株式会社 Electrostatic chuck
EP2875404B1 (en) * 2012-07-17 2019-08-07 ASML Netherlands B.V. Electrostatic clamp, lithographic apparatus and method
JP6283532B2 (en) 2014-02-26 2018-02-21 東京エレクトロン株式会社 Manufacturing method of electrostatic chuck
JP6646700B2 (en) 2018-03-19 2020-02-14 株式会社不二製作所 Surface treatment method for treated product made of hard brittle material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225850B2 (en) * 1995-09-20 2001-11-05 株式会社日立製作所 Electrostatic attraction electrode and method of manufacturing the same
JPH09172055A (en) * 1995-12-19 1997-06-30 Fujitsu Ltd Electrostatic chuck and wafer suction method
US5903428A (en) * 1997-09-25 1999-05-11 Applied Materials, Inc. Hybrid Johnsen-Rahbek electrostatic chuck having highly resistive mesas separating the chuck from a wafer supported thereupon and method of fabricating same

Also Published As

Publication number Publication date
JP2002334920A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
US6351367B1 (en) Electrostatic holding apparatus having insulating layer with enables easy attachment and detachment of semiconductor object
JP5165817B2 (en) Electrostatic chuck and manufacturing method thereof
WO2000072376A1 (en) Electrostatic chuck and treating device
JPH04277648A (en) Electrostatic chuck coated with diamond
TW200405443A (en) Electrostatic absorbing apparatus
US6122159A (en) Electrostatic holding apparatus
JP2003179128A (en) Electrostatic chuck
JP2005012144A (en) Electrostatic chuck
JPH0760849B2 (en) Electrostatic chuck plate
JP4934907B2 (en) Electrostatic chuck
JP2005245106A (en) Electrostatic chuck
JP3287996B2 (en) Electrostatic chuck device
JPH09293774A (en) Electrostatic chuck
JPH06291175A (en) Electrostatic chuck
JP3956620B2 (en) Electrostatic chuck
JP4879771B2 (en) Electrostatic chuck
JPS6114660B2 (en)
JP2000183143A (en) Electrostatic chuck
JPH1187479A (en) Electrostatic chuck
JPH11251419A (en) Electrostatic chuck for holding substrate and substrate holding method therefor
JPH09102536A (en) Electrostatic suction device
JP4337037B2 (en) Electrostatic chuck
JPH05206254A (en) Electrostatic chuck
JP2003168726A (en) Electrostatic chuck for semiconductor manufacturing apparatus and method for manufacturing the same
JPH0831917A (en) Electrostatic chuck and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees