[go: up one dir, main page]

JP4932243B2 - Positive electrode for lithium battery and secondary battery using the same - Google Patents

Positive electrode for lithium battery and secondary battery using the same Download PDF

Info

Publication number
JP4932243B2
JP4932243B2 JP2005359281A JP2005359281A JP4932243B2 JP 4932243 B2 JP4932243 B2 JP 4932243B2 JP 2005359281 A JP2005359281 A JP 2005359281A JP 2005359281 A JP2005359281 A JP 2005359281A JP 4932243 B2 JP4932243 B2 JP 4932243B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
vanadium pentoxide
secondary battery
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005359281A
Other languages
Japanese (ja)
Other versions
JP2007165095A (en
Inventor
竜二 塩崎
雅彦 谷口
麻男 岩田
聡子 金子
俊晴 的場
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2005359281A priority Critical patent/JP4932243B2/en
Publication of JP2007165095A publication Critical patent/JP2007165095A/en
Application granted granted Critical
Publication of JP4932243B2 publication Critical patent/JP4932243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム電池用正極およびそれを用いた二次電池に関する。   The present invention relates to a positive electrode for a lithium battery and a secondary battery using the same.

五酸化バナジウム(V)はリチウムイオンのインターカレーション特性を有することから、これをリチウム二次電池の正極材料に適用する試みが古くからなされ、例えば、この正極材料を用いた二次電池はバックアップ用電源として市販されている。しかしながら、五酸化バナジウムはリチウムイオンを等モル以上吸蔵すると非可逆的な容量劣化を生じることが判っており、高い充放電容量で繰り返して充放電を行うと、取り出し可能な容量が徐々に低減してしまうという問題を生じていた。 Since vanadium pentoxide (V 2 O 5 ) has lithium ion intercalation characteristics, attempts to apply it to a positive electrode material of a lithium secondary battery have been made for a long time. For example, a secondary using this positive electrode material The battery is commercially available as a backup power source. However, vanadium pentoxide has been found to cause irreversible capacity degradation when lithium ions are occluded in an equimolar amount or more, and repeated charge / discharge with a high charge / discharge capacity gradually reduces the capacity that can be removed. It has caused the problem of end.

非特許文献1(86頁)によれば、一般に、五酸化バナジウムが等モル以上のリチウムイオンを取り込んだ際にリチウム二次電池の電池性能の劣化が生じるのは、五酸化バナジウム層状結晶の層間の弱いV−O結合が切断され、五酸化バナジウムとリチウムとの間でブロンズ体を形成し、結晶構造の不可逆的変化が起こるためである。この五酸化バナジウムの構造異方性に起因した問題を解決する方策として、五酸化バナジウムを非晶質化させる方法がとられている。   According to Non-Patent Document 1 (page 86), generally, when vanadium pentoxide incorporates equimolar or more of lithium ions, the battery performance of the lithium secondary battery is deteriorated between the layers of vanadium pentoxide layered crystals. This is because the weak V—O bond is cleaved to form a bronze body between vanadium pentoxide and lithium, resulting in an irreversible change in the crystal structure. As a measure for solving the problems caused by the structural anisotropy of vanadium pentoxide, a method of making vanadium pentoxide amorphous is employed.

例えば、リチウム吸蔵による構造変動を抑制し、高い充放電特性を達成することを目的として、特許文献1には、五酸化バナジウムにMoOやBなどの化合物を非晶質化剤として添加し、熱処理して五酸化バナジウムを非晶質化させる方法が報告されている。 For example, for the purpose of suppressing structural fluctuation due to lithium occlusion and achieving high charge / discharge characteristics, Patent Document 1 discloses that a compound such as MoO 3 or B 2 O 3 is used as an amorphizing agent in vanadium pentoxide. A method for adding vanadium and amorphizing vanadium pentoxide by heat treatment has been reported.

また、五酸化バナジウム層内に水を取り込んだキセロゲル(非特許文献1の93〜94頁)や、導電性高分子を取り込んだ複合体についても同様の効果を得ることができると考えられる。特に、非特許文献2および3には、層状五酸化バナジウムの存在下で3,4−エチレンジオキシチオフェン(EDOT)を酸化重合させ、五酸化バナジウムの層間にポリ3,4−エチレンジオキシチオフェン(PEDOT)を挿入することにより、充放電容量が向上することが報告されている。また、特許文献2では、ポリチオフェン誘導体を遷移金属酸化物等のインターカレート材料と複合化させている。
特許第2849490号 特許第3452943号 竹原善一郎監修,「高密度リチウム二次電池」,株式会社テクノシステム,1998年3月14日 J. Mater. Chem., 2001, 11, 2470-2475 Electrochemistry Communications 4(2002) 384-387
Moreover, it is thought that the same effect can be acquired also about the xerogel (page 93-94 of a nonpatent literature 1) which took in water in the vanadium pentoxide layer, and the composite_body | complex which took in the conductive polymer. In particular, Non-Patent Documents 2 and 3 oxidize and polymerize 3,4-ethylenedioxythiophene (EDOT) in the presence of layered vanadium pentoxide, and poly 3,4-ethylenedioxythiophene between the vanadium pentoxide layers. It has been reported that the charge / discharge capacity is improved by inserting (PEDOT). In Patent Document 2, a polythiophene derivative is combined with an intercalating material such as a transition metal oxide.
Japanese Patent No. 2849490 Japanese Patent No. 3429543 Supervised by Zenichiro Takehara, "High-density lithium secondary battery", Techno System Co., Ltd., March 14, 1998 J. Mater. Chem., 2001, 11, 2470-2475 Electrochemistry Communications 4 (2002) 384-387

しかしながら、いずれの場合も満足する充放電容量を得るに至っていない。この理由は必ずしも明らかとなっていないが、特許文献1の場合には、非晶質化剤を五酸化バナジウムに添加するだけではリチウムイオンの移動が迅速に進行しないためと考えられる。また、非特許文献2および3、並びに特許文献2の場合には、リチウムイオンの取り込みが制限されるために高い充放電容量を発揮できない問題があると考えられる。   However, in any case, satisfactory charge / discharge capacity has not been obtained. The reason for this is not necessarily clear, but in the case of Patent Document 1, it is considered that the movement of lithium ions does not proceed rapidly only by adding an amorphizing agent to vanadium pentoxide. In the case of Non-Patent Documents 2 and 3, and Patent Document 2, it is considered that there is a problem that a high charge / discharge capacity cannot be exhibited because lithium ion incorporation is limited.

従って、本発明は、高い充放電容量を得ることができるリチウム電池用正極およびそれを用いた二次電池を提供することを目的とする。   Therefore, an object of this invention is to provide the positive electrode for lithium batteries which can obtain high charging / discharging capacity, and a secondary battery using the same.

本発明者らは、五酸化バナジウムのような層状の遷移金属酸化物にリチウムイオンを等モル以上安定的に取り込ませることができる高エネルギー密度正極材料の開発を鋭意検討した結果、アルキル置換3,4−エチレンジオキシチオフェン化合物の酸化重合体を層状化合物間に存在させることにより、等モル以上のリチウムイオンを取り込んでも高い放電容量を維持する正極材料が得られることを見出した。本発明は、かかる知見に基づく。   The inventors of the present invention have intensively studied the development of a high energy density positive electrode material capable of stably incorporating lithium ions in an equimolar amount or more into a layered transition metal oxide such as vanadium pentoxide. It has been found that by allowing an oxidation polymer of a 4-ethylenedioxythiophene compound to be present between the layered compounds, a positive electrode material can be obtained that maintains a high discharge capacity even when equimolar amounts of lithium ions are incorporated. The present invention is based on such knowledge.

すなわち、本発明の1つの側面によれば、導電性基体と、この導電性基体の表面に形成された正極材料の層を備え、前記正極材料は、活物質として層状の遷移金属酸化物である五酸化バナジウムと導電性有機硫黄系化合物を含み、前記導電性有機硫黄系化合物が、下記式(1):

Figure 0004932243
That is, according to one aspect of the present invention, a conductive substrate, a layer of cathode material formed on the surface of the conductive substrate, wherein the cathode material is a transition metal oxide having a layered as an active material It contains vanadium pentoxide and a conductive organic sulfur compound, and the conductive organic sulfur compound has the following formula (1):
Figure 0004932243

(式中、Rは 1 〜C 20 アルキル基)で示されるアルキル置換3,4−エチレンジオキシチオフェン化合物の酸化重合体を含み、前記導電性有機硫黄系化合物が前記五酸化バナジウムの層間に存在していることを特徴とするリチウム電池用正極を提供する。 (Wherein, R represents C 1 -C 20 alkyl group) oxide polymer saw including alkyl-substituted 3,4-ethylenedioxy thiophene compound represented by, the conductive organic sulfur compound layers of the vanadium pentoxide A positive electrode for a lithium battery is provided.

また、本発明の別の側面によれば、正極と、負極と、前記正極と負極の間に配置された電解質層を備え、前記正極が、本発明のリチウム電池用正極からなることを特徴とする二次電池を提供する。   According to another aspect of the present invention, a positive electrode, a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode are provided, and the positive electrode includes the positive electrode for a lithium battery according to the present invention. A secondary battery is provided.

本発明によれば、高い充放電容量を達成し得るリチウム電池用正極およびそれを用いた二次電池を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode for lithium batteries which can achieve a high charge / discharge capacity, and a secondary battery using the same can be obtained.

以下、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明のリチウム電池用正極は、導電性基体とその表面に形成された正極材料の層を備える。正極材料は活物質として、バナジウムを含有する層状の遷移金属酸化物と導電性有機硫黄系化合物を含む。   The positive electrode for a lithium battery of the present invention comprises a conductive substrate and a layer of a positive electrode material formed on the surface thereof. The positive electrode material contains, as active materials, a layered transition metal oxide containing vanadium and a conductive organic sulfur compound.

本発明で使用される導電性有機硫黄系化合物は、下記式(1):

Figure 0004932243
The conductive organic sulfur compound used in the present invention is represented by the following formula (1):
Figure 0004932243

(式中Rはアルキル基)で示されるアルキル置換3,4−エチレンジオキシチオフェン化合物の酸化重合体を含む。以下、式(1)で示される化合物をEDOT−Rと略記する。ここでRは、式(1)におけるRと同義である。例えば、Rがメチル基である式(1)の化合物は、EDOT−CH(又はメチル)と表す。Rで表されるアルキル基は、好ましくはC〜C20アルキルであり、より好ましくはC〜C16アルキルである。アルキル基は直鎖であることが好ましいが、分枝または環式アルキル基であってもよい。 (Wherein R is an alkyl group) and an oxidized polymer of an alkyl-substituted 3,4-ethylenedioxythiophene compound. Hereinafter, the compound represented by the formula (1) is abbreviated as EDOT-R. Here, R is synonymous with R in Formula (1). For example, the compound of formula (1) where R is a methyl group is represented as EDOT-CH 3 (or methyl). Alkyl group represented by R is preferably a C 1 -C 20 alkyl, more preferably a C 8 -C 16 alkyl. The alkyl group is preferably linear, but may be a branched or cyclic alkyl group.

本発明において、遷移金属酸化物はバナジウムを含有するものであり、通常、リチウムイオンをインターカレーションする層状化合物である。遷移金属酸化物としては、五酸化バナジウムが好ましい。   In the present invention, the transition metal oxide contains vanadium and is usually a layered compound that intercalates lithium ions. As the transition metal oxide, vanadium pentoxide is preferable.

本発明のリチウム電池用正極の活物質は、バナジウムを含む層状遷移金属酸化物とEDOT−Rを、溶媒(例えば水)に懸濁させ、その懸濁物を100℃で3時間〜100時間攪拌することにより製造することができる。酸化性の層状遷移金属酸化物は、EDOT−Rの重合条件下でEDOT−R(モノマー)とレドックス相互作用を行い、その結果、モノマーが層間で酸化重合して酸化重合体(以下PEDOT−Rと略記する)を生成する。   The active material of the positive electrode for a lithium battery of the present invention is obtained by suspending a layered transition metal oxide containing vanadium and EDOT-R in a solvent (for example, water), and stirring the suspension at 100 ° C. for 3 hours to 100 hours. Can be manufactured. The oxidizable layered transition metal oxide undergoes redox interaction with EDOT-R (monomer) under the EDOT-R polymerization conditions. As a result, the monomer undergoes oxidative polymerization between the layers to form an oxidized polymer (hereinafter referred to as PEDOT-R). Abbreviated as).

本発明のリチウム電池用正極の活物質は、遷移金属酸化物の重量を基準として、PEDOT−Rを0.1〜25重量%の割合で含有することが好ましい。PEDOT−Rの量が0.1重量%未満であると、導電性が保てない傾向にある。また、PEDOT−Rの量が20重量%を超えると、PEDOT−Rが層状化合物の層間に取り込まれきれずに容量が低下する傾向を示す。   The active material of the positive electrode for a lithium battery of the present invention preferably contains PEDOT-R in a proportion of 0.1 to 25% by weight based on the weight of the transition metal oxide. When the amount of PEDOT-R is less than 0.1% by weight, conductivity tends to be not maintained. On the other hand, when the amount of PEDOT-R exceeds 20% by weight, PEDOT-R cannot be taken in between the layers of the layered compound, and the capacity tends to decrease.

このようにして得られるリチウム電池用正極の活物質を、乾燥後、ポリフッ化ビニリデン等のバインダと好ましくは導電性粒子とともに混合して正極材料とし、これを導電性基体上に塗布することにより正極を作製することができる。   The positive electrode active material for a lithium battery thus obtained is dried and then mixed with a binder such as polyvinylidene fluoride and preferably with conductive particles to form a positive electrode material, which is applied onto a conductive substrate to form a positive electrode Can be produced.

導電性粒子は、本発明の正極活物質の導電性を向上させる。導電性粒子の例を挙げると、導電性カーボン(ケッチェンブラック等の導電性カーボンブラック等)、銅、鉄、銀、ニッケル、パラジウム、金、白金、インジウム、タングステン等の金属、酸化インジウム、酸化スズ等の導電性金属酸化物等である。これら導電性粒子は、上記層状の遷移金属酸化物および導電性有機硫黄系化合物の合計量の1〜30重量%の割合で含まれることが好ましい。   The conductive particles improve the conductivity of the positive electrode active material of the present invention. Examples of conductive particles include conductive carbon (conductive carbon black such as ketjen black), copper, iron, silver, nickel, palladium, gold, platinum, indium, tungsten and other metals, indium oxide, oxidation Conductive metal oxides such as tin. These conductive particles are preferably contained in a proportion of 1 to 30% by weight of the total amount of the layered transition metal oxide and the conductive organic sulfur compound.

本発明において、正極材料の層を支持する基体(集電体)は、少なくとも本発明の正極材料の層と接する表面において導電性を示す導電性基体である。この基体は、金属、導電性金属酸化物、導電性カーボン等の導電性材料で形成することができるが、銅、金、アルミニウムもしくはそれらの合金または導電性カーボンで形成することが好ましい。あるいは、基体は非導電性材料で形成された基体本体をこれら導電性材料で被覆することによっても形成することができる。   In the present invention, the substrate (current collector) that supports the layer of the positive electrode material is a conductive substrate that exhibits conductivity at least on the surface in contact with the layer of the positive electrode material of the present invention. The substrate can be formed of a conductive material such as metal, conductive metal oxide, or conductive carbon, but is preferably formed of copper, gold, aluminum, an alloy thereof, or conductive carbon. Alternatively, the substrate can also be formed by coating a substrate body formed of a nonconductive material with these conductive materials.

本発明において、リチウム電池用正極材料の層は、10〜200μmの厚さを有することが好ましい。   In the present invention, the layer of the positive electrode material for a lithium battery preferably has a thickness of 10 to 200 μm.

本発明の二次電池は、本発明の正極と、負極と、前記正極と負極の間に配置された電解質層を備える。本発明の二次電池は、好ましくはリチウム二次電池である。   The secondary battery of the present invention includes the positive electrode of the present invention, a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode. The secondary battery of the present invention is preferably a lithium secondary battery.

リチウム二次電池において、負極は、リチウムを吸蔵するリチウム系材料で形成することが好ましい。このようなリチウム系材料としては、金属リチウムやリチウム合金(例えばLi−Al合金)のようなリチウム系金属材料、スズやケイ素のような金属とリチウムとの金属間化合物材料、窒化リチウムのようなリチウム化合物、またはリチウムインターカレーション炭素材料を例示することができる。リチウム系金属材料は、箔の形態で使用することが電池の軽量化の上で好ましい。   In the lithium secondary battery, the negative electrode is preferably formed of a lithium material that occludes lithium. Examples of such lithium-based materials include lithium-based metal materials such as metallic lithium and lithium alloys (for example, Li-Al alloys), intermetallic compound materials of metals and lithium such as tin and silicon, and lithium nitride. A lithium compound or a lithium intercalation carbon material can be exemplified. The lithium-based metal material is preferably used in the form of a foil in terms of reducing the weight of the battery.

リチウム二次電池においては、電解質として、CFSOLi、CSOLi、(CFSONLi、(CFSOCLi、LiBF、LiPF、LiClO、LiCB等のリチウム塩を使用することができる。これら電解質を溶解する溶媒は非水溶媒であることが好ましい。非水溶媒には、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物、酸無水物、アミド化合物、ホスフェート化合物、アミン化合物等が含まれる。非水溶媒の具体例を挙げると、エチレンカーボネート、ジエチルカーボネート(DEC)、プロピレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、n−メチルピロリジノン、N,N’−ジメチルアセトアミド、アセトニトリル、あるいはプロピレンカーボネートとジメトキシエタンとの混合物、スルホランとテトラヒドロフランとの混合物等である。正極と負極との間に介挿される電解質層としては、上記電解質の非水溶媒中の溶液であってもよいし、この電解質溶液を含むポリマーゲル(ポリマーゲル電解質)であってもよい。 In the lithium secondary battery, as an electrolyte, CF 3 SO 3 Li, C 4 F 9 SO 8 Li, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, LiBF 4 , LiPF 6 , LiClO 4 Lithium salts such as LiC 4 O 8 B can be used. The solvent for dissolving these electrolytes is preferably a non-aqueous solvent. Non-aqueous solvents include chain carbonates, cyclic carbonates, cyclic esters, nitrile compounds, acid anhydrides, amide compounds, phosphate compounds, amine compounds, and the like. Specific examples of the non-aqueous solvent include ethylene carbonate, diethyl carbonate (DEC), propylene carbonate, dimethoxyethane, γ-butyrolactone, n-methylpyrrolidinone, N, N′-dimethylacetamide, acetonitrile, or propylene carbonate and dimethoxyethane. And a mixture of sulfolane and tetrahydrofuran. The electrolyte layer interposed between the positive electrode and the negative electrode may be a solution of the above electrolyte in a non-aqueous solvent or a polymer gel (polymer gel electrolyte) containing this electrolyte solution.

本発明のリチウム電池用正極において、PEDOT−Rと五酸化バナジウムを含む活物質は、リチウムイオンのドープ量を有意に増加させることが見出された。この効果について解明するに至っていないが、以下の2つの理由によるものではないかと推察している。   In the positive electrode for lithium batteries of the present invention, it has been found that an active material containing PEDOT-R and vanadium pentoxide significantly increases the doping amount of lithium ions. Although this effect has not yet been elucidated, it is speculated that it may be due to the following two reasons.

第1に、EDOT骨格の中で最もカチオン性を帯び、重合反応部位である2位炭素上の水素の電子状態を、CACheのMM/PM5 geometryで最適化した分子軌道計算で求めた結果、EDOTのエチレン鎖上にアルキル基を導入すると、2位炭素上の水素の総正電荷密度が低下する。これにより、ポリマー化したPEDOT−R末端のHと五酸化バナジウムとのイオン相互作用が低減され、リチウムイオンの取り込み量が増加する。   First, EDOT is the most cationic in the EDOT skeleton, and the electronic state of hydrogen on the 2nd carbon, which is the polymerization reaction site, was calculated by molecular orbital calculation optimized by CAChe's MM / PM5 geometry. When an alkyl group is introduced onto the ethylene chain, the total positive charge density of hydrogen on the 2-position carbon decreases. Thereby, the ionic interaction between polymerized PEDOT-R terminal H and vanadium pentoxide is reduced, and the amount of lithium ions taken up is increased.

第2に、EDOT上に導入されたアルキル基の存在によって、五酸化バナジウムのc軸方向の積層が阻害され、五酸化バナジウムの結晶性が低下して、リチウムイオンの脱挿入量が増大する。   Second, the presence of an alkyl group introduced on EDOT inhibits the stacking of vanadium pentoxide in the c-axis direction, lowers the crystallinity of vanadium pentoxide, and increases the amount of lithium ion deinsertion.

本発明のリチウム電池用正極では、このように活物質のリチウムイオンのドープ量が大幅に増加するために、高い充放電容量が得られる。特に、本発明の正極を有するリチウム二次電池は初期段階での放電容量が高い。しかし、PEDOT−C13は、Synthetic Metals 118(2001) 105-109に記載されているように、導電性が劣るためか、これを用いた二次電池は長期の充放電安定性にやや劣るきらいがある。 In the positive electrode for a lithium battery according to the present invention, since the doping amount of the lithium ion of the active material is greatly increased as described above, a high charge / discharge capacity can be obtained. In particular, the lithium secondary battery having the positive electrode of the present invention has a high discharge capacity in the initial stage. However, as described in Synthetic Metals 118 (2001) 105-109, PEDOT-C 6 H 13 is somewhat inferior in conductivity, or a secondary battery using the PEDOT-C 6 H 13 has a little long-term charge / discharge stability. There is an inconvenience.

以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。
なお、本実施例において用いるEDOT−RのRで示されるアルキル基は全て直鎖アルキル基である。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this.
In addition, all the alkyl groups shown by R of EDOT-R used in a present Example are linear alkyl groups.

実施例1
既報に従って合成した0.086gのEDOT−CHと、2gの五酸化バナジウムキセロゲル(水分量:13.1重量%)とを混合し、水溶媒100mlを加えて100℃で12時間攪拌した。攪拌後、緑色ゲル状物質をろ過分別し、60〜80℃で一晩真空乾燥して活物質を得た。示差熱分析において150℃以上の発熱成分を全て有機物、すなわちPEDOT−CHであるものとして求めた有機物成分量は、5.1重量%と算出された。また、X線解析の結果、五酸化バナジウムキセロゲルに類似した回折線を示した。001面の底面回折幅を求めたところ、12.6Åと算出された。結果を表1に示す。

Figure 0004932243
Example 1
0.086 g of EDOT-CH 3 synthesized according to the previous report and 2 g of vanadium pentoxide xerogel (water content: 13.1 wt%) were mixed, 100 ml of an aqueous solvent was added, and the mixture was stirred at 100 ° C. for 12 hours. After stirring, the green gel material was separated by filtration and dried in vacuo at 60 to 80 ° C. overnight to obtain an active material. In the differential thermal analysis, the amount of the organic component obtained by determining all exothermic components at 150 ° C. or higher as organic matter, that is, PEDOT-CH 3 , was calculated to be 5.1% by weight. As a result of X-ray analysis, a diffraction line similar to vanadium pentoxide xerogel was shown. When the bottom diffraction width of the 001 plane was determined, it was calculated to be 12.6 mm. The results are shown in Table 1.
Figure 0004932243

実施例2
EDOT−Cを0.102g用いた以外は、実施例1と同様に活物質を合成した。示差熱分析において150℃以上の発熱成分を全て有機物、すなわちPEDOT−Cであるものとして求めた有機物成分量は、5.2重量%と算出された。また、X線解析の結果、五酸化バナジウムキセロゲルに類似した回折線を示した。001面の底面回折幅を求めたところ、12.5Åと算出された。結果を表1に示す。
Example 2
An active material was synthesized in the same manner as in Example 1 except that 0.102 g of EDOT-C 3 H 7 was used. In the differential thermal analysis, the amount of the organic component determined by assuming that all exothermic components at 150 ° C. or higher were organic, that is, PEDOT-C 3 H 7 , was calculated to be 5.2% by weight. As a result of X-ray analysis, a diffraction line similar to vanadium pentoxide xerogel was shown. When the bottom diffraction width of the 001 plane was determined, it was calculated to be 12.5 mm. The results are shown in Table 1.

実施例3
EDOT−C13を0.081g用いた以外は、実施例1と同様に活物質を合成した。示差熱分析において150℃以上の発熱成分を全て有機物、すなわちPEDOT−C13であるものとして求めた有機物成分量は、5.6重量%と算出された。また、X線解析の結果、五酸化バナジウムキセロゲルに類似した回折線を示した。001面の底面回折幅を求めたところ、12.6Åと算出された。結果を表1に示す。
Example 3
An active material was synthesized in the same manner as in Example 1 except that 0.081 g of EDOT-C 6 H 13 was used. In the differential thermal analysis, the amount of the organic matter component obtained by assuming that all exothermic components at 150 ° C. or higher were organic matter, that is, PEDOT-C 6 H 13 was calculated to be 5.6% by weight. As a result of X-ray analysis, a diffraction line similar to vanadium pentoxide xerogel was shown. When the bottom diffraction width of the 001 plane was determined, it was calculated to be 12.6 mm. The results are shown in Table 1.

実施例4
EDOT−C17を0.092g用いた以外は、実施例1と同様に活物質を合成した。示差熱分析において150℃以上の発熱成分を全て有機物、すなわちPEDOT−C17であるものとして求めた有機物成分量は、4.6重量%と算出された。また、X線解析の結果、五酸化バナジウムキセロゲルに類似した回折線を示した。001面の底面回折幅を求めたところ、12.6Åと算出された。結果を表1に示す。
Example 4
An active material was synthesized in the same manner as in Example 1 except that 0.092 g of EDOT-C 8 H 17 was used. In the differential thermal analysis, the amount of the organic component determined by assuming that all exothermic components at 150 ° C. or higher were organic, that is, PEDOT-C 8 H 17 , was calculated to be 4.6% by weight. As a result of X-ray analysis, a diffraction line similar to vanadium pentoxide xerogel was shown. When the bottom diffraction width of the 001 plane was determined, it was calculated to be 12.6 mm. The results are shown in Table 1.

実施例5
EDOT−C1021を0.117g用いた以外は、実施例1と同様に活物質を合成した。示差熱分析において150℃以上の発熱成分を全て有機物、すなわちPEDOT−C1021であるものとして求めた有機物成分量は、3.4重量%と算出された。また、X線解析の結果、五酸化バナジウムキセロゲルに類似した回折線を示した。001面の底面回折幅を求めたところ、12.4Åと算出された。結果を表1に示す。
Example 5
An active material was synthesized in the same manner as in Example 1 except that 0.117 g of EDOT-C 10 H 21 was used. In the differential thermal analysis, the amount of the organic component determined by assuming that all exothermic components at 150 ° C. or higher were organic, that is, PEDOT-C 10 H 21 was calculated to be 3.4% by weight. As a result of X-ray analysis, a diffraction line similar to vanadium pentoxide xerogel was shown. When the bottom diffraction width of the 001 plane was determined, it was calculated to be 12.4 mm. The results are shown in Table 1.

実施例6
EDOT−C1429を0.122g用いた以外は、実施例1と同様に活物質を合成した。示差熱分析において150℃以上の発熱成分を全て有機物、すなわちPEDOT−C1429であるものとして求めた有機物成分量は、3.4重量%と算出された。また、X線解析の結果、五酸化バナジウムキセロゲルに類似した回折線を示した。001面の底面回折幅を求めたところ、12.4Åと算出された。結果を表1に示す。
Example 6
An active material was synthesized in the same manner as in Example 1 except that 0.122 g of EDOT-C 14 H 29 was used. In the differential thermal analysis, the amount of the organic component determined by assuming that all exothermic components at 150 ° C. or higher are organic, that is, PEDOT-C 14 H 29 , was calculated to be 3.4% by weight. As a result of X-ray analysis, a diffraction line similar to vanadium pentoxide xerogel was shown. When the bottom diffraction width of the 001 plane was determined, it was calculated to be 12.4 mm. The results are shown in Table 1.

比較例1
水分量が13.1重量%で、X線回折の001面の底面回折幅が11.6Åの五酸化バナジウムキセロゲルを活物質とした。
Comparative Example 1
Vanadium pentoxide xerogel having a water content of 13.1% by weight and an X-ray diffraction 001 plane bottom surface diffraction width of 11.6 mm was used as an active material.

比較例2
EDOTを0.785g用いた以外は、実施例1と同様に活物質を合成した。示差熱分析において150℃以上の発熱成分を全て有機物、すなわちPEDOTであるものとして求めた有機物成分量は、6.0重量%と算出された。また、X線解析の結果、五酸化バナジウムキセロゲルに類似した回折線を示した。001面の底面回折幅を求めたところ、13.6Åと算出された。結果を表1に示す。
Comparative Example 2
An active material was synthesized in the same manner as in Example 1 except that 0.785 g of EDOT was used. In the differential thermal analysis, the amount of the organic component obtained by determining all exothermic components at 150 ° C. or higher as organic matter, that is, PEDOT was calculated to be 6.0% by weight. As a result of X-ray analysis, a diffraction line similar to vanadium pentoxide xerogel was shown. When the bottom diffraction width of the 001 plane was determined, it was calculated to be 13.6 mm. The results are shown in Table 1.

実施例1〜6および比較例1〜2で得られた各々の活物質に、導電性粒子(カーボンブラック)および結着剤(ポリフッ化ビニリデン)を、活物質:導電性粒子:結着剤が重量比で70:25:5となるように混合し、n−メチルピロリジノンで希釈してペーストを作製し、このペーストをアルミ箔集電体上に均一に塗布した。150℃で減圧乾燥して余分な溶媒を除去後、プレスすることで塗布量が2mg/cm、厚みが30μmの正極材料の層を得た。 In each of the active materials obtained in Examples 1 to 6 and Comparative Examples 1 and 2, conductive particles (carbon black) and a binder (polyvinylidene fluoride) are used. An active material: conductive particles: a binder is used. The mixture was mixed at a weight ratio of 70: 25: 5, diluted with n-methylpyrrolidinone to prepare a paste, and this paste was uniformly applied on an aluminum foil current collector. After drying under reduced pressure at 150 ° C. to remove excess solvent, pressing was performed to obtain a positive electrode material layer having a coating amount of 2 mg / cm 2 and a thickness of 30 μm.

得られた各々の正極を20×20mmに裁断し、アルミ端子を溶接した。また、厚さ100μmのリチウム金属箔(25×25mm)をニッケルメッシュ金属上に密着させ、さらにニッケル端子を溶接して対極とした。正極と負極とをポリオレフィン系微多孔膜(セパレータ)を介して積層させて電池構造体を形成し、内面に樹脂フィルムをラミネートしたアルミニウム包材で開口部を残してパッケージした。1モル/Lのホウフッ化リチウム(LiBF)を溶解した、エチレンカーボネートとジエチルカーボネートの体積比1:3の混合物からなる電解液を、電池構造体が浸漬されるようにアルミニウム包材に入れた後、開口部を封止して電池を得た。 Each obtained positive electrode was cut into 20 × 20 mm, and an aluminum terminal was welded. Further, a lithium metal foil (25 × 25 mm) having a thickness of 100 μm was brought into close contact with the nickel mesh metal, and a nickel terminal was further welded to form a counter electrode. A battery structure was formed by laminating a positive electrode and a negative electrode through a polyolefin microporous membrane (separator), and packaged with an aluminum wrapping material having a resin film laminated on the inner surface, leaving an opening. An electrolytic solution made of a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 3 in which 1 mol / L of lithium borofluoride (LiBF 4 ) was dissolved was placed in an aluminum wrapping material so that the battery structure was immersed therein. Thereafter, the opening was sealed to obtain a battery.

以上のようにして作製した電池をそれぞれ、本発明電池1〜6および比較電池1〜2という。この電池を用いて充放電サイクル試験を実施した。試験条件は、容量を400mAh/g(活物質)と仮定して1.5Vカットの初回放電を行い、実際に得られた容量を1ImAtとし、この0.1ImAt相当の電流量を以降のサイクル試験で設定した。サイクル時の充電は4.2Vの定電流−定電圧充電(CC−CV)方式で20時間とし、放電は1.5Vカットの定電流放電(CC)方式とした。2サイクル目の放電容量と20サイクル目の放電容量を表2にまとめた。

Figure 0004932243
The batteries produced as described above are referred to as invention batteries 1 to 6 and comparative batteries 1 and 2, respectively. A charge / discharge cycle test was conducted using this battery. The test conditions were assumed to be 400 mAh / g (active material), the first discharge of 1.5V cut was performed, the actually obtained capacity was 1 ImAt, and the current amount equivalent to 0.1 ImAt was used for the following cycle test. Set in. Charging during the cycle was 20 hours in a 4.2V constant current-constant voltage charging (CC-CV) method, and discharging was a 1.5V cut constant current discharging (CC) method. The discharge capacity at the second cycle and the discharge capacity at the 20th cycle are summarized in Table 2.
Figure 0004932243

表2の数値から明らかなように、1.5Vまで放電させたとき、本発明の正極を用いた本発明電池1〜6の初回放電容量は、比較電池1〜2に対して高い値が得られた。また、20サイクル後の放電容量についても、本発明電池は比較電池と比べて高い容量を示した。   As is apparent from the numerical values in Table 2, when discharged to 1.5 V, the initial discharge capacities of the present batteries 1 to 6 using the positive electrode of the present invention are higher than those of the comparative batteries 1 and 2. It was. Also, the discharge capacity after 20 cycles showed that the battery of the present invention had a higher capacity than the comparative battery.

Claims (6)

導電性基体と、この導電性基体の表面に形成された正極材料の層を備え、前記正極材料は、活物質として層状の遷移金属酸化物である五酸化バナジウムと導電性有機硫黄系化合物を含み、前記導電性有機硫黄系化合物が、下記式(1):
Figure 0004932243
(式中、Rは 1 〜C 20 アルキル基)で示されるアルキル置換3,4−エチレンジオキシチオフェン化合物の酸化重合体を含み、前記導電性有機硫黄系化合物が前記五酸化バナジウムの層間に存在していることを特徴とするリチウム電池用正極。
A conductive substrate and a layer of a positive electrode material formed on a surface of the conductive substrate, the positive electrode material including vanadium pentoxide , which is a layered transition metal oxide, and a conductive organic sulfur compound as an active material; The conductive organic sulfur compound is represented by the following formula (1):
Figure 0004932243
(Wherein, R represents C 1 -C 20 alkyl group) oxide polymer saw including alkyl-substituted 3,4-ethylenedioxy thiophene compound represented by, the conductive organic sulfur compound layers of the vanadium pentoxide A positive electrode for a lithium battery,
前記Rが、C8〜C16アルキルであることを特徴とする請求項1に記載のリチウム電池用正極。 Wherein R is a positive electrode for a lithium battery according to claim 1, characterized in that the C 8 -C 16 alkyl. 前記活物質が、前記遷移金属酸化物の重量を基準として、前記酸化重合体を0.1〜25重量%の割合で含有する請求項1または2に記載のリチウム電池用正極。 The positive electrode for a lithium battery according to claim 1 or 2 , wherein the active material contains the oxidation polymer in a proportion of 0.1 to 25% by weight based on the weight of the transition metal oxide. 前記正極材料が、導電性粒子及びバインダを含むことを特徴とする請求項1〜のいずれか一項に記載のリチウム電池用正極。 The said positive electrode material contains electroconductive particle and a binder, The positive electrode for lithium batteries as described in any one of Claims 1-3 characterized by the above-mentioned. 正極と、負極と、前記正極と負極の間に配置された電解質層を備え、前記正極が、請求項1〜のいずれか一項に記載のリチウム電池用正極からなることを特徴とする二次電池。 A positive electrode, a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode are provided, and the positive electrode includes the positive electrode for a lithium battery according to any one of claims 1 to 4. Next battery. 前記二次電池が、リチウム二次電池であることを特徴とする請求項に記載の二次電池。 The secondary battery according to claim 5 , wherein the secondary battery is a lithium secondary battery.
JP2005359281A 2005-12-13 2005-12-13 Positive electrode for lithium battery and secondary battery using the same Expired - Fee Related JP4932243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359281A JP4932243B2 (en) 2005-12-13 2005-12-13 Positive electrode for lithium battery and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359281A JP4932243B2 (en) 2005-12-13 2005-12-13 Positive electrode for lithium battery and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2007165095A JP2007165095A (en) 2007-06-28
JP4932243B2 true JP4932243B2 (en) 2012-05-16

Family

ID=38247789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359281A Expired - Fee Related JP4932243B2 (en) 2005-12-13 2005-12-13 Positive electrode for lithium battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4932243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244472A (en) * 2018-09-26 2019-01-18 烟台大学 A kind of lithium-sulfur cell comprising the protectant electrolyte of anode and comprising the electrolyte

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577200A (en) * 2015-02-06 2015-04-29 宁德新能源科技有限公司 Electrolyte additive and application thereof
KR20220043773A (en) * 2020-09-29 2022-04-05 주식회사 엘지에너지솔루션 Electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040081186A (en) * 2002-02-07 2004-09-20 후지 주코교 카부시키카이샤 Redox active reversible electrode and novel cell using it
JP4365572B2 (en) * 2002-11-06 2009-11-18 株式会社ニチリン Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite
JP4892174B2 (en) * 2004-03-26 2012-03-07 富士重工業株式会社 Organic / inorganic hybrid electrode and secondary battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244472A (en) * 2018-09-26 2019-01-18 烟台大学 A kind of lithium-sulfur cell comprising the protectant electrolyte of anode and comprising the electrolyte

Also Published As

Publication number Publication date
JP2007165095A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5270600B2 (en) Novel electrode materials derived from polyquinone-based ionic compounds and their use in electrochemical generators
JP6296597B2 (en) Lithium ion secondary battery
US20180006329A1 (en) Electrochemical cells that include lewis acid: lewis base complex electrolyte additives
JP5076560B2 (en) Electricity storage device
JP4218183B2 (en) Lithium battery
JP5810032B2 (en) Positive electrode protective agent for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, non-aqueous electrolyte for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
JP2017069164A (en) Lithium ion secondary battery
KR20200067829A (en) Method for inhibiting decomposition of silyl ester compounds
JP2016219421A (en) Electrolytic solution for battery and battery
US20190140309A1 (en) Electrolyte solutions and electrochemical cells containing same
JP5870610B2 (en) Non-aqueous electrolyte iodine battery
JP2000077100A (en) Nonaqueous electrolyte secondary battery
JP4892174B2 (en) Organic / inorganic hybrid electrode and secondary battery using the same
JP2004200059A (en) Power storage device
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP4948946B2 (en) ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND STORAGE BATTERY USING THE SAME
JP4948878B2 (en) Electrode material and secondary battery and capacitor using the same
JP5082198B2 (en) Lithium ion secondary battery
JP4932243B2 (en) Positive electrode for lithium battery and secondary battery using the same
JP2000090971A (en) Secondary power source
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP3825571B2 (en) Non-aqueous electrolyte battery
JP2019061835A (en) Lithium ion secondary battery
JP2018133335A (en) Nonaqueous electrolyte battery
JP2019061826A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees