[go: up one dir, main page]

JP4929447B2 - Method for preparing chondrocytes from mesenchymal stem cells - Google Patents

Method for preparing chondrocytes from mesenchymal stem cells Download PDF

Info

Publication number
JP4929447B2
JP4929447B2 JP2005143162A JP2005143162A JP4929447B2 JP 4929447 B2 JP4929447 B2 JP 4929447B2 JP 2005143162 A JP2005143162 A JP 2005143162A JP 2005143162 A JP2005143162 A JP 2005143162A JP 4929447 B2 JP4929447 B2 JP 4929447B2
Authority
JP
Japan
Prior art keywords
chondrocytes
differentiation
cells
culture
stem cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005143162A
Other languages
Japanese (ja)
Other versions
JP2006314299A (en
Inventor
賢 田中
有香 森田
貞明 山本
政嗣 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2005143162A priority Critical patent/JP4929447B2/en
Publication of JP2006314299A publication Critical patent/JP2006314299A/en
Application granted granted Critical
Publication of JP4929447B2 publication Critical patent/JP4929447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Description

本発明は、未分化細胞である間葉系幹細胞の軟骨細胞への分化を誘導し、間葉系細胞から軟骨細胞を調製する方法に関する。   The present invention relates to a method for preparing chondrocytes from mesenchymal cells by inducing differentiation of mesenchymal stem cells, which are undifferentiated cells, into chondrocytes.

間葉系幹細胞(Mesenchymal stem cell、MSC)は、骨髄中に存在する未分化の細胞で、自己増殖能を有し、さらに骨髄細胞、軟骨細胞、脂肪細胞、骨格筋、心筋、靭帯、腱などの中葉胚系の様々な細胞に分化することのできる多分化能を有する細胞である。この多分化に基づいた、臓器再生や細胞移植などのいわゆる再生医療へのMSCの利用が期待されている。   Mesenchymal stem cells (MSCs) are undifferentiated cells present in the bone marrow and have the ability to self-proliferate. In addition, bone marrow cells, chondrocytes, adipocytes, skeletal muscles, cardiac muscles, ligaments, tendons, etc. It is a multipotent cell that can differentiate into various cells of the mesenchymal embryo system. The use of MSC for so-called regenerative medicine such as organ regeneration and cell transplantation based on this multi-differentiation is expected.

多分化能を有するMSCが特定の細胞あるいは組織等へと分化するためには、そのような分化を誘導あるいは決定付ける特定のシグナルあるいは因子(分化誘導因子)の存在が必要であると考えられている。そのため、インビトロでMSCを特定の細胞あるいは組織へと分化させるために、そのような細胞あるいは組織への分化を特異的に決定付ける機能を有する各種の分化誘導因子が利用されている。   In order for MSCs with multipotency to differentiate into specific cells or tissues, it is considered necessary to have specific signals or factors (differentiation induction factors) that induce or determine such differentiation. Yes. Therefore, in order to differentiate MSCs into specific cells or tissues in vitro, various differentiation inducers having a function of specifically determining differentiation into such cells or tissues are used.

分化誘導因子としては、bFGF、TGFβ、インスリンなどのポリペプチド性の分化誘導因子(以下、これらをペプチド性分化誘導因子と表す)、βグリセロホスフェート等のリン脂質、デキサメタゾン等のフッ素付加ステロイド、インドメタシン等のアリール酢酸系非ステロイド、亜セレン酸ナトリウムなどセレン化合物、などの低分子有機化合物系の分化誘導因子(以下、これらを非ペプチド性分化誘導因子と表す)などが知られており、これらのいずれかが単独でもしくは組み合わされて、間葉系幹細胞を培養する培地に添加されてきた(非特許文献1)。   Examples of differentiation inducers include polypeptide differentiation inducers such as bFGF, TGFβ, and insulin (hereinafter referred to as peptide differentiation inducers), phospholipids such as β-glycerophosphate, fluorinated steroids such as dexamethasone, indomethacin Low molecular weight organic compound differentiation inducers such as arylacetic acid non-steroids such as selenium compounds such as sodium selenite, etc. (hereinafter referred to as non-peptidic differentiation inducers) are known. Either of them has been added alone or in combination to a medium for culturing mesenchymal stem cells (Non-patent Document 1).

例えば、培地にデキサメタゾン、インスリン及びインドメタシンを加えることでMSCは脂肪細胞へと分化誘導され、また培地にデキサメタゾン及びクリセロホスフェートを加えることでMSCは骨芽細胞へと分化誘導されることが知られている(非特許文献2)。   For example, it is known that MSC is induced to differentiate into adipocytes by adding dexamethasone, insulin and indomethacin to the medium, and MSC is induced to differentiate into osteoblasts by adding dexamethasone and chryserophosphate to the medium. (Non-Patent Document 2).

MSCの軟骨細胞への分化誘導は、変形性関節痛等の疾患の再生医療が可能となるなど、極めて重要な意義を有することから、MSCの軟骨細胞への分化を誘導するペプチド性分化誘導因子あるいは非ペプチド性分化誘導因子の探索が盛んに行われてきた。これまでのところは、ペプチド性分化誘導因子であるTGF−β1、IGF−1、FGF−2又は/及びBMP−6を培地に加えて培養することで、MSCの軟骨細胞への分化誘導に成功した例も報告されている(非特許文献3、非特許文献4、非特許文献5)。しかし、この様な因子を用いた方法は、軟骨細胞への分化率が必ずしも十分であるとは言えないなどの問題を有している。   The induction of differentiation of MSC into chondrocytes has extremely important significance such as the possibility of regenerative medicine for diseases such as osteoarthritis. Therefore, peptide differentiation inducers that induce differentiation of MSCs into chondrocytes Alternatively, non-peptide differentiation inducing factors have been actively searched. So far, successful induction of differentiation of MSCs into chondrocytes by adding TGF-β1, IGF-1, FGF-2 or / and BMP-6, which are peptide differentiation inducers, to the medium Examples have also been reported (Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5). However, the method using such a factor has a problem that the rate of differentiation into chondrocytes is not necessarily sufficient.

MSCの軟骨細胞への分化が難しい大きな要因として、軟骨細胞(組織)は3次元化が望まれる細胞・組織であるという点が挙げられる。成熟軟骨細胞は分裂が進み継代の回数が増すと、線維芽細胞様に形態を変え、やがて単層化することが知られている。そのため、MSCのような未分化で多分化能を有する細胞から軟骨細胞へと分化誘導を行う場合にも、軟骨細胞が3次元化するまえに線維芽様細胞に分化してしまうという結果が確認されている。   A major factor that makes it difficult to differentiate MSCs into chondrocytes is that chondrocytes (tissues) are cells / tissues that are desired to be three-dimensional. It is known that mature chondrocytes change into fibroblast-like morphology and eventually become monolayered when division proceeds and the number of passages increases. Therefore, even when differentiation induction from undifferentiated and multipotent cells such as MSC into chondrocytes is confirmed, the results show that chondrocytes differentiate into fibroblast-like cells before they become three-dimensional. Has been.

中辻憲夫ら編著、幹細胞・クローン研究プロトコール、2001年、羊土社、東京Edited by Norio Nakatsuji et al., Stem Cell / Clone Research Protocol, 2001, Yodosha, Tokyo Pittengerら、Science、1999年、第284巻、第143−147頁Pittenger et al., Science, 1999, 284, 143-147. Fukumotoら、Osteroarthritis and Cartilage、2003年、第11巻、第55-64頁Fukumoto et al., Osteroarthritis and Cartilage, 2003, 11, 55-64 Chumaら、Osteroarthritis and Cartilage、2004年、第12巻、第834-842頁Chuma et al., Osteroarthritis and Cartilage, 2004, 12: 834-842 Indrawattanaら、Biochem. Biophys. Res. Commn.、2004年、第320巻、第914-919頁Indrawattana et al., Biochem. Biophys. Res. Commn., 2004, 320, 914-919

上記の様に、MSCを特定の細胞へと分化誘導する技術の中でも、軟骨細胞への分化誘導はもっとも困難な技術の一つとして考えられている。従って、MSCの軟骨細胞への分化を決定付ける分化誘導因子の特定を含め、間葉系細胞を軟骨細胞へと効率的に分化誘導する方法ないし条件を特定することは、MSCの再生医療への応用において、大変に重要な課題である。   As described above, among the techniques for inducing differentiation of MSCs into specific cells, induction of differentiation into chondrocytes is considered as one of the most difficult techniques. Therefore, specifying methods or conditions for efficiently inducing differentiation of mesenchymal cells into chondrocytes, including the identification of differentiation-inducing factors that determine the differentiation of MSCs into chondrocytes, This is a very important issue in application.

本発明者は、全く意外なことに、ペプチド性分化誘導因子として把握される物質、さらには非ペプチド性分化誘導因子として知られている化合物が存在しないという環境下に置かれたMSCが効率的に軟骨細胞へと分化すること、すなわちペプチド性分化誘導因子、さらには非ペプチド性分化誘導因子を含まない培地によるMSCのインビトロ培養が、MSCの軟骨細胞含への分化を決定付ける条件の一つであることを見いだし、本発明を完成した。   The present inventor has surprisingly found that MSC placed in an environment in which there is no substance known as a peptidic differentiation inducing factor or a compound known as a non-peptidic differentiation inducing factor is efficient. Is one of the conditions that determine the differentiation of MSC into chondrocytes by in vitro culture using a medium that does not contain peptidic differentiation-inducing factor or non-peptidic differentiation-inducing factor. As a result, the present invention has been completed.

本発明は以下の態様からなる。   The present invention comprises the following aspects.

1)ペプチド性分化誘導因子を含まない培地で培養することを特徴とする、間葉系幹細胞から軟骨細胞を調製する方法。 1) A method for preparing chondrocytes from mesenchymal stem cells, comprising culturing in a medium not containing a peptide differentiation inducing factor.

2)培養を3日間以上行う、1)に記載の調製方法。 2) The preparation method according to 1), wherein the culture is performed for 3 days or more.

3)さらに非ペプチド性分化誘導因子を含まない培地である、1)に記載の調製方法。 3) The preparation method according to 1), which is a medium not containing a non-peptide differentiation inducing factor.

4)非ペプチド性分化誘導因子が、リン脂質、ステロイド化合物、アリール酢酸系非ステロイド化合物、またはセレン化合物である、3)に記載の調製方法。 4) The preparation method according to 3), wherein the non-peptidic differentiation inducing factor is a phospholipid, a steroid compound, an arylacetic acid nonsteroid compound, or a selenium compound.

5)培地が最小限培地である、1)〜4)のいずれかに記載の調製方法。 5) The preparation method according to any one of 1) to 4), wherein the medium is a minimal medium.

本発明は、従来用いられているペプチド性分化誘導因子のような疫性外的因子、特定の細胞の分化誘導を促進する可能性が示唆されるようなサプリメントである非ペプチド成分か誘導因子などの利用を必要としない。そのため、分化誘導した軟骨細胞を生体移植技術等によって投与する際に、かかる因子の混入の可能性を排除することができる。これらの因子は、例えばTGF−βの場合、作用する細胞によって増殖促進因子として働く場合もあるが、慢性関節リウマチなどの関節炎では、TGF−βは他のサイトカインと関わることで細胞外マトリックスの破壊を引き起こして関節炎の原因となっているなど、増殖抑制因子として働くという逆の作用もある。この様な理由からペプチド性因子の多くは医薬としては承認されていないので、分化した細胞を生体移植する際にこれらの因子の混入は極力避けなければならない。従って、これらの因子を元から使用しない本発明の方法は、かかる因子の混入がないという点で極めて有利である。   The present invention relates to epidemiological extrinsic factors such as conventionally used peptide differentiation inducers, non-peptide components or inducers that are suggested to possibly promote differentiation induction of specific cells, etc. The use of is not necessary. Therefore, when the induced chondrocytes are administered by a living transplantation technique or the like, the possibility of such factor contamination can be eliminated. For example, in the case of TGF-β, these factors may act as growth-promoting factors depending on the cells that act, but in arthritis such as rheumatoid arthritis, TGF-β is involved in other cytokines and destroys the extracellular matrix. It also has the opposite effect of acting as a growth inhibitory factor, such as causing arthritis. For this reason, many peptidic factors have not been approved as pharmaceuticals, and contamination of these factors should be avoided as much as possible when transplanting differentiated cells. Therefore, the method of the present invention which does not use these factors from the beginning is extremely advantageous in that there is no contamination of such factors.

また、かかる因子、特にペプチド性分化誘導因子の殆どは高価であり、従ってこれらの利用を必要としない本発明は、MSCから軟骨細胞を調製するコストの低減ももたらすものとなる。   In addition, most of such factors, particularly peptidic differentiation-inducing factors, are expensive, and the present invention that does not require their use also leads to a reduction in the cost of preparing chondrocytes from MSCs.

本発明の方法は、ペプチド性分化誘導因子、さらには非ペプチド性分化誘導因子の非存在下でMSCをインビトロで培養することで、MSCから軟骨細胞を調製する方法である。   The method of the present invention is a method for preparing chondrocytes from MSCs by culturing MSCs in vitro in the absence of peptidic differentiation inducing factors and further non-peptidic differentiation inducing factors.

この方法で利用可能な培地については、ペプチド性分化誘導因子あるいは非ペプチド性分化誘導因子を含まないという条件以外には格別の制限はないが、これらの因子の混入を排するという点において、基本培地(最小培地、Minimam Essential Medium、MEM)の利用が好ましい。具体的には、培地全重を100%とした場合、0〜25重量%程度の血清、特に牛胎児血清、0.1〜1重量%程度の無機塩、0.01〜0.1重量%程度のアミノ酸、0.1〜1重量%程度の糖原、微量成分としてのビタミンを含む培地の利用が好ましい。   The medium that can be used in this method is not particularly limited except that it does not contain peptidic differentiation inducing factors or non-peptidic differentiation inducing factors. However, in terms of eliminating contamination of these factors, it is fundamental. Use of a medium (Minimum Essential Medium, MEM) is preferred. Specifically, when the total weight of the medium is 100%, about 0 to 25% by weight of serum, particularly fetal bovine serum, about 0.1 to 1% by weight of inorganic salt, 0.01 to 0.1% by weight It is preferable to use a medium containing about 15 amino acids, about 0.1 to 1% by weight of sugar source, and vitamins as trace components.

また、培地には、ペプチド性分化誘導因子ならびに非ペプチド性分化誘導因子以外の成分であれば、細胞培養に好適な成分、例えばラミニン、コラーゲン等の細胞接着因子を適宜加えてもよい。   Moreover, as long as it is components other than a peptide differentiation induction factor and a non-peptide differentiation induction factor, components suitable for cell culture, for example, cell adhesion factors such as laminin and collagen may be appropriately added to the medium.

また、MSCは接着性細胞であるため、培地ならびに細胞を保持する固相基板を使用することが好ましい。固相基板としては、MSCが接着することのできる安定的な物理的形態のものであれば、基板の材質あるいは基板の表面形態や表面コーティングの有無等については特に限定はない。   In addition, since MSCs are adherent cells, it is preferable to use a medium and a solid phase substrate that holds the cells. The solid phase substrate is not particularly limited as long as it has a stable physical form to which the MSC can adhere, and the material of the substrate, the surface form of the substrate, the presence or absence of surface coating, and the like.

例えば、固相基板としては、ガラス、ポリスチレン、金属板などから形成されたシャーレ、プレートその他の固相基板を利用することができる。また、かかる固相基板の表面を、ラミニン、コラーゲン、フィブロネクチンなどの細胞接着因子を用いてコーティングして利用してもよい。   For example, as the solid phase substrate, a petri dish, a plate, or other solid phase substrate formed from glass, polystyrene, a metal plate, or the like can be used. Further, the surface of the solid phase substrate may be coated with a cell adhesion factor such as laminin, collagen, fibronectin or the like.

また、培養温度、時間等の培養条件については、培養時間を好ましくは3日以上、より好ましくは10日以上、特に好ましくは20日以上とする他は、こちらも格別の制限はない。実施例で説明するように、本発明の方法は、MSCの培養開始日の翌日から軟骨細胞を提供することができる。また、培養は、未分化の間葉系幹細胞の培養開始から終了まで一つの固相基板上で行ってもよく、培養開始後に分化誘導された軟骨細胞を取り出し、別の培地に移し替えて選択的に培養を行ってもよい。   In addition, as for the culture conditions such as culture temperature and time, there is no particular limitation except that the culture time is preferably 3 days or more, more preferably 10 days or more, and particularly preferably 20 days or more. As will be described in Examples, the method of the present invention can provide chondrocytes from the day after the culture start date of MSC. In addition, the culture may be performed on one solid phase substrate from the start to the end of the culture of undifferentiated mesenchymal stem cells, and the chondrocytes induced to differentiate after the start of the culture are taken out and transferred to another medium for selection. Alternatively, the culture may be performed.

培養時の温度は35℃〜39℃程度とし、また2.5〜7%炭酸ガス濃度の雰囲気下で培養すればよい。   The culture temperature may be about 35 ° C. to 39 ° C., and the culture may be performed in an atmosphere of 2.5 to 7% carbon dioxide gas.

上記の条件下で培養したMSCが軟骨細胞に分化していることは、Pittengerらの方法(非特許文献2)に基づいて、培養中の細胞について軟骨細胞で特異的に発現することが知られているコラーゲンタイプ2などのマーカー遺伝子の発現、免疫染色、あるいはトルイジンブルー染色法などを利用して、モニターすることができる。   It is known that MSCs cultured under the above conditions are differentiated into chondrocytes, based on the method of Pittenger et al. (Non-patent Document 2), that cells in culture are specifically expressed in chondrocytes. It can be monitored using expression of marker genes such as collagen type 2, immunostaining, or toluidine blue staining.

本発明によって調製される軟骨細胞は、高齢者に多くみられる軟骨組織の減少が引き起こす変形性関節炎、またアスリートなどに多くみられる腱や靱帯の断裂・損傷の治療に有用である。軟骨細胞の再生能力は他の細胞や組織より劣っているので、今後様々な組織再生医療に大きく貢献できる可能性がある。   The chondrocytes prepared according to the present invention are useful for the treatment of osteoarthritis caused by the reduction of cartilage tissue often seen in the elderly, and tendon and ligament tears / damage often found in athletes. Since the regenerative capacity of chondrocytes is inferior to that of other cells and tissues, there is a possibility that they can greatly contribute to various tissue regeneration medicines in the future.

以下、実施例により本発明の具体的態様をさらに詳細に説明するが、本発明はかかる実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described in more detail by way of examples, but the present invention is not limited to such examples.

1)培養方法
cell line(大日本製薬)により購入したラットの大腿骨骨髄由来のMSCを、10%牛胎児血清(Thermo社)及び1%streptmycin penicillin(GIBCO invitrogen社)を含む最少培地(Minimam Essential Medium、MEM/GIBCO invitrogen)に加えて10cells/mlとし、37℃、5%COの雰囲気下で培養を行い、3〜5日おきに培地を交換しながら培養を継続した。
1) Culture method
MSCs derived from rat femur bone marrow purchased by cell line (Dainippon Pharmaceutical Co., Ltd.) were prepared in a minimal medium (Minimam Essential Medium, MEM /) containing 10% fetal bovine serum (Thermo) and 1% streptmycin penicillin (GIBCO invitrogen). GIBCO invitrogen) was added to 10 4 cells / ml, and the culture was performed in an atmosphere of 37 ° C. and 5% CO 2 , and the culture was continued while changing the medium every 3 to 5 days.

2)分化した軟骨細胞の確認
細胞培養中の軟骨細胞の存在は、次の方法によって確認した。
2) Confirmation of differentiated chondrocytes The presence of chondrocytes in cell culture was confirmed by the following method.

2−1)RT−PCRによるマーカー遺伝子発現の確認
培養開始後、一定の時間毎に培養細胞をTRIzol(invitrogen)にて回収し、20%クロロホルムを混合し、15000rpm、15分 4℃で遠心分離後、上清を回収した。等量のイソプロパノールを混合し、15000rpm 10分 4℃で遠心分離を行い、RNAを沈降した。75%エタノールで洗浄し、75%エタノールを乾燥後、ジエチルピロカーボネイト水に溶解した。
2-1) Confirmation of marker gene expression by RT-PCR After culturing, the cultured cells are collected with TRIzol (invitrogen) at regular intervals, mixed with 20% chloroform, and centrifuged at 15000 rpm for 15 minutes at 4 ° C. Thereafter, the supernatant was collected. An equal amount of isopropanol was mixed and centrifuged at 15000 rpm for 10 minutes at 4 ° C. to precipitate the RNA. It was washed with 75% ethanol, 75% ethanol was dried and then dissolved in diethyl pyrocarbonate water.

上述により回収したRNAからRT−PCR kit(takara high Fidelity RNA PCRkit)を用いてcDNAを作製し、これを鋳型にPCRを行った。軟骨細胞のマーカー遺伝子として知られている下記の4種類の遺伝子に対する特異的プライマーを用いて、該遺伝子の発現をPCR(qiagen hotstart master mix kit)によって確認した。   From the RNA recovered as described above, cDNA was prepared using RT-PCR kit (takara high Fidelity RNA PCR kit), and PCR was performed using this as a template. Using specific primers for the following four genes known as chondrocyte marker genes, the expression of the genes was confirmed by PCR (qiagen hotstart master mix kit).

コラーゲンタイプ2
フォワードプライマー(Fw):GAAGGATGGCTGCACGAAACAC
リバースプライマー (Rv):AGTGCAGATCCTAGAGTGACTGC
骨シアロプロテイン(BSP)
Fw:TCCAGCTACCCAAGAAGGCTG
Rv:TGGTGCCATAACTGGTCAGCTC
アグレカン
Fw:TCGAATCACTTGCACAGACCCCAACA
Rv:ATGCACGGTCAGCATGGCTG
コラーゲンタイプ10
Fw:GCCCTATTGGACCACCAGGTCC
Rv:GAGCACCTACCGCTGGGTAAGC
Collagen type 2
Forward primer (Fw): GAAGGATGGCTGCACGAAACAC
Reverse primer (Rv): AGTGCAGATCCTAGAGTGACTGC
Bone sialoprotein (BSP)
Fw: TCCAGCTACCCAAGAAGGCTG
Rv: TGGTGCCATAACTGGTCAGCTC
Agrecan
Fw: TCGAATCACTTGCACAGACCCCAACA
Rv: ATGCACGGTCAGCATGGCTG
Collagen type 10
Fw: GCCCTATTGGACCACCAGGTCC
Rv: GAGCACCTACCGCTGGGTAAGC

PCR反応によって増幅された断片の存在と量とを、アガロースゲル電気泳動により確認することで、各マーカー遺伝子の発現の有無及び発現の定量を行った。   By confirming the presence and amount of the fragment amplified by the PCR reaction by agarose gel electrophoresis, the presence or absence of expression of each marker gene and the expression were quantified.

2−2)トルイジンブルー染色
培養開始後、一定の時間毎にディッシュ上の培養細胞に10%ホルマリン溶液を加えて、細胞を固定した。9cm径のディッシュに回収し、10%ホルマリン溶液を加えて固定した。ディッシュ上の固定細胞に対して、0.05%トルイジンブルー溶液(pH7.0)6〜9mlを加え、回転振とうを行って細胞を染色し、染色された細胞と染色されない細胞の比を、光学顕微鏡下で計測した。トルイジンブルーは、アグリカンをはじめとする糖タンパク質を特異的に染色する試薬であり、染色される細胞は内部に糖タンパク質をより多く含んでいる細胞、すなわち軟骨細胞に分化した細胞であると判断できる。
2-2) Toluidine blue staining After the start of culture, 10% formalin solution was added to the cultured cells on the dish at regular intervals to fix the cells. It collect | recovered to the dish of a 9 cm diameter, and 10% formalin solution was added and fixed. 6-9 ml of 0.05% toluidine blue solution (pH 7.0) is added to fixed cells on the dish, and the cells are stained by rotary shaking, and the ratio of stained cells to unstained cells is measured with an optical microscope. Measured below. Toluidine blue is a reagent that specifically stains glycoproteins such as aggrecan, and the stained cells can be judged to be cells that contain more glycoproteins inside, that is, cells that have differentiated into chondrocytes. .

3)MSCの軟骨細胞への分化誘導
1)に示した条件で間葉系幹細胞の培養を開始すると、ほぼ翌日から軟骨細胞の初期に発現するBSP遺伝子の発現が認められた。培養6日目前後に同遺伝子の発現量はピークを迎え、その後いったんは減少するが、培養24日目頃には再度上昇した。またコラーゲンタイプ2の発現は培養開始から6日目に確認され、培養日数とともに発現量が増加した。アグリカンの発現は培養開始から28日目に確認されたが、その後の発現量はほぼ一定であった。このことから、間葉系幹細胞の培養開始後直ちに軟骨細胞が現れていることが分かる。
3) Induction of differentiation of MSC into chondrocytes When the culture of mesenchymal stem cells was started under the conditions shown in 1), expression of the BSP gene expressed in the early stage of chondrocytes was observed from the next day. The expression level of the gene reached a peak around the 6th day of culture and then decreased once, but then rose again around the 24th day of culture. The expression of collagen type 2 was confirmed on the sixth day from the start of the culture, and the expression level increased with the number of culture days. The expression of aggrecan was confirmed on the 28th day from the start of the culture, but the subsequent expression level was almost constant. This indicates that chondrocytes appear immediately after the start of the mesenchymal stem cell culture.

また、上記2−2)の方法による目視観察では、培養開始から約1週間後に、増殖細胞コロニーの縁部に軟骨細胞の単層が確認された。10日後には、ディッシュ表面に1層目の軟骨細胞が積層化するのに十分量な細胞が敷き詰められると、ディッシュ表面に若干の空きがあってもコンフルエントにはならずに、積層化が確認された。さらに、2週間後には軟骨細胞の細胞塊が確認できるようになり、培養時間と共に細胞塊は成長して、細胞塊中の軟骨細胞は約100−150μmの大きさに成長するとともに、3次元的な形態をとる軟骨細胞が確認された。培養開始から4週目以降も分化した軟骨細胞は緩やかな成長を続け、より3次元的に成長した。さらに軟骨細胞は、その培養時間とともに別の軟骨細胞と融合し、積層化した軟骨細胞は高さ方向だけではなく、平面的にも成長した。   Further, in the visual observation by the method 2-2), a monolayer of chondrocytes was confirmed at the edge of the proliferating cell colony about one week after the start of the culture. After 10 days, if a sufficient amount of cells for laminating the first layer of chondrocytes is laid on the dish surface, even if there is some space on the dish surface, it will not become confluent and the stacking will be confirmed. It was done. Furthermore, after 2 weeks, the cell mass of the chondrocytes can be confirmed, and the cell mass grows with the incubation time, and the chondrocytes in the cell mass grow to a size of about 100-150 μm and are three-dimensional. Chondrocytes taking various forms were confirmed. The differentiated chondrocytes continued from the 4th week after the start of the culture and continued to grow gradually, and grew more three-dimensionally. Further, the chondrocytes fused with other chondrocytes with the incubation time, and the stacked chondrocytes grew not only in the height direction but also in a plane.

トルイジンブルー染色された軟骨細胞は、25〜30日間の培養でディッシュ全体の70〜80%前後(目視)を占めた。培養時間を40日以降まで延長すると、軟骨細胞の3次元化がさらに進み、また糖タンパク質の発現がより高まることでトルイジンブルーによる染色性も高まり、軟骨細胞は90%(目視)ほどになった。   Toluidine blue-stained chondrocytes accounted for about 70 to 80% (visually) of the whole dish after 25 to 30 days of culture. When the culture time was extended to 40 days or more, the three-dimensionalization of chondrocytes further progressed, and the expression of toluidine blue also increased due to higher expression of glycoprotein, and the chondrocytes became about 90% (visually). .

図1は、実施例に従って24日間培養した後の培養細胞の位相差顕微鏡写真(左:拡大図、右:低倍率図)を示す。FIG. 1 shows a phase contrast micrograph (left: enlarged view, right: low magnification) of cultured cells after culturing for 24 days according to the example. 図2は、RT−PCR反応の生成物をアガロースゲル電気泳動で分析した結果を示す。FIG. 2 shows the results of analyzing the product of the RT-PCR reaction by agarose gel electrophoresis. 図3は、実施例に従って6日間(左)ならびに30日間(右)培養した後の培養細胞のトルイジンブルー染色結果の写真を示す。FIG. 3 shows photographs of toluidine blue staining results of cultured cells after culturing for 6 days (left) and 30 days (right) according to the examples.

Claims (3)

固相基板に接着させた骨髄由来の間葉系幹細胞を、血清を含み、かつ前記血清に由来しないbFGF、TGFβおよびインスリンを含まないMEM培地で培養することを特徴とする、骨髄由来の間葉系幹細胞から軟骨細胞を調製する方法。 Mesenchymal stem cells derived from bone marrow were adhered to a solid substrate, including serum, and characterized by culturing in MEM medium without bFGF, TGF [beta and insulin not derived from the serum, mesenchymal bone marrow-derived A method for preparing chondrocytes from stem cells. 培養を3日間以上行う、請求項1に記載の調製方法。   The preparation method of Claim 1 which culture | cultivates for 3 days or more. 前記固相基板は、ガラス、ポリスチレンまたは金属板から形成される、請求項1に記載の調製方法。
The preparation method according to claim 1, wherein the solid phase substrate is formed of glass, polystyrene, or a metal plate.
JP2005143162A 2005-05-16 2005-05-16 Method for preparing chondrocytes from mesenchymal stem cells Active JP4929447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143162A JP4929447B2 (en) 2005-05-16 2005-05-16 Method for preparing chondrocytes from mesenchymal stem cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143162A JP4929447B2 (en) 2005-05-16 2005-05-16 Method for preparing chondrocytes from mesenchymal stem cells

Publications (2)

Publication Number Publication Date
JP2006314299A JP2006314299A (en) 2006-11-24
JP4929447B2 true JP4929447B2 (en) 2012-05-09

Family

ID=37535544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143162A Active JP4929447B2 (en) 2005-05-16 2005-05-16 Method for preparing chondrocytes from mesenchymal stem cells

Country Status (1)

Country Link
JP (1) JP4929447B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678106B (en) 2008-08-18 2016-12-07 中胚有限公司 monoclonal antibody STRO-4

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4153391B2 (en) * 2003-09-10 2008-09-24 株式会社カネカ Tissue formation promoting factor

Also Published As

Publication number Publication date
JP2006314299A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
Caterson et al. Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation
Tsutsumi et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF
Chan et al. Three-dimensional spheroid culture enhances multipotent differentiation and stemness capacities of human dental pulp‐derived mesenchymal stem cells by modulating MAPK and NF-kB signaling pathways
JP6662777B2 (en) Method for producing artificial heart muscle (EHM)
JP2005516616A5 (en)
JP2015164430A (en) Method for isolation of human umbilical cord blood-derived mesenchymal stem cells
WO2007070964A1 (en) Direct differentiation of cardiomyocytes from human embryonic stem cells
Rumiński et al. Osteogenic differentiation of human adipose-derived stem cells in 3D conditions-comparison of spheroids and polystyrene scaffolds
US7592176B2 (en) Method of forming mesenchymal stem cells from embryonic stem cells
Farrell et al. A comparison of the osteogenic potential of adult rat mesenchymal stem cells cultured in 2-D and on 3-D collagen glycosaminoglycan scaffolds
WO2015042356A1 (en) Chemically defined culture medium for stem cell maintenance and differentiation
Liu et al. Adhesion and growth of dental pulp stem cells on enamel‐like fluorapatite surfaces
Li et al. Agarose-based spheroid culture enhanced stemness and promoted odontogenic differentiation potential of human dental follicle cells in vitro
Neo et al. Temporal profiling of the growth and multi‐lineage potentiality of adipose tissue‐derived mesenchymal stem cells cell‐sheets
Sakamoto et al. The utility of human dedifferentiated fat cells in bone tissue engineering in vitro
Cai et al. Microenvironmental stiffness directs chondrogenic lineages of stem cells from the human apical papilla via cooperation between ROCK and Smad3 signaling
US10221389B2 (en) Method of producing cell population with high target cell purity
JP4929447B2 (en) Method for preparing chondrocytes from mesenchymal stem cells
US20200407687A1 (en) Mature Cardiomyocyte Compositions
CN100475956C (en) Method of preparing cell for transplantation
Čebatariūnienė et al. Microcarrier culture enhances osteogenic potential of human periodontal ligament stromal cells
JP2022550911A (en) Chondrogenic human mesenchymal stem cell (MSC) sheet
US20190175660A1 (en) Compositions of Ascorbic Acid and Bone Morphogenetic Protein 4 (BMP-4) for Cell Growth and Uses Related Thereto
WO2019189947A1 (en) Differentiation induction technique using actin polymerization inhibitor which is aimed at production of osteoblast from human umbilical cord-derived mesenchymal stem cell
KR20240041985A (en) Arthritis therapeutic agent and method for producing arthrosis therapeutic agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150