JP4925690B2 - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP4925690B2 JP4925690B2 JP2006053438A JP2006053438A JP4925690B2 JP 4925690 B2 JP4925690 B2 JP 4925690B2 JP 2006053438 A JP2006053438 A JP 2006053438A JP 2006053438 A JP2006053438 A JP 2006053438A JP 4925690 B2 JP4925690 B2 JP 4925690B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- electrolyte secondary
- aluminum
- zirconium
- alpo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 35
- 229910052782 aluminium Inorganic materials 0.000 claims description 31
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 30
- 229910052726 zirconium Inorganic materials 0.000 claims description 30
- 229910017119 AlPO Inorganic materials 0.000 claims description 29
- 229910052744 lithium Inorganic materials 0.000 claims description 21
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 20
- 229910017052 cobalt Inorganic materials 0.000 claims description 15
- 239000010941 cobalt Substances 0.000 claims description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 15
- 239000007774 positive electrode material Substances 0.000 claims description 13
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 10
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 239000007773 negative electrode material Substances 0.000 claims description 5
- 238000000975 co-precipitation Methods 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000003125 aqueous solvent Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 9
- 239000011149 active material Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- -1 phosphorus compound Chemical class 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000002335 surface treatment layer Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、非水電解質二次電池に関し、より詳しくは、負荷特性を低下させることなく、保存特性の向上が可能な非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery capable of improving storage characteristics without degrading load characteristics.
今日、携帯電話、ノートパソコン、PDA等の移動情報端末の高機能化・小型化および軽量化が急速に進展している。これらの端末の駆動電源として、高いエネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。 Today, mobile information terminals such as mobile phones, notebook computers, PDAs, and the like are rapidly increasing in functionality, size, and weight. As a driving power source for these terminals, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having high energy density and high capacity are widely used.
このようなリチウムイオン二次電池の正極活物質としては、高容量であり、放電特性に優れることから、コバルト酸リチウムが用いられている。しかし、コバルト酸リチウムを用いた非水電解質二次電池に対し高温条件下で保存すると、コバルト酸リチウム中のコバルトが非水電解質に溶出して、保存後の放電容量が低下する(高温保存特性が悪い)という問題がある。 As the positive electrode active material of such a lithium ion secondary battery, lithium cobaltate is used because of its high capacity and excellent discharge characteristics. However, when the non-aqueous electrolyte secondary battery using lithium cobaltate is stored under high temperature conditions, the cobalt in the lithium cobaltate is eluted into the nonaqueous electrolyte and the discharge capacity after storage decreases (high temperature storage characteristics) Is bad).
ところで、非水電解質二次電池に関する技術としては、下記特許文献1〜4が挙げられる。 By the way, the following patent documents 1-4 are mentioned as a technique regarding a nonaqueous electrolyte secondary battery.
特許文献1にかかる技術では、(NH4)2HPO4等の二重結合を有するリン化合物と、Al(NO3)3・9H2O等のAlを含む化合物と水とを混合したコーティング液に活物質前駆体を滴下して混合し、これにリチウム源を加えて熱処理することにより得た活物質を用いる。この技術によると、容量特性、寿命特性など電気化学的特性と熱的安定性に優れており、生産性が優れた電池を提供できるとされる。 In the technique according to Patent Document 1, a coating liquid in which a phosphorus compound having a double bond such as (NH 4 ) 2 HPO 4 , a compound containing Al such as Al (NO 3 ) 3 · 9H 2 O, and water is mixed. An active material precursor obtained by adding dropwise a lithium source to this and heat-treating it is used. According to this technology, it is said that a battery having excellent electrochemical characteristics such as capacity characteristics and life characteristics and thermal stability can be provided.
特許文献2にかかる技術では、表面にAlとPとを含む固溶体化合物及びAlPOk化合物を含む表面処理層が形成された正極活物質を用いる。この技術によると、容量特性、寿命特性など電気化学的特性と熱的安定性に優れており、生産性が優れた電池を提供できるとされる。 In the technique of the Patent Document 2, using a positive electrode active material surface treated layer is formed comprising a solid solution compound including Al and P on the surface and AlPO k compound. According to this technology, it is said that a battery having excellent electrochemical characteristics such as capacity characteristics and life characteristics and thermal stability can be provided.
特許文献3にかかる技術では、(NH4)2HPO4等の二重結合を有するリン化合物と、Al(NO3)3・9H2O等のAlを含む化合物と水とを混合したコーティング液に活物質前駆体を滴下して混合し、これにリチウム源を加えて熱処理することにより得た活物質を用いる。この技術によると、高温スウェリング特性の優れた(高温でも膨れない)電池を提供できるとされる。 In the technique according to Patent Document 3, a coating liquid in which a phosphorus compound having a double bond such as (NH 4 ) 2 HPO 4 , a compound containing Al such as Al (NO 3 ) 3 .9H 2 O, and water is mixed. An active material precursor obtained by adding dropwise a lithium source to this and heat-treating it is used. According to this technology, it is said that a battery having excellent high-temperature swelling characteristics (which does not swell even at high temperatures) can be provided.
特許文献4にかかる技術では、リン酸アルミニウムを含む表面処理層が形成された活物質を用いる。この技術によると、初期効率を低下させることなく、サイクル特性を向上させることができるとされる。 In the technique according to Patent Document 4, an active material on which a surface treatment layer containing aluminum phosphate is formed is used. According to this technique, the cycle characteristics can be improved without reducing the initial efficiency.
しかしながら、上記特許文献1〜4にかかる技術を用いた非水電解質二次電池は、高温保存特性が十分ではないという課題を有している。 However, the nonaqueous electrolyte secondary battery using the techniques according to Patent Documents 1 to 4 has a problem that the high-temperature storage characteristics are not sufficient.
本発明は、上記に鑑みなされたものであって、高温保存特性に優れた非水電解質二次電池を提供することを目的とする。 This invention is made | formed in view of the above, Comprising: It aims at providing the nonaqueous electrolyte secondary battery excellent in the high temperature storage characteristic.
上記課題を解決するための本発明は、正極活物質を有する正極と、負極活物質を有する
負極と、非水溶媒と電解質塩とを有する非水電解質と、を備えた非水電解質二次電池において、前記正極活物質は、ジルコニウム及びアルミニウムが添加されたコバルト酸リチウム粒子の表面をAlPO4で被覆したものを含み、前記AlPO 4 の量が、前記ジルコニウム及びアルミニウムが添加されたコバルト酸リチウムに対して0.01〜1.0モル%であることを特徴とする。
The present invention for solving the above-described problems is a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt. in the positive electrode active material, seen including those coated with zirconium and the surface of the aluminum is added, the lithium cobaltate particles AlPO4, wherein the amount of AlPO 4 is, in the zirconium and cobalt lithium aluminum was added It is characterized by being 0.01 to 1.0 mol% .
この構成によると、コバルト酸リチウムに含まれるジルコニウム及びアルミニウムが、高温保存時のコバルトの溶出を抑制するように作用する。このため、高温保存特性が向上する。 According to this configuration, zirconium and aluminum contained in lithium cobalt oxide act so as to suppress elution of cobalt during high temperature storage. For this reason, the high temperature storage characteristics are improved.
この構成ではさらに、ジルコニウム及びアルミニウムが添加されたコバルト酸リチウム粒子の表面がAlPO4で被覆されている。このAlPO4被膜が、高温保存時の正極活物質と非水電解質との反応性を低下させるので、さらに高温保存特性が向上する。
さらに、前記AlPO 4 の量が、ジルコニウム及びアルミニウムが添加されたコバルト酸リチウムに対して0.01〜1.0モル%である。AlPO 4 の量が過少であると十分な効果が得られない。他方、過大であると、AlPO 4 が正極の導電性を低下させるように作用するので、負荷特性が低下する。
In this configuration, the surface of the lithium cobalt oxide particles to which zirconium and aluminum are added is further coated with AlPO4. This AlPO4 coating reduces the reactivity between the positive electrode active material and the non-aqueous electrolyte during high temperature storage, thus further improving the high temperature storage characteristics.
Furthermore, the amount of the AlPO 4 is 0.01 to 1.0 mol% with respect to lithium cobaltate to which zirconium and aluminum are added. If the amount of AlPO 4 is too small, a sufficient effect cannot be obtained. On the other hand, if it is excessive, AlPO 4 acts so as to lower the conductivity of the positive electrode, so that the load characteristic is lowered.
本発明の効果を十分に得るためには、正極活物質全質量に占めるジルコニウム及びアルミニウムが添加されたコバルト酸リチウム粒子の表面をAlPO4で被覆したものの質量割合が50質量%以上であることが好ましく、100質量%であることが最も好ましい。 In order to sufficiently obtain the effects of the present invention, the mass ratio of the lithium cobaltate particles to which zirconium and aluminum are added in the total mass of the positive electrode active material coated with AlPO 4 is 50% by mass or more. Preferably, it is 100% by mass.
上記構成において、前記コバルト酸リチウムに含まれるジルコニウム量が、コバルトに対して0.01〜1.0モル%であり、前記コバルト酸リチウムに含まれるアルミニウム量が、コバルトに対して0.01〜3.0モル%である構成とすることができる。 The said structure WHEREIN: The zirconium amount contained in the said lithium cobaltate is 0.01-1.0 mol% with respect to cobalt, and the aluminum amount contained in the said lithium cobaltate is 0.01- with respect to cobalt. It can be set as the structure which is 3.0 mol%.
ジルコニウムやアルミニウムの量が過少であると、これらの金属元素によるコバルト溶出抑制効果が十分に得られない。他方、ジルコニウムやアルミニウムの量が過大であると、ジルコニウムやアルミニウムが放電容量を低下させるように作用する。よって、上記範囲内に規制することが好ましい。 If the amount of zirconium or aluminum is too small, the effect of suppressing cobalt elution by these metal elements cannot be obtained sufficiently. On the other hand, if the amount of zirconium or aluminum is excessive, zirconium or aluminum acts to lower the discharge capacity. Therefore, it is preferable to regulate within the above range.
上記構成において、前記コバルト酸リチウム粒子は、コバルトとジルコニウムとアルミニウムとを共沈させた後、熱分解反応させることにより得られたコバルト源と、リチウム源とを混合したものを焼成することにより得られたものである構成とすることができる。 In the above structure, the lithium cobalt oxide particles are obtained by co-precipitation of cobalt, zirconium and aluminum, and then firing a mixture of a cobalt source obtained by a thermal decomposition reaction and a lithium source. It can be set as the structure which was made.
ジルコニウム、アルミニウムを添加する方法として共沈法を用いると、共沈化合物結晶中にジルコニウム、アルミニウムがコバルトと均一に分散された状態で混合される。これを熱分解反応させて得られたコバルト源と、リチウム源とを混合し、焼成することにより、コバルト酸リチウム粒子中にジルコニウム、アルミニウムを均一に分散させることができ、ジルコニウム、アルミニウムによる効果をより一層発揮できる。 When a coprecipitation method is used as a method for adding zirconium and aluminum, zirconium and aluminum are mixed in a coprecipitated compound crystal in a state of being uniformly dispersed with cobalt. By mixing and firing a cobalt source obtained by pyrolyzing this and a lithium source, zirconium and aluminum can be uniformly dispersed in the lithium cobaltate particles, and the effect of zirconium and aluminum can be obtained. It can be demonstrated even more.
以上説明したように、本発明によると、高温保存特性に優れた非水電解質二次電池を提供できる。 As described above, according to the present invention, a non-aqueous electrolyte secondary battery excellent in high-temperature storage characteristics can be provided.
以下に、本発明を、実施例を用いて詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
(実施例1)
〔正極の作製〕
コバルト溶液に、ジルコニウム塩をコバルトに対して0.5モル%、アルミニウム塩をコバルトに対して1.0モル%溶解させた後、炭酸水素ナトリウムを加えて、ジルコニウムとアルミニウムを含む炭酸コバルトを共沈させた。これを熱分解反応させて、ジルコニウム・アルミニウム含有四酸化三コバルトを得た。これに炭酸リチウムを混合し、空気雰囲気下850℃で20時間焼成し、乳鉢で粉砕して、平均粒径が10μmのジルコニウム・アルミニウム含有コバルト酸リチウムを得た。
Example 1
[Production of positive electrode]
In a cobalt solution, 0.5 mol% of a zirconium salt and 1.0 mol% of an aluminum salt are dissolved in cobalt, and then sodium hydrogen carbonate is added to coexist with cobalt carbonate containing zirconium and aluminum. Sunk. This was pyrolyzed to obtain zirconium / aluminum-containing tricobalt tetroxide. This was mixed with lithium carbonate, calcined at 850 ° C. for 20 hours in an air atmosphere, and pulverized in a mortar to obtain zirconium / aluminum-containing lithium cobalt oxide having an average particle diameter of 10 μm.
上記コバルト酸リチウムを、AlPO4懸濁液に加えて撹拌し、500℃で10時間悦処理して、コバルト酸リチウム粒子表面をAlPO4で被覆した。この後、平均粒径が10μmとなるように解砕して、正極活物質を得た。
なお、コバルト酸リチウムのジルコニウム含有量、アルミニウム含有量は、AlPO4被覆前のコバルト酸リチウムをプラズマ発光分析により分析した。この結果、共沈により添加したジルコニウム、アルミニウムがすべてコバルト酸リチウムに取り込まれていることが確認された。また、AlPO4被覆量は、被覆後にプラズマ発光分析により分析したところ、コバルト酸リチウムに対して0.01モル%であった。
The lithium cobalt oxide was added to the AlPO 4 suspension, stirred, and subjected to a glazing treatment at 500 ° C. for 10 hours to coat the surface of the lithium cobalt oxide particles with AlPO 4 . Then, it grind | pulverized so that an average particle diameter might be set to 10 micrometers, and the positive electrode active material was obtained.
The zirconium content and aluminum content of lithium cobalt oxide were analyzed by plasma emission analysis of lithium cobalt oxide before coating with AlPO 4 . As a result, it was confirmed that all of zirconium and aluminum added by coprecipitation were taken into lithium cobalt oxide. The AlPO 4 coating amount was 0.01 mol% based on lithium cobaltate when analyzed by plasma emission analysis after coating.
上記正極活物質85質量部と、導電剤としての黒鉛10質量部と、結着剤としてのポリビニリデンフルオライド(PVDF)5質量部とを、N−メチル−2−ピロリドンに分散させて、正極活物質スラリーを調製した。 85 parts by mass of the positive electrode active material, 10 parts by mass of graphite as a conductive agent, and 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder are dispersed in N-methyl-2-pyrrolidone. An active material slurry was prepared.
次に、厚み20μmのアルミニウム箔からなる正極芯体の両面に、この正極活物質スラリーを均一な厚みで塗布した。この極板を乾燥機内に通して上記有機溶剤を除去した。この後、ロールプレス機を用いて圧延して、正極板を作製した。 Next, this positive electrode active material slurry was applied to both surfaces of a positive electrode core made of an aluminum foil having a thickness of 20 μm with a uniform thickness. This electrode plate was passed through a dryer to remove the organic solvent. Then, it rolled using the roll press machine and produced the positive electrode plate.
〔負極の作製〕
負極活物質としての天然黒鉛95質量部と、結着剤ポリビニリデンフルオライド5質量部とを、N−メチルピロリドンに分散させて、負極活物質スラリーを調製した。
(Production of negative electrode)
A negative electrode active material slurry was prepared by dispersing 95 parts by mass of natural graphite as a negative electrode active material and 5 parts by mass of a binder polyvinylidene fluoride in N-methylpyrrolidone.
次に、厚み10μmの銅箔からなる負極芯体の両面に、この負極活物質スラリーを均一な厚さで塗布した。この極板を乾燥機内に通して水分を除去した。この後、ロールプレス機を用いて圧延した。なお、正極及び負極の活物質充填量は、設計基準となる正極活物質の電圧(例えばリチウム金属基準で4.3V)において、正極と負極の充電容量比(負極充電容量/正極充電容量)を1.1となるように調整した。 Next, this negative electrode active material slurry was applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 10 μm with a uniform thickness. The electrode plate was passed through a dryer to remove moisture. Then, it rolled using the roll press machine. The active material filling amount of the positive electrode and the negative electrode is the ratio of the positive electrode and negative electrode charge capacity (negative electrode charge capacity / positive electrode charge capacity) at the positive electrode active material voltage (for example, 4.3 V based on lithium metal) as a design standard. It adjusted so that it might be set to 1.1.
〔電極体の作製〕
上記正極と負極とポリプロピレン微多孔膜のセパレータとを、巻き取り機により捲回し、絶縁性の巻き止めテープを取り付け、電極体を完成させた。
(Production of electrode body)
The positive electrode, the negative electrode, and the polypropylene microporous membrane separator were wound by a winder, and an insulating anti-winding tape was attached to complete the electrode body.
〔非水電解質の調整〕
エチレンカーボネートとジエチルカーボネートとを、体積比50:50の割合(1気圧、25℃と換算した場合における)で混合した非水溶媒に、電解質塩としてのLiPF6を1.0M(モル/リットル)の割合で溶解して非水電解質とした。
[Nonaqueous electrolyte adjustment]
LiPF 6 as an electrolyte salt is 1.0 M (mol / liter) in a non-aqueous solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 50:50 (when converted to 1 atm and 25 ° C.). The nonaqueous electrolyte was dissolved at a ratio of
〔電池の作製〕
上記電極体と上記非水電解質とを、円筒形外装缶内に挿入し、外装缶の開口部に別途作製した封口体を加締めて取り付けることで、実施例1にかかる円筒形の非水電解質二次電池(高さ65mm、直径18mm)を作製した。
[Production of battery]
The cylindrical nonaqueous electrolyte according to Example 1 is inserted by inserting the electrode body and the nonaqueous electrolyte into a cylindrical outer can and caulking and attaching a separately prepared sealing body to the opening of the outer can. A secondary battery (height 65 mm, diameter 18 mm) was produced.
(実施例2)
AlPO4被覆量を0.5モル%としたこと以外は、上記実施例1と同様にして、実施例2にかかる非水電解質二次電池を作製した。
(Example 2)
A nonaqueous electrolyte secondary battery according to Example 2 was produced in the same manner as in Example 1 except that the AlPO 4 coating amount was 0.5 mol%.
(実施例3)1.0モル%としたこと以外は、上記実施例1と同様にして、実施例3にかかる非水電解質二次電池を作製した。 (Example 3) A nonaqueous electrolyte secondary battery according to Example 3 was produced in the same manner as in Example 1 except that the amount was 1.0 mol%.
(参考例)
AlPO4被覆量を2.0モル%としたこと以外は、上記実施例1と同様にして、参考例にかかる非水電解質二次電池を作製した。
( Reference example )
A nonaqueous electrolyte secondary battery according to a reference example was produced in the same manner as in Example 1 except that the AlPO 4 coating amount was 2.0 mol%.
(比較例1)
AlPO4被覆を行わなかったこと以外は、上記実施例1と同様にして、比較例1にかかる非水電解質二次電池を作製した。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that the AlPO 4 coating was not performed.
なお、AlPO4被覆量は、AlPO4懸濁液のAlPO4濃度を変更することにより変化させた。 The AlPO 4 coating amount was changed by changing the AlPO 4 concentration of the AlPO 4 suspension.
上記で作製した各電池に対して、以下の試験を行った。結果は下記表1に示す。 The following tests were performed on each battery produced above. The results are shown in Table 1 below.
《負荷特性試験》
充電条件:定電流1500mAで4.2Vまで、その後定電圧4.2Vで30mAまで
放電条件:定電流1500mAで2.75Vまで
負荷放電条件:定電流3000mAで2.75Vまで
負荷特性(%)=負荷放電容量÷放電容量×100
<Load characteristic test>
Charging conditions: up to 4.2 V at a constant current of 1500 mA, then up to 30 mA at a constant voltage of 4.2 V Discharge conditions: up to 2.75 V at a constant current of 1500 mA Load characteristics (%) = Load discharge capacity ÷ discharge capacity × 100
《高温保存特性試験》
充電条件:定電流1500mA4.2Vまで、その後定電圧4.2Vで30mAまで
保存前放電条件:定電流1500mAで2.75Vまで
充電条件:定電流1500mAで4.2Vまで、その後定電圧4.2Vで30mAまで
保存条件:充電状態で70℃で500時間
保存後放電条件:定電流1500mAで2.75Vまで
保存特性(%)=保存後放電容量÷保存前放電容量×100
<High temperature storage characteristics test>
Charging conditions: Constant current up to 1500 mA 4.2 V, then constant voltage 4.2 V up to 30 mA Discharge conditions before storage: Constant current 1500 mA up to 2.75 V Charging conditions: Constant current 1500 mA up to 4.2 V, then constant voltage 4.2 V Up to 30 mA Storage condition: 500 hours at 70 ° C. in a charged state Discharge condition after storage: 2.75 V at a constant current of 1500 mA Storage characteristic (%) = discharge capacity after storage ÷ discharge capacity before storage × 100
上記表1から、AlPO4で被覆した実施例1〜3、参考例は、保存特性が92〜93%と、被覆していない比較例1の88%よりも優れていることがわかる。
From Table 1 above, it can be seen that Examples 1-3 and Reference Example coated with AlPO 4 have a storage property of 92-93%, which is superior to 88% of Comparative Example 1 without coating.
このことは、次のように考えられる。AlPO4で被覆することにより、正極活物質と非水電解質との反応性が低下し、高温保存特性を向上させる。 This is considered as follows. By coating with AlPO 4 , the reactivity between the positive electrode active material and the non-aqueous electrolyte is lowered, and the high-temperature storage characteristics are improved.
また、AlPO4被覆量が2.0モル%である参考例は、負荷特性が87%と、AlPO4被覆量が0.01〜1.0モル%である実施例1〜3の91〜92%よりも劣っていることがわかる。
Also, Reference Example AlPO 4 coating amount is 2.0 mol%, and% load characteristics 87 of Example 1 to 3 AlPO 4 coating amount is 0.01 to 1.0 mole% 91-92 It turns out that it is inferior to%.
このことは、次のように考えられる。AlPO4被覆量が増加すると、正極の導電性が低下してスムースな放電反応を阻害する。よって、AlPO4被覆量は、0.01〜1.0モル%であることが好ましい。 This is considered as follows. When the AlPO 4 coating amount is increased, the conductivity of the positive electrode is lowered and the smooth discharge reaction is inhibited. Therefore, the AlPO 4 coating amount is preferably 0.01 to 1.0 mol%.
(比較例2)
ジルコニウム及びアルミニウムを添加しなかったこと以外は、上記実施例2と同様にして、比較例2にかかる非水電解質二次電池を作製した。
(Comparative Example 2)
A nonaqueous electrolyte secondary battery according to Comparative Example 2 was produced in the same manner as in Example 2 except that zirconium and aluminum were not added.
(比較例3)
ジルコニウムを添加せず、AlPO4被覆を行わなかったこと以外は、上記実施例2と同様にして、比較例3にかかる非水電解質二次電池を作製した。
(Comparative Example 3)
A nonaqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same manner as in Example 2 except that zirconium was not added and AlPO 4 was not coated.
(比較例4)
ジルコニウムを添加しなかったこと以外は、上記実施例2と同様にして、比較例4にかかる非水電解質二次電池を作製した。
(Comparative Example 4)
A nonaqueous electrolyte secondary battery according to Comparative Example 4 was produced in the same manner as in Example 2 except that zirconium was not added.
(比較例5)
アルミニウムを添加せず、AlPO4被覆を行わなかったこと以外は、上記実施例2と同様にして、比較例5にかかる非水電解質二次電池を作製した。
(Comparative Example 5)
A nonaqueous electrolyte secondary battery according to Comparative Example 5 was produced in the same manner as in Example 2 except that aluminum was not added and AlPO 4 was not coated.
(比較例6)
アルミニウムを添加しなかったこと以外は、上記実施例2と同様にして、比較例6にかかる非水電解質二次電池を作製した。
(Comparative Example 6)
A nonaqueous electrolyte secondary battery according to Comparative Example 6 was produced in the same manner as in Example 2 except that aluminum was not added.
上記で作製した実施例2、比較例1〜6にかかる電池に対して、上記条件で負荷特性試験、高温保存試験を行った。結果は下記表2に示す。 The batteries according to Example 2 and Comparative Examples 1 to 6 produced above were subjected to a load characteristic test and a high temperature storage test under the above conditions. The results are shown in Table 2 below.
上記表2から、ジルコニウムを添加していない比較例2〜4、アルミニウムを添加していない比較例2、5、6、AlPO4で被覆していない比較例1、3、5は、保存特性が85〜89%と、ジルコニウム、アルミニウムをともに含み、AlPO4で被覆した実施例2の93%よりも劣っていることがわかる。 From Table 2 above, Comparative Examples 2 to 4 to which zirconium was not added, Comparative Examples 2, 5, and 6 to which aluminum was not added, and Comparative Examples 1, 3, and 5 that were not coated with AlPO 4 had storage characteristics. It is found to be inferior to 93% of Example 2 which contains both zirconium and aluminum and is coated with AlPO 4 , 85 to 89%.
このことは、次のように考えられる。本発明の効果は、コバルト酸リチウムにジルコニウム、アルミニウムともに含ませ、且つAlPO4で被覆した場合にのみ得られる。よって、いずれかの要素が欠如していると、十分な高温保存特性が得られない。 This is considered as follows. The effect of the present invention can be obtained only when lithium cobaltate contains both zirconium and aluminum and is coated with AlPO 4 . Therefore, if any element is absent, sufficient high-temperature storage characteristics cannot be obtained.
以上説明したように、本発明によると、非水電解質二次電池の負荷特性を低下させることなく高温保存特性を飛躍的に向上できるので、産業上の意義は大きい。
As described above, according to the present invention, the high-temperature storage characteristics can be dramatically improved without degrading the load characteristics of the nonaqueous electrolyte secondary battery, and thus the industrial significance is great.
Claims (3)
前記正極活物質は、ジルコニウム及びアルミニウムが添加されたコバルト酸リチウム粒子の表面をAlPO4で被覆したものを含み、
前記AlPO 4 の量が、前記ジルコニウム及びアルミニウムが添加されたコバルト酸リチウムに対して0.01〜1.0モル%である、
ことを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt,
The positive active material is observed including those coated with zirconium and the surface of the aluminum is added, the lithium cobaltate particles AlPO 4,
The amount of AlPO 4 is 0.01 to 1.0 mol% with respect to lithium cobaltate to which zirconium and aluminum are added.
A non-aqueous electrolyte secondary battery.
前記コバルト酸リチウムに含まれるジルコニウム量が、コバルトに対して0.01〜1.0モル%であり、
前記コバルト酸リチウムに含まれるアルミニウム量が、コバルトに対して0.01〜3.0モル%である、
ことを特徴とする非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1 ,
The amount of zirconium contained in the lithium cobaltate is 0.01 to 1.0 mol% with respect to cobalt,
The amount of aluminum contained in the lithium cobaltate is 0.01 to 3.0 mol% with respect to cobalt.
A non-aqueous electrolyte secondary battery.
前記コバルト酸リチウム粒子は、コバルトとジルコニウムとアルミニウムとを共沈させた後、熱分解反応させることにより得られたコバルト源と、リチウム源とを混合したものを焼成することにより得られたものである、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 or 2 ,
The lithium cobalt oxide particles were obtained by co-precipitation of cobalt, zirconium and aluminum, and then firing a mixture of a cobalt source obtained by thermal decomposition and a lithium source. is there,
A non-aqueous electrolyte secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006053438A JP4925690B2 (en) | 2006-02-28 | 2006-02-28 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006053438A JP4925690B2 (en) | 2006-02-28 | 2006-02-28 | Nonaqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007234350A JP2007234350A (en) | 2007-09-13 |
JP4925690B2 true JP4925690B2 (en) | 2012-05-09 |
Family
ID=38554739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006053438A Expired - Fee Related JP4925690B2 (en) | 2006-02-28 | 2006-02-28 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4925690B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8215709B2 (en) | 2004-09-27 | 2012-07-10 | Lear Corporation | Vehicle seat having active head restraint system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100814831B1 (en) | 2006-11-20 | 2008-03-20 | 삼성에스디아이 주식회사 | Lithium secondary battery |
KR101330616B1 (en) | 2007-04-04 | 2013-11-18 | 삼성에스디아이 주식회사 | Positive electrode for rechargable lithium battery and rechargable lithium battery comprising same |
CN102479952B (en) * | 2010-11-23 | 2014-10-08 | 清华大学 | Lithium ion battery electrode composite material and preparation method and battery thereof |
CN105378986B (en) * | 2013-07-05 | 2018-07-31 | 住友化学株式会社 | The manufacturing method of positive electrode active material for lithium ion secondary battery |
JPWO2016125726A1 (en) * | 2015-02-05 | 2017-11-16 | マクセルホールディングス株式会社 | Lithium secondary battery |
JP6632233B2 (en) * | 2015-07-09 | 2020-01-22 | マクセルホールディングス株式会社 | Non-aqueous electrolyte secondary battery |
CN106960958B (en) * | 2016-01-08 | 2020-05-26 | 江苏华东锂电技术研究院有限公司 | Cathode active material coating solution and preparation method thereof, and coating method of cathode active material |
CN111092213B (en) * | 2019-12-31 | 2023-01-31 | 河南电池研究院有限公司 | A kind of lithium-ion battery composite cathode material and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4518865B2 (en) * | 2003-09-30 | 2010-08-04 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
-
2006
- 2006-02-28 JP JP2006053438A patent/JP4925690B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8215709B2 (en) | 2004-09-27 | 2012-07-10 | Lear Corporation | Vehicle seat having active head restraint system |
US8434818B2 (en) | 2004-09-27 | 2013-05-07 | Lear Corporation | Vehicle seat having active head restraint |
US8894144B2 (en) | 2004-09-27 | 2014-11-25 | Lear Corporation | Vehicle seat having active head restraint |
Also Published As
Publication number | Publication date |
---|---|
JP2007234350A (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10090557B2 (en) | Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same | |
CN110651385B (en) | Negative electrode active material and negative electrode for solid-state battery comprising same | |
EP2374176B1 (en) | Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same | |
JP4925690B2 (en) | Nonaqueous electrolyte secondary battery | |
CN1332461C (en) | Positive electrode active material and non-aqueous electrolyte secondary cell | |
CN112151773B (en) | A kind of positive electrode active material and its preparation method and lithium battery | |
CN112542583A (en) | Positive electrode active material and high-voltage lithium ion battery comprising same | |
US20130260249A1 (en) | Lithium ion secondary battery and method for preparing the same | |
CN111602274A (en) | Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery and lithium secondary battery including the same | |
JP2004319129A (en) | Anode active material and nonaqueous electrolyte secondary battery using it | |
JP2001006676A (en) | Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery | |
US20110262812A1 (en) | Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same | |
KR101445692B1 (en) | Anode active material for lithium secondary battery and Lithium secondary battery containing the same for anode | |
CN102257659A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same | |
CN114094068B (en) | Cobalt-coated positive electrode material, preparation method thereof, positive electrode plate and lithium ion battery | |
CN107528059A (en) | Positive electrode active materials of Phosphate coating spinel structure and its preparation method and application | |
CN106450280A (en) | Preparation method of oxide-coated lithium ion battery material | |
CN116314713A (en) | Lithium supplementing material, preparation method thereof, positive electrode plate and secondary battery | |
KR20230052314A (en) | Secondary battery comprising low efficiency positive electrode | |
CN107078274B (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same | |
KR101142533B1 (en) | Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof | |
KR100824931B1 (en) | Active material. The manufacturing method and a lithium secondary battery having the same | |
Chen et al. | Synthesis of Li 2 FeSiO 4/C and its excellent performance in aqueous lithium-ion batteries | |
KR102568649B1 (en) | Anode for lithium secondary battery and lithium secondary battery comprising the same | |
CN107155381B (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |