JP4922851B2 - Indefinite refractory - Google Patents
Indefinite refractory Download PDFInfo
- Publication number
- JP4922851B2 JP4922851B2 JP2007180233A JP2007180233A JP4922851B2 JP 4922851 B2 JP4922851 B2 JP 4922851B2 JP 2007180233 A JP2007180233 A JP 2007180233A JP 2007180233 A JP2007180233 A JP 2007180233A JP 4922851 B2 JP4922851 B2 JP 4922851B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- silicon carbide
- refractory
- titania
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 98
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 87
- 239000000843 powder Substances 0.000 claims description 77
- 239000002245 particle Substances 0.000 claims description 29
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 13
- 239000004568 cement Substances 0.000 claims description 10
- 229910010271 silicon carbide Inorganic materials 0.000 description 55
- 230000007797 corrosion Effects 0.000 description 32
- 238000005260 corrosion Methods 0.000 description 32
- 239000007789 gas Substances 0.000 description 32
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 28
- 238000007254 oxidation reaction Methods 0.000 description 27
- 239000002893 slag Substances 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- 229910052799 carbon Inorganic materials 0.000 description 20
- 230000003647 oxidation Effects 0.000 description 20
- 239000011819 refractory material Substances 0.000 description 19
- 238000005755 formation reaction Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000006229 carbon black Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 230000003628 erosive effect Effects 0.000 description 11
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- 239000002270 dispersing agent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052596 spinel Inorganic materials 0.000 description 5
- 239000011029 spinel Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- GVEHJMMRQRRJPM-UHFFFAOYSA-N chromium(2+);methanidylidynechromium Chemical compound [Cr+2].[Cr]#[C-].[Cr]#[C-] GVEHJMMRQRRJPM-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000004848 polyfunctional curative Substances 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910003470 tongbaite Inorganic materials 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- -1 chromia carbides Chemical class 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000009970 fire resistant effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000003405 preventing effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- NJFMNPFATSYWHB-UHFFFAOYSA-N ac1l9hgr Chemical compound [Fe].[Fe] NJFMNPFATSYWHB-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 1
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910001337 iron nitride Inorganic materials 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
本発明は、高炉樋、キュポラ、焼却炉等の溶融金属や溶融スラグ等を受ける窯炉又はカバーの内張りに使用する不定形耐火物に関する。 The present invention relates to an indeterminate refractory used for a kiln furnace or cover lining that receives molten metal, molten slag, etc., such as a blast furnace slag, cupola, and incinerator.
高炉樋、キュポラ、焼却炉等の内張り用耐火物は、溶融スラグの浸透や溶損による損耗を受けやすい。例えば、高炉スラグは塩基度(CaO/SiO2比)が1程度と低く、耐火物内部へ激しく浸潤する。そのため、このような部位に適用する耐火物には、溶融スラグに濡れ難い特性を付与する原料(炭化物や炭素類)が用いられている。中でも炭化珪素(SiC)は、耐火性や容積安定性に優れており、他の炭化物に比べて量産され安価なため、多くの耐火物の原料として用いられている。 Refractories for lining such as blast furnace slags, cupolas, incinerators, etc. are susceptible to wear due to infiltration and melting of molten slag. For example, blast furnace slag has a basicity (CaO / SiO 2 ratio) as low as about 1 and violently infiltrates the refractory. For this reason, raw materials (carbides and carbons) that impart properties that make it difficult to wet molten slag are used for refractories applied to such sites. Among these, silicon carbide (SiC) is excellent in fire resistance and volume stability and is used as a raw material for many refractories because it is mass-produced and inexpensive compared to other carbides.
炭化珪素等の非酸化物系耐火性原料と、耐火性に優れるアルミナ(Al2O3)又はスピネル(MgAl2O4)等の酸化物系耐火性原料とを組み合わせた不定形耐火物に関して多くの開示例がある。例えば、特公昭57-38554号(特許文献1)には、炭化珪素、窒化珪素、窒化珪素鉄、炭素及びピッチの少なくとも1種(5〜50重量%)と、アルミナ、アルミナ−マグネシア系スピネル、高アルミナシャモット、ジルコニア、ジルコンシャモット、ロー石、珪石、及び溶融シリカの少なくとも1種とからなる耐火骨材85〜98重量%と、粘土15〜20重量%とを混合してなる耐火原料100重量部に対して、解膠剤を0.01〜0.3重量部、及び遅溶解性の凝集剤を0.1〜2.0重量部含有させた鋳込用耐火物でライニングされた溶融金属用樋が開示されている。 Many non-oxide refractory materials that combine non-oxide refractory materials such as silicon carbide and oxide-based refractory materials such as alumina (Al 2 O 3 ) or spinel (MgAl 2 O 4 ) that have excellent fire resistance There are disclosed examples. For example, JP-B-57-38554 (Patent Document 1) includes at least one of silicon carbide, silicon nitride, iron iron nitride, carbon and pitch (5 to 50% by weight), alumina, alumina-magnesia spinel, 100 wt% of refractory raw material made by mixing 85 to 98 wt% of refractory aggregate consisting of at least one of high alumina chamotte, zirconia, zircon chamot, rholite, silica stone and fused silica, and 15 to 20 wt% of clay A molten metal ridge lined with a refractory for casting containing 0.01 to 0.3 parts by weight of a peptizer and 0.1 to 2.0 parts by weight of a flocculant having a slow solubility is disclosed.
特開平3-164479号(特許文献2)には、SiC含有量が70重量%以上で、気孔率が10%以下、充填嵩比重が粗粒で1.25以上及び中粒で1.60以上の炭化珪素骨材を使用し、炭化珪素70〜95重量%、カーボン質原料1〜7重量%、アルミナ微粉3〜20重量%及びシリカ超微粉0.5〜5重量%を含有する組成物に、分散剤及び結合剤を添加する高炉出銑樋用流し込み耐火材が開示されている。この高炭化珪素質樋材はスラグライン用として好ましいと記載されている。 Japanese Patent Laid-Open No. 3-164479 (Patent Document 2) describes a silicon carbide bone having a SiC content of 70% by weight or more, a porosity of 10% or less, a filling bulk specific gravity of 1.25 or more for coarse grains, and 1.60 or more for medium grains. A composition containing silicon carbide 70 to 95% by weight, carbonaceous raw material 1 to 7% by weight, alumina fine powder 3 to 20% by weight, and silica ultrafine powder 0.5 to 5% by weight. A blast furnace pouring refractory material to which is added is disclosed. This high silicon carbide brazing material is described as preferable for slag lines.
特開平5-339065号(特許文献3)には、重量割合で、炭化珪素5〜25%、炭素1〜5%、粒径5μm以下のアルミナ超微粉5〜15%、及びアルミナセメント0.5〜7%を主材とし、残部がMgO-Al2O3系スピネルである高炉樋用流し込み材が開示されている。このスピネル−炭化珪素−炭素質樋材はメタルライン用として好ましいと記載されている。 Japanese Patent Laid-Open No. 5-339065 (Patent Document 3) describes, in terms of weight ratio, silicon carbide 5 to 25%, carbon 1 to 5%, alumina ultrafine powder 5 to 15% having a particle size of 5 μm or less, and alumina cement 0.5 to 7 % Is the main material, and the balance is MgO—Al 2 O 3 spinel. This spinel-silicon carbide-carbonaceous brazing material is described as preferred for metal lines.
上記文献に記載されているような炭化珪素含有耐火物の耐久性に影響を及ぼす大きな要因の一つに炭化珪素の酸化が挙げられる。高炉樋や樋カバー等の溶銑容器は少なくとも部分的に大気に曝されるため、酸化されやすい。炭化珪素がO2ガスやCOガスと反応して酸化すると、炭化珪素の減少及びSiO2の生成により耐食性が低下する。つまり炭化珪素はCOガスにより次式に示すように酸化することが知られている(非特許文献1)。 One of the major factors affecting the durability of silicon carbide-containing refractories as described in the above literature is the oxidation of silicon carbide. Hot metal containers such as blast furnace slags and slag covers are at least partially exposed to the atmosphere and are therefore easily oxidized. When silicon carbide reacts with O 2 gas or CO gas and oxidizes, the corrosion resistance decreases due to the reduction of silicon carbide and the generation of SiO 2 . That is, it is known that silicon carbide is oxidized by CO gas as shown in the following formula (Non-patent Document 1).
この反応は炭化珪素を含有する樋材内部で継続して進行するため、炭化珪素含有量は初期添加量の4/5〜1/2程度まで減少することがある。しかもSiO2を生成するため、使用初期に比べて耐火物の耐スラグ浸透性及び耐食性が著しく低下する。 Since this reaction proceeds continuously inside the brazing material containing silicon carbide, the silicon carbide content may be reduced to about 4/5 to 1/2 of the initial addition amount. Moreover, since SiO 2 is generated, the slag penetration resistance and corrosion resistance of the refractory are significantly reduced compared to the initial use.
このように炭化珪素の酸化は耐火物施工体の耐久性に大きく影響し、施工体の補修頻度を高めるので、経済的な観点からも炭化珪素の酸化を抑制することは極めて重要である。このため、特許文献2には、低気孔率で表面積の小さい炭化珪素骨材を用いることにより、これまで問題のあった炭化珪素質材料の耐食性及び耐酸化性を大幅に向上させることができると記載されている。また特開2004-137122号(特許文献4)には、10質量%以上の炭化珪素、8〜18質量%のアルミナ-炭化珪素混合微粉[アルミナ微粉/炭化珪素微粉比0.8〜7(質量比)、中心粒径10〜6μmのものが42〜62質量部で、中心粒径5〜2μmのものが20〜40質量部で、中心粒径1〜0.5μmのものが18〜38質量部の粒度構成を有する]、及び0.3〜6質量%の非晶質シリカ微粉(中心粒径0.5μm以下)を含有する低水量で極めて良好な流動性を示す耐火組成物を用いて得られる緻密な組織を有する施工体が開示されている。組織がより緻密になると炭化珪素の酸化が抑制されるため、耐食性が非常に優れ、割れや剥離が少ない施工体が得られると記載されている。しかし、これらの方法でも炭化珪素の酸化進行による耐スラグ浸透性や耐食性の劣化を完全に解消するには至っていない。
従って、本発明の目的は、炭化珪素を含有する不定形耐火物の欠点である酸化の進行に伴う耐火物の劣化を抑制し、もって長期間に渡って高い耐食性を有する不定形耐火物を提供することである。 Accordingly, an object of the present invention is to provide an amorphous refractory having high corrosion resistance over a long period of time by suppressing deterioration of the refractory accompanying the progress of oxidation, which is a defect of the amorphous refractory containing silicon carbide. It is to be.
上記目的に鑑み鋭意研究の結果、本発明者は、炭化珪素を含有する不定形耐火物に、COガス雰囲気下で安定な炭化物を生成するチタニア(TiO2)微粉及び/又はクロミア(Cr2O3)微粉を含有させることにより、長期間使用時の酸化劣化の少ない不定形耐火物が得られることを見出し、本発明に想到した。 As a result of diligent research in view of the above-mentioned object, the present inventor has found that titania (TiO 2 ) fine powder and / or chromia (Cr 2 O) that generates stable carbide in a CO gas atmosphere on an amorphous refractory containing silicon carbide. 3 ) The inventors have found that an amorphous refractory with little oxidative deterioration during long-term use can be obtained by containing fine powder, and the present invention has been conceived.
すなわち、本発明の不定形耐火物は、耐火組成物100質量%中に、耐火性微粉として炭化珪素微粉を5〜35質量%、及びチタニア微粉を3〜20質量%含有し、硬化剤としてアルミナセメントを0.5〜8質量%含有することを特徴とする。
That is, the amorphous refractory of the present invention contains 5 to 35% by mass of silicon carbide fine powder and 3 to 20% by mass of titania fine powder as refractory fine powder in 100% by mass of the refractory composition, and alumina as a curing agent. It contains 0.5 to 8% by mass of cement .
炭化珪素微粉とチタニア微粉及び/又はクロミア微粉とを特定の割合で含有させた本発明の不定形耐火物は、長期間使用しても炭化珪素の酸化に伴う耐スラグ浸透性や耐食性等の劣化が少ない施工体を形成することができ、各種窯炉やカバーの内張り材として好適である。 The amorphous refractory of the present invention containing silicon carbide fine powder and titania fine powder and / or chromia fine powder in a specific ratio is deteriorated in slag penetration resistance and corrosion resistance due to oxidation of silicon carbide even when used for a long time. Therefore, it is suitable as a lining material for various kilns and covers.
[1] 作用機構
炭化珪素含有不定形耐火物において、炭化珪素微粉と、チタニア微粉及び/又はクロミア微粉とを特定の割合で含有させると、稼動中に耐火物内の炭化珪素はCOガスにより酸化されて減少するが、同時にチタニア及び/又はクロミアの炭化物が生成するため、全体として炭化物量の減少を抑制することができ、もって長期間使用しても酸化劣化の少ない耐火物が得られる。この作用機構についての推察を以下に説明する。但し、以下の推察は本発明を限定するものではない。
[1] Mechanism of operation In silicon carbide-containing amorphous refractories, if silicon carbide fine powder and titania fine powder and / or chromia fine powder are contained in a specific ratio, silicon carbide in the refractory is oxidized by CO gas during operation. However, since titania and / or chromia carbides are generated at the same time, the decrease in the amount of carbides can be suppressed as a whole, and a refractory with little oxidative deterioration can be obtained even when used for a long period of time. The guess about this action mechanism is explained below. However, the following guesses do not limit the present invention.
稼動中の各種窯炉内張り耐火物の内部には、稼動面側の表面温度を最高温度とし背面側を最低温度とする温度勾配が生じる。高炉樋の内張り耐火物の場合でみると、表面温度が1500〜1550℃程度、母材(ワーク材ともいう)と裏張り材(バック材、パーマ材ともいう)との境界温度が1200〜1300℃程度となっている。上述のように、高炉樋、キュポラ、焼却炉等の内張り用耐火物としては、アルミナ−炭化珪素−炭素質やスピネル−炭化珪素−炭素質等の炭化珪素含有不定形耐火物が多く用いられている。 A temperature gradient is generated inside the various furnace lining refractories in operation, with the surface temperature on the operating surface side being the highest temperature and the back surface being the lowest temperature. In the case of blast furnace lining refractories, the surface temperature is about 1500 to 1550 ° C, and the boundary temperature between the base material (also called workpiece material) and the backing material (also called back material and permanent material) is 1200 to 1300. It is about ℃. As described above, silicon carbide-containing amorphous refractories such as alumina-silicon carbide-carbonaceous and spinel-silicon carbide-carbonaceous are often used as refractories for linings such as blast furnaces, cupolas, incinerators, etc. Yes.
このような炭化珪素や炭素類を含有する耐火物の内部は、稼動中はCOガス雰囲気となっている。すなわち、炭素と酸素が共存する場合、炭素の酸化は400〜800℃から始まり、CO2ガス及び/又はCOガスを生成する。CO/CO2ガスモル比(=Pco/Pco2)は温度が高いほど大きくなり、1100℃以上ではCO2ガスはほとんど無視でき、COガスのみとみなせるようになる。表面の高温側では炭化珪素の酸化によって生じたSiO2によってガラス皮膜が形成され、この皮膜によって表面から耐火物内部へのO2ガスの供給が大幅に抑制されるため、耐火物内部はCOガス雰囲気が保たれるようになる。 The inside of such a refractory containing silicon carbide and carbon is a CO gas atmosphere during operation. That is, when carbon and oxygen coexist, the oxidation of carbon starts from 400 to 800 ° C. and generates CO 2 gas and / or CO gas. The CO / CO 2 gas molar ratio (= Pco / Pco 2 ) increases as the temperature increases. Above 1100 ° C., CO 2 gas is almost negligible and can be regarded as only CO gas. On the high temperature side of the surface, a glass film is formed by SiO 2 generated by the oxidation of silicon carbide, and this film greatly suppresses the supply of O 2 gas from the surface to the inside of the refractory. The atmosphere will be maintained.
ここで、高温COガス雰囲気下における炭化物及び酸化物の化学平衡式を、Si、Ti及びCrという3種の金属元素(の化合物)について示すと、下記の式(i)〜式(iii)となる。 Here, when the chemical equilibrium formulas of carbides and oxides in a high-temperature CO gas atmosphere are shown for three metal elements (compounds) of Si, Ti and Cr, the following formulas (i) to (iii) Become.
これらの化学平衡式の平衡温度、すなわち右へ進む反応(炭化物の酸化反応:酸化物生成反応)速度と、左へ進む反応(酸化物の炭化反応:炭化物生成反応)速度とが同じになる温度は、JANAF熱化学表の標準生成自由エネルギーデータから求めることができる。JANAF熱化学表のデータを基に、他の金属元素も含めて標準自由エネルギー変化(ΔG)を算出した結果を図1に示す。標準自由エネルギー変化(ΔG)が正となる温度域(平衡温度よりも高温域)では炭化物生成反応が起こり、負となる温度域(平衡温度よりも低温域)では酸化物生成反応が起こると予測できる。 The equilibrium temperature of these chemical equilibrium formulas, that is, the temperature at which the rate of reaction proceeding to the right (carbide oxidation reaction: oxide formation reaction) is the same as the rate of reaction proceeding to the left (carbonization reaction of oxide: carbide formation reaction). Can be obtained from the standard free energy data of the JANAF thermochemical table. Based on the data of the JANAF thermochemical table, the standard free energy change (ΔG) including other metal elements was calculated and shown in FIG. Predicted that carbide formation occurs in the temperature range where the standard free energy change (ΔG) is positive (higher than the equilibrium temperature) and oxide formation occurs in the negative temperature range (lower temperature range than the equilibrium temperature). it can.
図1から、COガス雰囲気下における酸化物生成反応と炭化物生成反応との平衡温度は、Siの場合が約1518℃である。前述の通り高炉樋の表面温度は1500〜1550℃程度であるため、高炉樋用耐火物の施工体内部は、ほぼ全体に渡って1518℃以下となっていると考えられ、標準自由エネルギー変化(ΔG)が負の温度域、すなわち炭化珪素の酸化物生成反応が進行する温度域にある。これに対してTi及びCrの平衡温度はそれぞれ、約1288℃及び約1115℃でありSiの場合よりも低い。従って、高炉樋用耐火物内において、Ti及びCrはSiとは異なり母材の背面付近まで標準自由エネルギー変化(ΔG)が正の温度域であり、酸化物から炭化物へと変化する炭化物生成反応が進行し、かつ生成した炭化物が安定に存在する温度域にあると予測できる。 From FIG. 1, the equilibrium temperature between the oxide formation reaction and the carbide formation reaction in the CO gas atmosphere is about 1518 ° C. in the case of Si. As mentioned above, since the surface temperature of the blast furnace pit is about 1500-1550 ° C, the inside of the blast furnace refractory construction body is considered to be 1518 ° C or less over the whole, and the standard free energy change ( ΔG) is in a negative temperature range, that is, a temperature range in which an oxide formation reaction of silicon carbide proceeds. In contrast, the equilibrium temperatures of Ti and Cr are about 1288 ° C. and about 1115 ° C., respectively, which is lower than that of Si. Therefore, in refractories for blast furnaces, Ti and Cr are different from Si in that the standard free energy change (ΔG) is in the positive temperature range near the back of the base metal, and the carbide formation reaction changes from oxide to carbide. It can be predicted that the temperature is in the temperature range where the generated carbides exist stably.
従って、炭化珪素含有不定形耐火物において、チタニア微粉及び/又はクロミア微粉を含有すると、稼動中の耐火物内部では炭化珪素の酸化反応と同時に、チタニア及び/又はクロミアの炭化反応が進行すると予測できる。例えばチタニア微粉を含有する場合、下記の式(i)及び式(iv)の反応が進行すると考えられる。 Therefore, in the amorphous refractory containing silicon carbide, if titania fine powder and / or chromia fine powder are contained, it can be predicted that the carbonization reaction of titania and / or chromia proceeds simultaneously with the oxidation reaction of silicon carbide inside the refractory in operation. . For example, when titania fine powder is contained, the reactions of the following formulas (i) and (iv) are considered to proceed.
式(i)及び式(iv)をまとめると式(v)となる。 When the formula (i) and the formula (iv) are put together, the formula (v) is obtained.
このようにSiCの酸化物生成反応[式(i)]とTiO2の炭化物生成反応[式(iv)]とが同時進行する。すなわち、炭化珪素はCOガスとの酸化反応により消失し炭素を析出するが、一方でチタニアの炭化物の生成も進行しているため、耐火物内部の炭化物の総量はほとんど減少せず、その結果スラグ浸透性や耐食性の劣化の少ない耐火物となる。 Thus, the SiC oxide formation reaction [formula (i)] and the TiO 2 carbide formation reaction [formula (iv)] proceed simultaneously. In other words, silicon carbide disappears due to the oxidation reaction with CO gas and precipitates carbon, but since the formation of titania carbide is also progressing, the total amount of carbide inside the refractory is hardly reduced, resulting in slag. It becomes a refractory with little deterioration of permeability and corrosion resistance.
その他の金属元素の平衡温度は、Bが1558℃、Zrが1657℃、Al及びMgが1800℃以上であり、Siよりも高温まで酸化物が安定な温度域となる。すなわち、ジルコニア(ZrO2)やアルミナ(Al2O3)等の酸化物を高炉樋用炭化珪素含有不定形耐火物に含有させても、稼動時の高炉樋用等の耐火物施工体内部の温度域ではこれらの炭化物生成反応は起こらない。従って、炭化珪素の酸化が進行して炭化物量が減少することによる耐火物の劣化を抑制し、もって高い耐食性を長期間に渡って有し続けるという本発明の効果は得られない。 The equilibrium temperature of other metal elements is 1558 ° C. for B, 1657 ° C. for Zr, 1800 ° C. for Al and Mg, and the oxide is stable up to a temperature higher than Si. In other words, even if oxides such as zirconia (ZrO 2 ) and alumina (Al 2 O 3 ) are contained in an amorphous refractory containing silicon carbide for blast furnace fire, the inside of the refractory construction body for blast furnace fire during operation These carbide formation reactions do not occur in the temperature range. Therefore, the effect of the present invention that suppresses deterioration of the refractory due to the progress of the oxidation of silicon carbide and decreases the amount of carbide, and continues to have high corrosion resistance over a long period of time cannot be obtained.
本発明ではチタニア微粉を特に必須成分としたが、図1からクロミア又は酸化タンタル(Ta2O5)を用いた場合でも同様の作用効果が期待できる。但し、酸化タンタルは非常に高価なため、経済的でない。
In the present invention, titania fine powder is particularly an essential component, but similar effects can be expected even when chromia or tantalum oxide (Ta 2 O 5 ) is used from FIG. However, since tantalum oxide is very expensive, it is not economical.
[2] 不定形耐火物の組成
炭化珪素微粉とチタニア微粉とを含有する本発明の不定形耐火物を、高炉樋、キュポラ、焼却炉等に用いる流し込み耐火物として用いる場合を例にとって説明する。流し込み耐火物は、耐火性骨材、耐火性微粉及び硬化材を含む耐火組成物と、分散剤等の各種添加剤とからなる。
[2] Composition of the amorphous refractory The case where the amorphous refractory of the present invention containing silicon carbide fine powder and titania fine powder is used as a cast refractory used in a blast furnace slag, cupola, incinerator or the like will be described as an example. The cast refractory is composed of a refractory composition containing a refractory aggregate, a refractory fine powder, and a hardener, and various additives such as a dispersant.
(A) 耐火組成物
(1) 耐火性骨材
耐火性骨材は、アルミナ、スピネル、ムライト、ボーキサイト、シャモット、ジルコニア、炭化珪素等の電融品又は焼結品から選ばれた少なくとも1種である。必要に応じて2種以上の耐火性骨材を併用する。
(A) Refractory composition
(1) Refractory aggregate The refractory aggregate is at least one selected from electrofused or sintered products such as alumina, spinel, mullite, bauxite, chamotte, zirconia, and silicon carbide. Use two or more refractory aggregates as needed.
(2) 耐火性微粉
本発明に使用する耐火性微粉は、炭化珪素微粉と、チタニア微粉とを含み、さらにクロミア微粉を含んでも良い。
(2) Fire-resistant fine powder The fire-resistant fine powder used in the present invention contains silicon carbide fine powder and titania fine powder, and may further contain chromia fine powder.
炭化珪素微粉中のSiCの含有量(純度)は90質量%以上が好ましい。SiC以外の成分としては金属鉄又は酸化鉄が挙げられる。金属鉄又は酸化鉄は炭化珪素の酸化を促進し劣化を助長するため、できるだけ少ない方が良い。高耐食性の観点から、炭化珪素微粉中のSiC含有量は94質量%以上で、金属鉄又は酸化鉄の含有量はFe2O3換算で1質量%以下であるのがより好ましい。炭化珪素微粉の粒度は約0.3 mm以下が好ましい。 The content (purity) of SiC in the silicon carbide fine powder is preferably 90% by mass or more. Components other than SiC include metallic iron or iron oxide. Since metallic iron or iron oxide promotes oxidation of silicon carbide and promotes deterioration, it is preferable that it be as small as possible. From the viewpoint of high corrosion resistance, the SiC content in the silicon carbide fine powder is preferably 94% by mass or more, and the content of metallic iron or iron oxide is more preferably 1% by mass or less in terms of Fe 2 O 3 . The particle size of the silicon carbide fine powder is preferably about 0.3 mm or less.
炭化珪素微粉の量は、耐火組成物100質量%に対して5〜35質量%であるのが好ましい。5質量%以上であれば、炭化珪素微粉自身の作用によってスラグ浸透防止効果や耐食性が得られるのみならず、共に含有するチタニア微粉の炭化物生成反応の炭素源としても作用する。炭化珪素微粉の酸化により生成するSiO2は耐火物の表面にガラス皮膜を形成し、耐火物内部へのO2ガスの侵入を抑制する。その結果、耐火物内部に共存するCOガスとCO2ガスのモル比(CO/CO2ガスモル比)は著しく高まり、COガス雰囲気が形成されチタニア微粉の炭化反応が進行するようになる。炭化珪素微粉の含有量が5質量%よりも少なくガラス皮膜の形成が不十分な場合は、耐火物内部へO2ガスが継続的に侵入してしまい、CO/CO2ガスモル比が低下し、チタニア微粉の炭化反応が進行しなくなる、又は一旦生成した炭化物が再び酸化物に戻ってしまう。一方、炭化珪素微粉の含有量が35質量%よりも多いと、添加水量の増加や焼結性不足が生じ、組織が脆弱化するため、耐食性が低下する。
The amount of silicon carbide fine powder is preferably 5 to 35% by mass with respect to 100% by mass of the refractory composition. If it is 5 mass% or more, not only the slag permeation preventing effect and corrosion resistance are obtained by the action of the silicon carbide fine powder itself, but also acts as a carbon source for the carbide formation reaction of the titania fine powder contained together. SiO 2 produced by oxidation of silicon carbide fine powder forms a glass film on the surface of the refractory and suppresses the intrusion of O 2 gas into the refractory. As a result, CO gas and CO 2 gas molar ratio of the coexisting therein refractory (CO / CO 2 gas molar ratio) increased significantly, carbonization of titania fine CO gas atmosphere is formed is to proceed. When the content of silicon carbide fine powder is less than 5% by mass and the glass film is not sufficiently formed, O 2 gas continuously penetrates into the refractory, and the CO / CO 2 gas molar ratio decreases, The carbonization reaction of the titania fine powder does not proceed, or the carbide once generated returns to the oxide again. On the other hand, when the content of silicon carbide fine powder is more than 35% by mass, the amount of added water is increased and the sinterability is insufficient, and the structure becomes brittle, so that the corrosion resistance is lowered.
チタニア微粉の含有量は3〜20質量%、好ましくは4〜15質量%である。さらにクロミア微粉を含有する場合はチタニア微粉及びクロミア微粉の総量が前記範囲であるのが好ましい。チタニアやクロミアのような特定の酸化物は、不定形耐火物の施工体内部の炭化珪素の酸化が進行するCOガス雰囲気下で安定な炭化物を生成する。本発明はこの特性を積極的に活用するものである。
The content of the titania fine powder is 3 to 20% by mass, preferably 4 to 15% by mass. Further, when the chromia fine powder is contained, the total amount of the titania fine powder and the chromia fine powder is preferably within the above range. Certain oxides, such as titania and chromia, produce stable carbides in a CO gas atmosphere in which the oxidation of silicon carbide within the construction of the amorphous refractory proceeds. The present invention actively utilizes this characteristic.
チタニア微粉及び/又はクロミア微粉を含有することにより、炭化珪素微粉の酸化が進んでもその代わりにチタニア及び/又はクロミアの炭化物が生成するため、炭化物合計量は一定量となり、耐スラグ浸透性や耐食性等の劣化を防止する効果が得られる。前記総量が3質量%未満では、この効果が得られない。また、20質量%より多く使用しても未反応物(未炭化物)が残存するだけで、それ以上の効果は得られない。
By containing titania fine powder and / or chromia fine powder, even if oxidation of silicon carbide fine powder proceeds, instead of titania and / or chromia carbide, the total amount of carbide is constant, slag penetration resistance and corrosion resistance The effect which prevents degradation, etc. is acquired. If the total amount is less than 3% by mass, this effect cannot be obtained. Moreover, even if it uses more than 20 mass%, only the unreacted substance (uncarbide) remains, and the effect beyond it is not acquired.
また、チタニアやクロミア等の酸化物に代えてTi及び/又はCr等の金属を用いても同様の効果は得られるが、入手の容易さや経済性の点から酸化物が好ましい。さらに、使用後耐火物の廃棄やリサイクル等の環境問題まで考慮した場合はチタニアが最も好ましい。 The same effect can be obtained by using a metal such as Ti and / or Cr instead of an oxide such as titania or chromia, but an oxide is preferred from the viewpoint of availability and economy. Furthermore, titania is most preferable when considering environmental problems such as disposal and recycling of refractories after use.
使用するチタニア微粉及びクロミア微粉は純度90質量%以上のものが好ましい。高耐食性という観点から、純度は94質量%以上で、金属鉄や酸化鉄の含有量はFe2O3換算で1質量%以下であるのがより好ましい。特に、金属鉄や酸化鉄は共存する炭化珪素の酸化を促進し、劣化を助長するため、できるだけ少ない方が良い。また、チタニア微粉及びクロミア微粉の粒度は、0.3 mm以上でもよいが、0.3 mm程度かそれ以下の微粉の方がより効果が発揮されやすく好ましい。 The titania fine powder and chromia fine powder to be used preferably have a purity of 90% by mass or more. From the viewpoint of high corrosion resistance, the purity is more preferably 94% by mass or more, and the content of metallic iron or iron oxide is more preferably 1% by mass or less in terms of Fe 2 O 3 . In particular, metallic iron or iron oxide promotes oxidation of coexisting silicon carbide and promotes deterioration, so it is preferable that it be as small as possible. Further, the particle size of the titania fine powder and the chromia fine powder may be 0.3 mm or more, but a fine powder of about 0.3 mm or less is more preferable because it is more effective.
その他の耐火性微粉として、アルミナ、スピネル、ムライト、マグネシア、ジルコニア等の電融品又は焼結品、及びシリカフューム、粘土、ジルコン、窒化珪素、炭素類等を必要に応じて使用することができる。また、炭素類微粉としては黒鉛粉、カーボンブラック、ピッチ類等が使用できる。 As other refractory fine powders, electrofused or sintered products such as alumina, spinel, mullite, magnesia, zirconia, and silica fume, clay, zircon, silicon nitride, carbons, and the like can be used as necessary. Moreover, graphite powder, carbon black, pitches, etc. can be used as carbon fine powder.
(3) 硬化材
流し込み耐火物の硬化材にはアルミナセメントを用いる。使用するアルミナセメントは、通常の不定形耐火物に用いるものであれば特に限定されないが、中でもカルシウムアルミネートを主成分とし、化学成分としてCaOが10〜30質量%、Al2O3が70〜90質量%のものが適している。アルミナセメントの配合量は、耐火組成物100質量%に対して、0.5〜8質量%とするのが好ましく、1〜6質量%とするのがより好ましい。アルミナセメントの配合量が0.5質量%未満では充分な強度の耐火物が得られず、また8質量%より多いと耐火物の耐食性が劣る。但し、湿式吹付け施工に用いる流し込み耐火物では、アルミナセメントを使用せず、急結剤のみで硬化させてもよい。
(3) Alumina cement is used as the hardener for the refractory material poured into the hardener. The alumina cement to be used is not particularly limited as long as it is used for an ordinary amorphous refractory. Among them, calcium aluminate is a main component, CaO is 10 to 30% by mass as chemical components, and Al 2 O 3 is 70 to 70%. 90% by mass is suitable. The blending amount of the alumina cement is preferably 0.5 to 8% by mass and more preferably 1 to 6% by mass with respect to 100% by mass of the refractory composition. When the amount of alumina cement is less than 0.5% by mass, a refractory with sufficient strength cannot be obtained, and when it exceeds 8% by mass, the corrosion resistance of the refractory is inferior. However, in the cast refractory used for wet spraying construction, alumina cement may not be used, and it may be cured only with the quick setting agent.
(B) 添加剤
(1) 分散剤
流し込み耐火物においては、分散剤の添加が有効である。分散剤は耐火性微粉に作用して減水効果をもたらす。分散剤としては、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ等の縮合リン酸塩、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、アミノスルホン酸及びその塩、リグニンスルホン酸及びその塩、ポリアクリル酸及びその塩、ポリカルボン酸及びその塩、オキシカルボン酸及びその塩等が好ましく、これらを1種又は2種以上配合して使用することができる。分散剤の添加量は、耐火組成物を100質量%として、0.01〜1質量%(外割)であるのが好ましい。分散剤の添加量が0.01〜1質量%(外割)であれば耐火性微粉に対する充分な分散効果が得られる。
(B) Additive
(1) Dispersant Addition of a dispersant is effective for cast refractories. The dispersant acts on the refractory fine powder to bring about a water reducing effect. Dispersants include condensed phosphates such as sodium hexametaphosphate and sodium tripolyphosphate, β-naphthalene sulfonate formalin condensate, melamine sulfonate formalin condensate, amino sulfonic acid and its salt, lignin sulfonic acid and its salt Polyacrylic acid and its salt, polycarboxylic acid and its salt, oxycarboxylic acid and its salt and the like are preferable, and these can be used alone or in combination. The addition amount of the dispersant is preferably 0.01 to 1% by mass (outside percent) with the refractory composition being 100% by mass. If the addition amount of the dispersant is 0.01 to 1% by mass (external ratio), a sufficient dispersion effect for the fireproof fine powder can be obtained.
(2) その他の添加剤
その他の添加物としては、硼酸、リン酸、オキシカルボン酸、炭酸アルカリ塩等の硬化時間調整剤、無機又は金属等の繊維、金属アルミニウム、オキシカルボン酸塩、有機繊維等の爆裂防止材等が挙げられる。さらに金属シリコン等の微粉状焼結助剤、炭化ホウ素等の酸化防止剤も使用できる。
(2) Other additives Other additives include boric acid, phosphoric acid, oxycarboxylic acid, curing time adjusters such as alkali carbonates, inorganic or metal fibers, metal aluminum, oxycarboxylate, organic fibers Examples include explosion prevention materials. Further, a fine powdery sintering aid such as metal silicon and an antioxidant such as boron carbide can be used.
[3] 実験例
上記に示した化学反応が実際に起こるかどうかを確かめた実験結果以下に示す。表1に記載の組成を有する不定形耐火物を混練し、型枠に流し込んで成形し、硬化後脱枠、乾燥(110℃×24hr)し試験片を得た。この試験片を、CO雰囲気(但し、実質はN2ガスが存在するためCOガス分圧は約0.33 atm)下に置くためコークス粉中に埋設し、1300℃(前記樋の母材と裏張り材との境界温度付近を想定した温度)で5hr焼成した後、粉末X線回折法による分析を行った。結果を表1に示す。但し炭化珪素は多形(4H、6H等)結晶からなり、回折強度が多少変動するため、回折強度は強度が高い方から順にVS>S>M>W>nd[VS:very strong、S:strong、M:middle、W:weak、nd:not detected(不検出)]の5段階で評価した。
[3] Experimental Example The experimental results confirming whether the chemical reaction shown above actually occurs are shown below. An amorphous refractory having the composition shown in Table 1 was kneaded, poured into a mold, molded, unframed after curing, and dried (110 ° C. × 24 hr) to obtain a test piece. This test specimen was embedded in coke powder to be placed under a CO atmosphere (however, the CO gas partial pressure was approximately 0.33 atm because N 2 gas was actually present). The sample was calcined for 5 hours at a temperature near the boundary temperature with the material, and then analyzed by a powder X-ray diffraction method. The results are shown in Table 1. However, since silicon carbide is composed of polymorphic (4H, 6H, etc.) crystals and the diffraction intensity varies somewhat, the diffraction intensity is VS>S>M>W> nd [VS: very strong, S: Strong, M: middle, W: weak, nd: not detected].
注※2:微粉のメジアン径は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定装置を用いて測定した体積基準の値である。
* 2 : The median diameter of the fine powder is a volume-based value measured using a laser diffraction / scattering particle size distribution measuring device manufactured by Seishin Corporation.
実験例1に対してチタニアの微粉を添加した実験例2は炭窒化チタン[Ti(C,N)]の生成が認められ、実験例2から炭化珪素微粉を除去しカーボンブラックを添加した実験例4にも同様に炭窒化チタン[Ti(C,N)]の生成が認められたことから、チタニアは炭化珪素、炭素(カーボンブラック)又は炭化珪素の酸化時に放出される炭素と反応して炭化物を生成することが分かった。クロミアの微粉を添加した実験例3も同様に炭化クロム(Cr3C2)の生成が認められたことから、チタニアと同様にクロミアも炭化珪素、炭素(カーボンブラック)又は炭化珪素の酸化時に放出される炭素と反応して炭化物を生成すると考えられる。 In Experimental Example 2, in which titania fine powder was added to Experimental Example 1, the formation of titanium carbonitride [Ti (C, N)] was observed, and in Example 2, silicon carbide fine powder was removed and carbon black was added. Similarly, the formation of titanium carbonitride [Ti (C, N)] was recognized in No. 4, so that titania reacted with silicon carbide, carbon (carbon black) or carbon released during oxidation of silicon carbide to form carbides. Was found to produce Since the formation of chromium carbide (Cr 3 C 2 ) was also observed in Experimental Example 3 to which fine chromia powder was added, chromia was released during oxidation of silicon carbide, carbon (carbon black) or silicon carbide as well as titania. It is thought to react with the generated carbon to produce carbide.
また、炭化珪素は酸化によって二酸化珪素(SiO2)を生成し、これがアルミナセメントクリンカー鉱物であるCaAl2O4等と反応してアノーサイト(CaAl2Si2O8)を生成していることも確かめられた。この炭化珪素の酸化反応はチタニアやクロミアの有無とは無関係に起こっている(実験例1〜3)。一方、チタニア微粉やクロミア微粉と異なり、アルミナ(Al2O3)微粉を添加した実験例1の場合は炭化アルミニウム(Al4C3)を生成しておらず、アルミナによる炭化物生成反応は起こらないことが分かった。尚、生成するチタニアの炭化物は、N2ガスが固溶した炭窒化チタン[Ti(C,N)]として検出した。炭窒化チタンは1288℃よりも低い温度から生成し、C/N比は温度等焼成条件によって変化する。また、生成する炭化クロムも焼成温度によって組成が異なり、例えば1300℃ではCr3C2となり、1500℃ではCr7C3となる。 In addition, silicon carbide produces silicon dioxide (SiO 2 ) by oxidation, and this reacts with the alumina cement clinker mineral such as CaAl 2 O 4 to produce anorthite (CaAl 2 Si 2 O 8 ). It was confirmed. This oxidation reaction of silicon carbide occurs regardless of the presence or absence of titania or chromia (Experimental Examples 1 to 3). On the other hand, unlike titania fine powder and chromia fine powder, aluminum carbide (Al 4 C 3 ) was not generated in the case of Experimental Example 1 to which alumina (Al 2 O 3 ) fine powder was added, and carbide formation reaction by alumina did not occur. I understood that. The produced titania carbide was detected as titanium carbonitride [Ti (C, N)] in which N 2 gas was dissolved. Titanium carbonitride is produced from a temperature lower than 1288 ° C, and the C / N ratio varies depending on the firing conditions such as temperature. In addition, the composition of the generated chromium carbide varies depending on the firing temperature. For example, it becomes Cr 3 C 2 at 1300 ° C. and Cr 7 C 3 at 1500 ° C.
実験例4は炭化珪素微粉を含有せず、カーボンブラックのみを含有した場合の例であるが、大気の影響を強く受ける実際の炉においては、炭化珪素微粉に起因するガラス皮膜が耐火物表面に形成されないと、耐火物施工体内部へのO2ガスの継続的な侵入により炭素の酸化消失や炭化物の酸化が容易に生じてしまうため、炭化珪素微粉を含有しない構成は好ましくない。 Experimental Example 4 is an example in which only silicon black is contained without containing silicon carbide fine powder. However, in an actual furnace that is strongly affected by the atmosphere, a glass film caused by fine silicon carbide powder is formed on the surface of the refractory. If it is not formed, the oxidization loss of carbon and the oxidation of carbide are easily caused by the continuous intrusion of O 2 gas into the refractory construction body. Therefore, a configuration not containing silicon carbide fine powder is not preferable.
また、チタニア微粉のみを含有し、炭化珪素微粉もカーボンブラックも含有しない実験例5は、前述の通り炭窒化チタン[Ti(C,N)]は生成しないが、チタン酸アルミニウム(TiAl2O4)が生成した。 Further, in Experimental Example 5 containing only titania fine powder and containing neither silicon carbide fine powder nor carbon black, titanium carbonitride [Ti (C, N)] was not generated as described above, but aluminum titanate (TiAl 2 O 4). ) Produced.
以上の実験例から、炭化珪素含有不定形耐火物において、チタニア微粉及び/又はクロミア微粉を含有すると、稼動中の耐火物内部では炭化珪素の酸化反応と同時に、チタニア及び/又はクロミアの炭化反応が進行することが確かめられた。つまり前述したように、炭化珪素はCOガスとの酸化反応により消失し炭素を析出するが、一方でチタニアの炭化物の生成も進行しているため、耐火物内部の炭化物の総量はほとんど減少せず、その結果スラグ浸透性や耐食性の劣化の少ない耐火物となる。 From the above experimental examples, in a silicon carbide-containing amorphous refractory, if titania fine powder and / or chromia fine powder are contained, the carbonization reaction of titania and / or chromia occurs simultaneously with the oxidation reaction of silicon carbide inside the refractory during operation. It was confirmed that it would progress. In other words, as described above, silicon carbide disappears due to oxidation reaction with CO gas and precipitates carbon, but on the other hand, since the formation of titania carbide is also progressing, the total amount of carbide inside the refractory hardly decreases. As a result, it becomes a refractory with little deterioration of slag permeability and corrosion resistance.
後述の実施例に示すように、チタニア微粉やクロミア微粉を含有しない不定形耐火物は、これらを含有するものに比べて耐食性が劣ることから、SiCの酸化物生成反応[式(i)]においてSiO2と同時に生成するC(炭素)は、生成炭化物(炭化チタン又は炭化クロム)に比べてスラグ浸透防止や耐食性向上の効果があまり大きくないと推察される。その理由は、生成するC及び炭化物の結晶性の違いによると考えている。すなわち、式(i)の反応によって析出するCは粉末X線回折法による分析では確認できないことから非晶質又は結晶化度が低いと思われ、一方、生成する炭化物は粉末X線回折法による分析で明瞭に確認できるため結晶化度が高いと思われる。この結晶性の違いが耐スラグ浸透性や耐食性に差が生じる一因であると考えられる。 As shown in the examples below, amorphous refractories that do not contain titania fine powder or chromia fine powder are inferior in corrosion resistance to those containing these, so in the oxide generation reaction of SiC [formula (i)] It is presumed that C (carbon) produced simultaneously with SiO 2 is less effective in preventing slag penetration and improving corrosion resistance than the produced carbide (titanium carbide or chromium carbide). The reason is considered to be due to the difference in crystallinity between C and carbide produced. That is, C precipitated by the reaction of the formula (i) cannot be confirmed by analysis by the powder X-ray diffraction method, so it is considered that it is amorphous or low in crystallinity, while the generated carbide is determined by the powder X-ray diffraction method. The crystallinity seems to be high because it can be clearly confirmed by analysis. This difference in crystallinity is considered to be a cause of the difference in slag penetration resistance and corrosion resistance.
[4] 実施例
本発明を流し込み耐火物を例にとって、以下にさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[4] Examples The present invention will be described in more detail below with reference to cast refractories, but the present invention is not limited to these examples.
実施例1〜12、参考例1、2、比較例1〜7
(1) 流し込み耐火物の調製方法
炭化珪素微粉(粒径0.074 mm以下)、チタニア微粉(メジアン径0.4μm)又はクロミア微粉(メジアン径1μm)の他、耐火性骨材、アルミナ微粉(粒径0.074 mm以下及び/又はメジアン径0.7μm)、カーボンブラック、アルミナセメント及び分散剤を表2に示す処方で配合し、流し込み耐火物を調製した。ここで微粉のメジアン径は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定装置を用いて測定した体積基準の値である。各流し込み耐火物を表2−1〜表2―3に示す量の水で混練し、所定の形枠に流し込み成形し、常温で24時間養生した後、脱枠して110℃×24hr乾燥した。得られた成形体について、下記の方法により侵食試験を行なった。
Examples 1 to 12, Reference Examples 1 and 2, Comparative Examples 1 to 7
(1) Method for preparing cast refractory In addition to silicon carbide fine powder (particle size 0.074 mm or less), titania fine powder (median diameter 0.4 μm) or chromia fine powder (median diameter 1 μm), refractory aggregate, alumina fine powder (particle size 0.074 mm or less and / or median diameter 0.7 μm), carbon black, alumina cement, and a dispersant were blended according to the formulation shown in Table 2 to prepare a cast refractory. Here, the median diameter of the fine powder is a volume-based value measured using a laser diffraction / scattering particle size distribution measuring device manufactured by Seishin Corporation. Each cast refractory was kneaded with the amount of water shown in Table 2-1 to Table 2-3, cast into a predetermined form, cured at room temperature for 24 hours, de-framed and dried at 110 ° C. for 24 hours. . About the obtained molded object, the erosion test was done by the following method.
(2) 侵食試験方法
誘導炉の炉壁に各試験片をセットした後、炉内(大気雰囲気下)で銑鉄を溶融し、その上に高炉スラグを浮かべて侵食試験を行った。侵食試験温度及び時間は1550±40℃×12時間であった。侵食試験の前後の各試験片の寸法差を測定し、時間当りの侵食量に換算した。結果を表2−1〜表2−3に示す。尚、表2に示した誘導炉侵食試験結果は、いずれも110℃×24hr乾燥後の試験片をそのまま用いたときの結果である。
(2) Erosion Test Method After each test piece was set on the furnace wall of the induction furnace, pig iron was melted in the furnace (in the atmosphere), and the erosion test was conducted with floating blast furnace slag on it. The erosion test temperature and time were 1550 ± 40 ° C x 12 hours. The dimensional difference of each test piece before and after the erosion test was measured and converted into the amount of erosion per hour. The results are shown in Tables 2-1 to 2-3. In addition, all the induction furnace erosion test results shown in Table 2 are results when the test pieces after drying at 110 ° C. × 24 hours are used as they are.
注※2:微粉のメジアン径は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定装置を用いて測定した体積基準の値である。
* 2 : The median diameter of the fine powder is a volume-based value measured using a laser diffraction / scattering particle size distribution measuring device manufactured by Seishin Corporation.
注※2:微粉のメジアン径は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定装置を用いて測定した体積基準の値である。
* 2 : The median diameter of the fine powder is a volume-based value measured using a laser diffraction / scattering particle size distribution measuring device manufactured by Seishin Corporation.
注※2:微粉のメジアン径は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定装置を用いて測定した体積基準の値である。
* 2 : The median diameter of the fine powder is a volume-based value measured using a laser diffraction / scattering particle size distribution measuring device manufactured by Seishin Corporation.
実施例1〜11は、炭化珪素微粉とチタニア微粉(メジアン径0.4μm)とを本発明に規定する割合で含有する例であり、いずれも耐食性が優れていた。尚、実施例1〜9はカーボンブラック(炭素微粉)を含む例、実施例10及び11はカーボンブラックを含まない例であり、カーボンブラックの有無が耐食性に及ぼす影響は小さいことが分かる。 Examples 1-11 are the examples which contain silicon carbide fine powder and titania fine powder (median diameter 0.4 micrometer) in the ratio prescribed | regulated to this invention, and all were excellent in corrosion resistance. Examples 1 to 9 are examples containing carbon black (carbon fine powder), and Examples 10 and 11 are examples not containing carbon black. It can be seen that the presence or absence of carbon black has little effect on corrosion resistance.
参考例1及び2は、炭化珪素微粉とクロミア微粉(メジアン径1μm)とを含有する例であり、いずれも耐食性が優れていた。実施例12は実施例1〜11で用いたチタニア微粉(メジアン径0.4μm)に対して、粒径の大きなチタニア微粉(粒径0.074 mm以下)を用いた例であるが、実施例1〜11と同様に耐食性が優れていた。
Reference Examples 1 and 2 are examples containing silicon carbide fine powder and chromia fines (median diameter 1 [mu] m), both the corrosion resistance was excellent. Example 12 for the titania fine powder used in Example 1 to 11 (median size 0.4 .mu.m), although an example in which a large titania fine particle size (particle size 0.074 mm or less), Examples 1 to 11 Corrosion resistance was excellent as well.
比較例1及び2は、チタニア微粉は含有するが炭化珪素微粉を含まない例であり、カーボンブラックの有無にかかわらず耐食性が劣っていた。比較例3は、炭化珪素微粉の含有量が3質量%と少ない例であり、耐食性が劣っていた。いずれも耐火物表面でのガラス皮膜の形成が充分でないため、大気雰囲気(O2)の影響を受けてカーボンブラックは酸化消失しやすく、炭化物は酸化されやすくなっている。このためたとえカーボンブラックを含有していても、チタニア炭化物はほとんど生成しない。その結果スラグが浸透しやすく耐食性が低下したものと思われる。 Comparative Examples 1 and 2 are examples in which titania fine powder was contained but silicon carbide fine powder was not contained, and the corrosion resistance was poor regardless of the presence or absence of carbon black. Comparative Example 3 was an example in which the content of silicon carbide fine powder was as low as 3% by mass, and the corrosion resistance was inferior. In either case, since the glass film is not sufficiently formed on the surface of the refractory, carbon black is easily oxidized and lost under the influence of the atmospheric atmosphere (O 2 ), and the carbide is easily oxidized. For this reason, even if carbon black is contained, titania carbide is hardly generated. As a result, the slag is likely to penetrate and the corrosion resistance seems to have decreased.
比較例4は、炭化珪素微粉のみを含有し、チタニア微粉やクロミア微粉を全く含まない例である。また、比較例5はチタニア微粉の含有量が2質量%と少ない例である。これらはいずれも実施例に比べて耐食性が劣っていた。 Comparative Example 4 is an example containing only silicon carbide fine powder and no titania fine powder or chromia fine powder. Comparative Example 5 is an example in which the content of fine titania powder is as small as 2% by mass. All of these were inferior in corrosion resistance compared to the Examples.
比較例6は、比較例4からさらに炭化珪素微粉の含有量を増した例であるが、チタニア微粉やクロミア微粉を全く含まないため、比較例4と同様に耐食性が劣っていた。 Comparative Example 6 is an example in which the content of silicon carbide fine powder was further increased from Comparative Example 4, but since it did not contain titania fine powder or chromia fine powder at all, the corrosion resistance was inferior like Comparative Example 4.
比較例7は、炭化珪素微粉を36質量%と多く含む例であるが、チタニア微粉を含有しているにもかかわらず耐食性が劣っていた。これは炭化珪素微粉の増加により添加水量の増加や焼結性不足が生じ、組織が脆弱化したためと考えられる。 Although the comparative example 7 is an example which contains as much as 36 mass% of silicon carbide fine powder, the corrosion resistance was inferior in spite of containing the titania fine powder. This is presumably because the increase in the amount of silicon carbide powder caused an increase in the amount of added water and a lack of sinterability, which weakened the structure.
注※2:微粉のメジアン径は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定装置を用いて測定した体積基準の値である。
注※3:予めコークス粉中に埋設して焼成処理(1300℃×48hr)した試験片での誘導炉侵食試験結果である。
注※4:110℃×24hr乾燥後試験片での誘導炉侵食試験結果(表2に記載したものと同じ値)である。
* 2 : The median diameter of the fine powder is a volume-based value measured using a laser diffraction / scattering particle size distribution measuring device manufactured by Seishin Corporation.
* 3 : Induction furnace erosion test results with test pieces embedded in coke powder and fired (1300 ° C x 48 hr).
* 4 : Induction furnace erosion test result (same value as described in Table 2) on a test piece after drying at 110 ° C for 24 hours.
表3に、実施例3、実施例4、参考例1、比較例4及び比較例5で作製した試験片を予めコークス粉中に埋設して1300℃×48hr焼成処理し、高温COガス雰囲気下に長時間曝した後の耐食性を評価した結果を示す。尚、表3中の( )内に示した侵食速度値は、比較のため表2―1〜表2−3に示した110℃×24hr乾燥後の試験片での侵食試験結果を再度記載したものである。
In Table 3, the test pieces prepared in Example 3, Example 4, Reference Example 1 , Comparative Example 4 and Comparative Example 5 were pre-embedded in coke powder and fired at 1300 ° C. for 48 hours, under a high-temperature CO gas atmosphere The results of evaluating corrosion resistance after prolonged exposure to are shown. The erosion rate values shown in parentheses in Table 3 are the results of the erosion test on the test pieces after drying at 110 ° C. × 24 hours shown in Table 2-1 to Table 2-3 for comparison. Is.
炭化珪素微粉とチタニア微粉又はクロミア微粉とを含有する実施例3、実施例4及び参考例1は、高温COガス雰囲気下に長時間曝した後も良好な耐食性を維持していた。
Example 3, Example 4 and Reference Example 1 containing silicon carbide fine powder and titania fine powder or chromia fine powder maintained good corrosion resistance even after being exposed to a high-temperature CO gas atmosphere for a long time.
これに対して、炭化珪素微粉のみを含有し、チタニア微粉やクロミア微粉を全く含まない比較例4や、チタニア微粉の含有量が2質量%と少ない比較例5は、高温COガス雰囲気下に長時間曝した後の耐食性の劣化が大きかった。 On the other hand, Comparative Example 4 containing only silicon carbide fine powder and containing no titania fine powder or chromia fine powder or Comparative Example 5 having a small content of titania fine powder of 2% by mass is long in a high-temperature CO gas atmosphere. The deterioration of corrosion resistance after exposure to time was great.
尚、これまで流し込み耐火物を例にとって説明したが、本発明の不定形耐火物はスタンプ材、吹付け材等いずれの態様にも適用することができる。但し、粒度構成や硬化材の種類等は、公知技術を適用することによって、態様に応じた調整が必要となる。 Although the cast refractory has been described as an example, the amorphous refractory of the present invention can be applied to any aspect such as a stamp material and a spray material. However, the particle size configuration, the type of the curing material, and the like need to be adjusted according to the mode by applying a known technique.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007180233A JP4922851B2 (en) | 2007-07-09 | 2007-07-09 | Indefinite refractory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007180233A JP4922851B2 (en) | 2007-07-09 | 2007-07-09 | Indefinite refractory |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009013036A JP2009013036A (en) | 2009-01-22 |
JP4922851B2 true JP4922851B2 (en) | 2012-04-25 |
Family
ID=40354391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007180233A Active JP4922851B2 (en) | 2007-07-09 | 2007-07-09 | Indefinite refractory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4922851B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2694452A4 (en) | 2011-03-30 | 2015-03-11 | Saint Gobain Ceramics | Refractory object, glass overflow forming block, and process of forming and using the refractory object |
KR102037046B1 (en) | 2012-01-11 | 2019-10-29 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | Refractory object and process of forming a glass sheet using the refractory object |
JP6086751B2 (en) * | 2013-02-20 | 2017-03-01 | 新日鐵住金株式会社 | Refractory mortar |
JP6302626B2 (en) * | 2013-05-21 | 2018-03-28 | 新日鐵住金株式会社 | Refractory mortar |
WO2016138111A1 (en) | 2015-02-24 | 2016-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory article and method of making |
CN115259872B (en) * | 2022-08-15 | 2023-06-27 | 郑州中本耐火科技股份有限公司 | Mullite high-strength acid-resistant baking-free brick and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5290507A (en) * | 1976-01-26 | 1977-07-29 | Shinagawa Refractories Co | Refractories*compositions therefor and manufacture |
JPH02274370A (en) * | 1989-04-17 | 1990-11-08 | Harima Ceramic Co Ltd | Refractories for vessel for pretreatment of molten iron |
JP2000203954A (en) * | 1999-01-19 | 2000-07-25 | Taiko Rozai Kk | Slip casting refractory composition for tapping spout cover and its lining of blast furnace, and production of tapping spout cover of blast furnace using the same |
-
2007
- 2007-07-09 JP JP2007180233A patent/JP4922851B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009013036A (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Refractories: Controlled microstructure composites for extreme environments | |
JP4922851B2 (en) | Indefinite refractory | |
Chan et al. | Influence of additives on slag resistance of Al2O3‐SiO2‐SiC‐C refractory bond phases under reducing atmosphere | |
EP0733604A1 (en) | Chromium-free brick | |
WO2013005253A1 (en) | Magnesia-based refractory material | |
JP2001114571A (en) | Castable refractories for blast furnace gutters | |
WO2013057756A1 (en) | Burned magnesia brick | |
JP2002193681A (en) | Castable refractory and waste melting furnace utilizing it | |
JP6077877B2 (en) | Castable refractories for blast furnace firewood | |
JP2011148643A (en) | Magnesia-based refractory | |
US20130260981A1 (en) | Alumina-coated spinel-silicon carbide refractory composition with high corrosion resistance to coal slag and method for manufacturing the same | |
JP5174751B2 (en) | Silicon carbide and titanium carbide containing amorphous refractories | |
JPH0687667A (en) | Zirconia-mullite containing castable refractory | |
JP2011104596A (en) | Sliding nozzle plate | |
JP2004203702A (en) | Irregular refractories and construction bodies containing serpentine or talc, and kilns lined with these | |
JP3947245B2 (en) | Corrosion resistance, oxidation resistance, irregular refractories | |
JPH08259340A (en) | Magnesia-carbon-based castable refractory | |
JP3908562B2 (en) | Irregular refractory | |
JP7626365B2 (en) | Castable refractory and molten steel ladle using same | |
JP2005089271A (en) | Carbon-containing refractory, its manufacturing method and its use application | |
JP6098834B2 (en) | Amorphous refractories for molten aluminum alloys | |
JP2004059390A (en) | Castable refractories for blast furnace gutters | |
JP2000335980A (en) | Graphite-containing amorphous refractories | |
JP4404515B2 (en) | Unshaped refractories for waste treatment furnaces | |
Ökten | Investigation of the Effect of Carbon and Titania Additions on the Mechanical Thermal and Microstructural Properties of High Alumina Refractories |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4922851 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |