[go: up one dir, main page]

JP4922633B2 - Droplet falling behavior analysis method and apparatus - Google Patents

Droplet falling behavior analysis method and apparatus Download PDF

Info

Publication number
JP4922633B2
JP4922633B2 JP2006082971A JP2006082971A JP4922633B2 JP 4922633 B2 JP4922633 B2 JP 4922633B2 JP 2006082971 A JP2006082971 A JP 2006082971A JP 2006082971 A JP2006082971 A JP 2006082971A JP 4922633 B2 JP4922633 B2 JP 4922633B2
Authority
JP
Japan
Prior art keywords
droplet
pixel
reference line
calculated
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006082971A
Other languages
Japanese (ja)
Other versions
JP2007256168A (en
Inventor
宗寿 酒井
満美子 中村
眞平 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2006082971A priority Critical patent/JP4922633B2/en
Publication of JP2007256168A publication Critical patent/JP2007256168A/en
Application granted granted Critical
Publication of JP4922633B2 publication Critical patent/JP4922633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、基板上等における液滴の転落挙動を、より高精度で測定可能な、液滴転落挙動の解析方法および装置に関する。 The present invention is a tumble behavior of droplets on the substrate choice, which can be measured with higher accuracy, to analyzing method and apparatus for droplet falling behavior.

固体表面の濡れ制御は物理と化学の境界に位置する技術課題であり、その応用範囲は表面機能や生産プロセス等あらゆる工学分野に及ぶ最も基礎的かつ重要な研究領域である。従来、固体表面の濡れはヤングの式を基礎として、組成や構造の変化と、接触角の測定等から得られるマクロな濡れとの関係が理論・実験両面から検討され、表面エネルギーやその分布、表面粗さや表面形状、電界などが複雑に関与することが知られている。   Control of wetting of solid surfaces is a technical issue located at the boundary between physics and chemistry, and its application range is the most fundamental and important research area covering all engineering fields such as surface functions and production processes. Conventionally, wetting of solid surfaces is based on Young's equation, and the relationship between changes in composition and structure and macro wetting obtained from contact angle measurement, etc. has been studied both theoretically and experimentally. It is known that surface roughness, surface shape, electric field, and the like are involved in a complicated manner.

加えて従来は、接触角測定による“静的”な濡れ性が主に評価されていたが、近年建築や輸送機械など各種の工学分野では“動的”な濡れの重要性が認識され始めている。この“動的”な濡れとは、親水性表面における濡れ広がりの速度の意味ではなく、主として撥水性表面における“液滴の除去性”のことである。今日動的な濡れ性として最も一般に評価されているものは、転落角、接触角ヒステリシスである。この接触角ヒステリシスとは前進接触角と後退接触角の差であり、図1に固体表面1上の液滴2(例えば、水滴) に関する転落角α、前進接触角θa と後退接触角θrの関係を示す。しかしながら、これらは水平に支持した試料表面を徐々に傾けていき、液滴が転落を開始した降の転落角度や前進、後退接触角を読むものであり、液滴除去速度に関する情報は全く含まれていない。例えば、液滴の転落角が1度であったとしても、超撥水表面上であれば一瞬のうちに転落するが、平滑な高分子表面では極めて遅いことが知られている。   In addition, “static” wetting by contact angle measurement has been mainly evaluated in the past, but in recent years, the importance of “dynamic” wetting has begun to be recognized in various engineering fields such as construction and transportation machinery. . This “dynamic” wetting does not mean the rate of wetting and spreading on the hydrophilic surface, but mainly “removability of droplets” on the water-repellent surface. The most commonly evaluated dynamic wettability today is the falling angle and contact angle hysteresis. This contact angle hysteresis is the difference between the advancing contact angle and the receding contact angle. FIG. 1 shows the relationship between the drop angle α, the advancing contact angle θa, and the receding contact angle θr for the droplet 2 (for example, a water droplet) on the solid surface 1. Indicates. However, these are used to gradually tilt the horizontally supported sample surface and read the falling angle, forward and backward contact angles when the droplet started to fall, and do not include any information on the droplet removal speed. Not. For example, even if the drop angle of the droplet is 1 degree, it is known that it falls on a super water-repellent surface in an instant, but is extremely slow on a smooth polymer surface.

一方、実際の工業材料では大きさや機能、意匠などから表面の傾斜角度が決まっている場合がほとんどであり、「傾斜角が何度で転落するか」ではなく「一定の傾斜角でどれくらいの速さで転落するか」という情報がより重要となってきている。例えば特許文献1、特許文献2、特許文献3、特許文献4等に測定事例が見られる。また、学術雑誌においてもMiwaら超撥水面上での水について、非特許文献1で、等加速度運動で転落することが報告されており、また、非特許文献2では、超撥水表面上でグリセロールについて、粘性抵抗のために等速度運動で転落することが報告されている。また、非特許文献3や非特許文献4では、平滑撥水表面上での水について、転落条件により加速度の傾向が変化する場合があること、また転落しながら液滴が振動する場合があることが報告されている。   On the other hand, in actual industrial materials, the inclination angle of the surface is mostly determined by the size, function, design, etc., and not `` how many times the inclination angle falls '' but `` how fast at a certain inclination angle '' The information “whether it will fall down” is becoming more important. For example, measurement examples can be seen in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like. Also, in academic journals, Miwa et al. Reported that water on a super-water-repellent surface falls by non-patent document 1 with a uniform acceleration motion. Glycerol has been reported to fall with constant velocity motion due to viscous resistance. In Non-Patent Document 3 and Non-Patent Document 4, the tendency of acceleration may change depending on the falling condition for water on a smooth water-repellent surface, and the droplet may vibrate while falling. Has been reported.

しかしながらこれらは測定手法が一定していない。固体表面の種類や形状と液滴の種類には様々な組み合わせがあり、更には液滴の固体表面での加速度は液滴の大きさや傾斜角度、固体表面の材質により変化することが知られている。液滴の転落挙動は、加速度の測定と合わせて、液滴の形状変化も同時に評価しないと総合的な検討ができない。例えば、固体表面上での液滴の転落の場合を考えると、前述したように、固体表面の種類や形状と液滴の種類には様々な組み合わせがあり、液滴の固体表面での加速度は液滴の大きさや傾斜角度、固体表面の材質により変化することが知られている。例えば液滴が「回転」しながら転落すると、転落速度が速いとされていたが、実際に液滴内部流動の可視化を行い、実証された報告例はない。また、転落時の液滴の変形の度合いは必ずしも一様ではなく、転落の条件によっては周期的な変動を伴うことがあり、そのことが転落加速度に影響する場合がある。この周期的な変動の解析を転落加速度の測定と同時に行うには、転落方向に対して側面から見た液滴の前進接触角、転落方向に対して側面から見た液滴の後退接触角、転落方向に対して側面から見た液滴の固体との接触部分の長さ、転落方向に対して側面から見た液滴の高さ、液滴外周と固体表面とが交わる2点のうち転落方向側と逆側の点の加速度のうち少なくとも一つを転落加速度とともに連続的に計測することが有効である。図2に、これらを例示する。図2において、aa は外周と固体表面が交わる点の転落方向側の点の加速度、ar は外周と固体表面が交わる点の転落方向側と逆側の点の加速度、Va は外周と固体表面が交わる点の転落方向側の点の速度、Vr は外周と固体表面が交わる点と逆側の転落方向側の点の速度、θa は外周と固体表面が交わる点の前進接触角、θr は外周と固体表面が交わる点の後退接触角、hは液滴の高さ、dは外周と固体表面が交わる2点間の距離をそれぞれ示している。 However, the measurement method is not constant. There are various combinations of types and shapes of solid surfaces and types of droplets. Furthermore, it is known that the acceleration of droplets on the solid surface varies depending on the size and inclination angle of the droplets and the material of the solid surface. Yes. The drop-down behavior of the droplet cannot be comprehensively evaluated unless the shape change of the droplet is also evaluated at the same time as the acceleration measurement. For example, considering the case of a drop falling on a solid surface, as described above, there are various combinations of the type and shape of the solid surface and the type of the droplet, and the acceleration of the droplet on the solid surface is It is known that it varies depending on the size and inclination angle of the droplet and the material of the solid surface. For example, when a droplet falls while “rotating”, the falling speed is said to be fast, but there is no report that has been demonstrated by actually visualizing the internal flow of the droplet. Further, the degree of deformation of the droplets at the time of falling is not necessarily uniform, and may be accompanied by periodic fluctuations depending on the conditions of falling, which may affect the falling acceleration. In order to analyze the periodic fluctuation simultaneously with the measurement of the falling acceleration, the advancing contact angle of the droplet viewed from the side with respect to the falling direction, the receding contact angle of the droplet viewed from the side with respect to the falling direction, The length of the contact portion of the droplet with the solid as viewed from the side with respect to the falling direction, the height of the droplet as viewed from the side with respect to the falling direction, and the falling of the two points where the outer periphery of the droplet intersects with the solid surface It is effective to continuously measure at least one of the accelerations at the point opposite to the direction side along with the falling acceleration. These are illustrated in FIG. In FIG. 2, a a is the acceleration at the point on the falling direction side at the point where the outer periphery and the solid surface intersect, a r is the acceleration at the point on the opposite side to the falling direction at the point where the outer periphery and the solid surface intersect, and V a is the outer periphery. speed of points falling direction of the point of intersection is the solid surface, V r is the outer circumference and that the solid surface intersects the opposite side speed of the points falling direction of, theta a is the advancing contact angle of the point of intersection is the outer periphery and the solid surface , Θ r is the receding contact angle at the point where the outer periphery and the solid surface intersect, h is the height of the droplet, and d is the distance between the two points where the outer periphery and the solid surface intersect.

上記のような接触角や転落角の測定装置や計測原理については様々なものが知られており、特許文献5にあるように外見上の液滴転落挙動を総合的に計測・評価する手法や装置は開発されたが、動的な液滴挙動、例えば動的な液滴移動挙動を想定した測定項目の算出アルゴリズムは未だに開発されていない。   Various measuring devices and measuring principles for the contact angle and the falling angle as described above are known, and as disclosed in Patent Document 5, a method for comprehensively measuring and evaluating the appearance of falling droplets, Although an apparatus has been developed, an algorithm for calculating a measurement item that assumes a dynamic droplet behavior, for example, a dynamic droplet movement behavior, has not yet been developed.

液滴挙動の解析に当っては、撮像した画像において1ピクセル単位で座標を取得しているので、素子の解像度により測定項目の精度が支配される。つまり、500×500ピクセルの解像度の時、縦横40mmの画郭の中に5mm正方形の被写体がある場合、被写体は62×62=約3844ピクセル(1ピクセル=0.08mm)の正方形によって表現される。よって、1ピクセル単位で、液滴の転落挙動を特徴づける測定項目(転落方向に対して側面から見た液滴の前進接触角、転落方向に対して側面から見た液滴の後退接触角、転落方向に対して側面から見た液滴の固体表面との接触部分の長さ、転落方向に対して側面から見た液滴の高さ、液滴外周と固体表面とが交わる2点のうち転落方向側と逆側の点の加速度など)を算出する場合、精度不足により、データがばらつく原因になる。特に、座標値から円近似をかける角度算出では、ばらつきが大きい。   In analyzing the droplet behavior, since the coordinates are acquired in units of one pixel in the captured image, the accuracy of the measurement item is governed by the resolution of the element. In other words, at a resolution of 500 × 500 pixels, if there is a 5 mm square subject in a 40 mm vertical and horizontal area, the subject is represented by a square of 62 × 62 = about 3844 pixels (1 pixel = 0.08 mm). Therefore, in one pixel unit, the measurement items that characterize the falling behavior of the droplet (the advancing contact angle of the droplet viewed from the side with respect to the falling direction, the receding contact angle of the droplet viewed from the side with respect to the falling direction, The length of the contact portion of the droplet with the solid surface as viewed from the side with respect to the falling direction, the height of the droplet as viewed from the side with respect to the falling direction, and two points where the outer periphery of the droplet intersects with the solid surface When calculating the acceleration of the point on the opposite side to the falling direction, etc.), the data may vary due to insufficient accuracy. In particular, the angle calculation for applying a circle approximation from the coordinate value has a large variation.

また、移動(転落)する液滴において、上記した測定項目の同時測定に耐えるような動画解析のアルゴリズムは過去に存在しない。特に、一定の距離離れた液滴輪郭のピクセル位置を求める方法では、測定点のY座標のふらつきが大きく、接触角の測定値が十分な精度を得られない。これは、従来の計測点の取得方法に問題があるためであり、妥当な計測点(ピクセル座標)の取得アルゴリズムを開発する必要性があった。
特開2001-259509号公報 特開2002-29783号公報 特開2002-97192号公報 特開平11-116973号公報 特願2005-231801 Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K. and Watanabe, T., Langmuir, Vol 16, p. 5754-5760 (2000) Richard, D. and Quere, D., Europhys. Lett., Vol. 48, p. 286-291 (1999) Nakajima, A, Suzuki, S., Kameshima, Y., Yoshida, N., Watanabe, T. and Okada, K., Chem. Lett., VoL32, P.1148-1149 (2003) Suzuki, S., Kameshima, Y., Nakajima, A and Okada, K., Surf. Sci., Vo1.557/1-3. p. L163-L168 (2004)
In addition, there is no moving image analysis algorithm that can withstand simultaneous measurement of the above-described measurement items in a moving (falling) droplet. In particular, in the method of obtaining the pixel position of the droplet contour that is separated by a certain distance, the fluctuation of the Y coordinate of the measurement point is large, and the measurement value of the contact angle cannot obtain sufficient accuracy. This is because there is a problem in the conventional method for acquiring measurement points, and there is a need to develop an acquisition algorithm for appropriate measurement points (pixel coordinates).
JP 2001-259509 A JP 2002-29783 A JP 2002-97192 A Japanese Patent Laid-Open No. 11-116973 Japanese Patent Application 2005-231801 Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K. and Watanabe, T., Langmuir, Vol 16, p. 5754-5760 (2000) Richard, D. and Quere, D., Europhys. Lett., Vol. 48, p. 286-291 (1999) Nakajima, A, Suzuki, S., Kameshima, Y., Yoshida, N., Watanabe, T. and Okada, K., Chem. Lett., VoL32, P.1148-1149 (2003) Suzuki, S., Kameshima, Y., Nakajima, A and Okada, K., Surf. Sci., Vo1.557 / 1-3.p.L163-L168 (2004)

例えば液滴転落挙動を解析する時、測定対象がピクセル間を移動するときに、測定誤差が生じる。つまり、1ピクセルが意味するのは、点の座標ではなく、面積を持つ座標領域であり、測定誤差は1ピクセル単位未満の座標変化を表現できないことから発生する。これを解決するためには、ハード的に解像度をげる方法と、ソフト的画像処理により1ピクセルあたりの座標値の有効桁を多くする方法(サブピクセル処理)がある。 For example, when analyzing the droplet falling behavior, a measurement error occurs when the measurement object moves between pixels. That is, one pixel means not a point coordinate but a coordinate area having an area, and a measurement error occurs because a coordinate change less than one pixel unit cannot be expressed. To solve this problem, hard to a method to increase the process on gel resolution, the significant digits of the coordinate value per pixel by software image processor (sub-pixel processing).

そこで本発明では、液滴転落挙動の解析における測定項目(例えば、図2)の算出のために、サブピクセル処理を用いて座標値を例えば1/100ピクセル単位で算出し、測定点の取得のための幾何学的条件を導入し、最適な解析アルゴリズムを開発することを課題とし、この課題に適合する液滴転落挙動解析方法および装置を提供することを目的とする。 Therefore, in the present invention, in order to calculate a measurement item (for example, FIG. 2) in the analysis of the droplet falling behavior, a coordinate value is calculated in units of, for example, 1/100 pixels using subpixel processing, and measurement points are acquired. An object of the present invention is to introduce a geometric condition for developing an optimal analysis algorithm, and to provide a method and an apparatus for analyzing a droplet falling behavior that meets this problem.

上記課題を解決するために、本発明に係る液滴転落挙動解析方法は、基準線に対する液滴の転落挙動を、多数のピクセルを含む画像を撮像して解析するに際し、液滴と前記基準線との交点としての液滴の端点を含む端点含有ピクセルと、該端点含有ピクセルに対し前記基準線上にて隣接する2ピクセル、若しくは、該端点から一定の距離だけ離れた複数のピクセルとの濃度分布から、前記端点含有ピクセル内のサブピクセル処理を行うことにより、液滴の端点座標を1ピクセル単位未満で算出するアルゴリズムを用い、前記基準線上の液滴の端点と、前記基準線に対し平行に延びるとともに一定間隔nと2nにて配置された2直線と液滴との交点を、前記アルゴリズムを用いて1ピクセル単位未満の座標として算出し、算出した3点の座標を用いて曲線補間を行い、前記基準線と前記液滴との交点である前記液滴の端点をその曲線の接点として接線を求め、該接線と前記基準線のなす角度を液滴の接触角として算出することを特徴とする方法からなる。 In order to solve the above-described problems, a droplet falling behavior analysis method according to the present invention is a method of analyzing a droplet falling behavior with respect to a reference line by capturing an image including a large number of pixels and analyzing the droplet and the reference line. Concentration distribution of an end point-containing pixel including an end point of a droplet as an intersection with the pixel, and two pixels adjacent to the end point-containing pixel on the reference line, or a plurality of pixels separated by a certain distance from the end point From this, an algorithm for calculating the end point coordinates of the droplet in less than one pixel unit by performing sub-pixel processing in the end point-containing pixels is used, and the droplet end point on the reference line is parallel to the reference line. the intersection of the two straight lines and the droplets are disposed at regular intervals n and 2n extends, using the algorithm calculated as coordinates of less than 1 pixels, the coordinates of the calculated three-point The curve is interpolated to obtain a tangent with the end point of the droplet, which is the intersection of the reference line and the droplet, as the contact point of the curve, and the angle between the tangent and the reference line is calculated as the contact angle of the droplet It consists of the method characterized by doing.

上記の本発明に係る液滴転落挙動解析方法においては、一つの液滴と上記基準線との交点としての2つの端点の座標をそれぞれ1ピクセル単位未満で算出することができる。 In the droplet falling behavior analysis method according to the present invention, the coordinates of two end points as intersections of one droplet and the reference line can be calculated in units of less than one pixel.

また、1ピクセル単位未満で算出された上記2つの端点の座標から液滴底面の長さを算出することもできる。   It is also possible to calculate the length of the bottom surface of the droplet from the coordinates of the two end points calculated in units of one pixel.

また、上記撮像における各フレームのキャプチャ画像から、上記1ピクセル単位未満で算出された上記端点の座標を求め、その端点の移動距離と各フレームの時間間隔から液滴の移動速度及び/又は加速度を算出することができる。   Further, the coordinates of the end points calculated in units of less than one pixel are obtained from the captured image of each frame in the imaging, and the movement speed and / or acceleration of the droplet is determined from the movement distance of the end points and the time interval of each frame. Can be calculated.

また、液滴の上記基準線から最も離れた位置にある点を上記アルゴリズムを用いて1ピクセル単位未満の座標として算出し、該点と基準線との距離を液滴の高さとして算出することもできる。   In addition, a point that is farthest from the reference line of the droplet is calculated as a coordinate of less than one pixel unit using the algorithm, and a distance between the point and the reference line is calculated as the height of the droplet. You can also.

さらに本発明は、上記のような方法の少なくとも1つを用いる手段を含む液滴転落挙動解析装置も提供する。 Furthermore, the present invention also provides a droplet falling behavior analysis apparatus including means using at least one of the methods as described above.

本発明によれば、液滴の転落挙動を、従来では達成し得なかった高精度で解析することができるようになる。特に後述の実施例にも示すように、転落する液滴の挙動を解析するに際し、幾何学的条件による妥当な計測点の取得とサブピクセル処理により、1/100ピクセル単位程度の座標取得が可能になり、算出項目(例えば、転落方向に対して側面から見た液滴の前進接触角、転落方向に対して側面から見た液滴の後退接触角、転落方向に対して側面から見た液滴の固体表面との接触部分の長さ、転落方向に対して側面から見た液滴の高さ、液滴外周と固体表面とが交わる2点のうち転落方向側と逆側の点の加速度など)の精度向上を効果的に達成することができる。その結果、液滴の動的挙動の評価解析方法において、新規な道を拓くことができた。 According to the present invention, it is possible to analyze the falling behavior of a droplet with high accuracy that could not be achieved in the past. In particular, as shown in the examples described later, when analyzing the behavior of falling droplets, it is possible to acquire coordinates in units of 1/100 pixels by acquiring appropriate measurement points based on geometric conditions and subpixel processing. Calculated items (for example, the advancing contact angle of a droplet viewed from the side with respect to the falling direction, the receding contact angle of the droplet viewed from the side with respect to the falling direction, and the liquid viewed from the side with respect to the falling direction. The length of the contact portion of the droplet with the solid surface, the height of the droplet viewed from the side with respect to the falling direction, and the acceleration at the point on the opposite side of the falling direction out of the two points where the droplet outer periphery and the solid surface intersect Etc.) can be effectively achieved. As a result, we were able to pioneer a new path in the method for evaluating and analyzing the dynamic behavior of droplets.

以下に、本発明に係る液滴転落挙動解析方法および装置について望ましい実施の形態とともに詳細に説明する。 Hereinafter, the droplet sliding behavior analysis method and apparatus according to the present invention will be described in detail with preferred embodiments.

(前処理)
液滴が固体表面としての基板の表面上を転落移動するときの測定項目の算出にあたり、独自の幾何学的条件を導入し、サブピクセル処理を組み合わせたアルゴリズムを用いることで、液滴転落挙動の測定項目算出を可能にした。測定項目の算出処理前に、以下の手順で前処理を行なうことが望ましい。液滴部分を抽出する境界条件の輝度の設定(2値化の閾値)は、液滴の差分画像で、液滴部分が削られないよう、望ましくは5〜100(図3に示すように、基準線としての固体表面1に対して液滴2の部分が白の場合)の間程度とするこが好ましい。
(Preprocessing)
In the calculation of the measurement item when the liquid droplets are falling moved over the surface of the substrate as a solid surface, introducing a unique geometrical conditions, by using an algorithm that combines sub-pixel processing, the droplets falling behavior Measurement items can be calculated. Before the measurement item calculation process, it is desirable to perform the pre-process according to the following procedure. The luminance setting (binarization threshold) of the boundary condition for extracting the droplet portion is preferably 5 to 100 (as shown in FIG. 3) so that the droplet portion is not scraped in the difference image of the droplet. preferably and a child of about between the case portion of the droplets 2 is white against a solid surface 1) as a reference line.

前処理としては、例えば以下のような処理が挙げられる。
前処理1:軌跡、背景画像取得
前処理2:画面間演算(差分)背景の輝度−各コマの像の輝度設定
差分処理後:低輝度(黒);固定物体
高輝度(白);移動物体(液滴と反射光の一部)
前処理3:フレーム範囲指定
以下の4〜7を処理する領域を指定
前処理4:2値化
ある輝度以上を、液滴とする。→境界条件より抽出(例えば、図2)
前処理5:穴埋め
液滴部分の空洞部分を埋める。
前処理6:粒子削除
液滴部分以外の部分(液滴部分に接しない部分)を削除
前処理7:外縁部削除
処理領域外縁部の削除
Examples of pre-processing include the following processing.
Pre-processing 1: Trajectory and background image acquisition pre-processing 2: Inter-screen calculation (difference) Background luminance-Brightness setting of each frame image
After differential processing: low brightness (black); fixed object
High brightness (white); moving object (droplet and part of reflected light)
Preprocessing 3: Frame range specification
Specify the area to process 4-7 below Pre-processing 4: Binary
A certain luminance or higher is defined as a droplet. → Extracted from boundary conditions (for example, Fig. 2)
Pretreatment 5: hole filling
Fill the cavity of the droplet part.
Pre-processing 6: Particle deletion
Pre-deletion process 7: deletion of outer edge part other than the liquid droplet part (part not contacting the liquid droplet part)
Deleting the outer edge of the processing area

上記の前処理後、幾何学的条件(液滴と固体表面の境界としての基準線)と液滴との交点である端点以外の液滴の周囲座標を取得するためのY座標の間隔nを設定後、下記のようなアルゴリズムを用いることで、液滴の転落(加)速度、接触角、底面の長さ、高さ等の同時算出が可能になる。図4に、このアルゴリズムのフローの一例を示す。   After the above pre-processing, the interval n of the Y coordinate for obtaining the peripheral coordinates of the droplet other than the end point which is the intersection of the geometric condition (the reference line as the boundary between the droplet and the solid surface) and the droplet After the setting, the following algorithm can be used to simultaneously calculate the drop (acceleration) speed, contact angle, bottom length, height, and the like of the droplet. FIG. 4 shows an example of the flow of this algorithm.

(液滴端点抽出)
上記前処理4で抽出した部分の周囲座標(周囲座標値はピクセル単位なので、整数値)を取得し、液滴の周囲座標値と基準線(液滴と基板の境界線)の交点を液滴の端点(計測点)とし、左側端点Lの座標(xL,yL)と左側端点Rの座標(xR,yR)を求める。各映像に対して固体表面と液滴表面の間の境界線(幾何学的条件)を設定し、「x座標一定の時、基準線のy座標>y(上方)の部分が液滴領域である」として、抽出する。LとRは、周囲座標値から取得するので、ピクセル単位(整数値)の座標値である。
(Droplet end point extraction)
Peripheral coordinates of the part extracted in the pre-processing 4 (an integer value because the peripheral coordinate values are in units of pixels) are acquired, and the intersection of the peripheral coordinate value of the droplet and the reference line (the boundary line between the droplet and the substrate) is determined as the droplet. The coordinates (xL, yL) of the left end point L and the coordinates (xR, yR) of the left end point R are obtained. For each image, a boundary line (geometric condition) between the solid surface and the droplet surface is set. “When the x coordinate is constant, the y coordinate> y (upper) portion of the reference line is the droplet region. It is extracted. Since L and R are obtained from surrounding coordinate values, they are coordinate values in pixel units (integer values).

(サブピクセル処理)
交点(端点)L(xL,yL)及び交点R(端点)(xR,yR)を含むピクセルと、それに隣接する2つのピクセルについて、左右それぞれ、3つずつのピクセルの輝度パターンから(図5に左側端点部を例示する。)、1ピクセル未満、例えば0.01ピクセル単位の座標値(0.01ピクセル単位)L ’(xL ’,yL’)及びR’(xR’,yR’)を計算する。前処理4で抽出した部分の液滴周囲座標のピクセル(端点を含むピクセル3)を中心として、それに隣接する2つピクセル4を含め、x軸方向に3つ連続したピクセル3、4の輝度情報と座標値の関係を、例えば図6に示すように3次関数で解析し、2値化時の輝度からx座標の座標値を得る。なお、図5には、端点含有ピクセル3と、端点含有ピクセル3に対し基準線上にて隣接する2ピクセル4との濃度分布から、端点含有ピクセル3内のサブピクセル処理を行うことにより、液滴の端点座標を1ピクセル単位未満で算出するアルゴリズムを用いるようにした例を示したが、端点含有ピクセル3と、端点含有ピクセル3に対し基準線上にて該端点から一定の距離だけ離れた複数のピクセルとの濃度分布から、端点含有ピクセル3内のサブピクセル処理を行うことにより、液滴の端点座標を1ピクセル単位未満で算出するアルゴリズムを用いることも可能である。この場合、端点から一定の距離だけ離れた複数のピクセルとしては、例えば、端点含有ピクセル3の隣の隣の2つのピクセルを選択したり、さらにそこから数えて隣の隣の2つのピクセルも含む複数のピクセルを選択したりすることが可能である。
(Sub-pixel processing)
For the pixel including the intersection (end point) L (xL, yL) and the intersection R (end point) (xR, yR) and the two adjacent pixels, the luminance pattern of three pixels on each of the left and right (see FIG. 5). The left end portion is exemplified.) Coordinate values (0.01 pixel unit) L ′ (xL ′, yL ′) and R ′ (xR ′, yR ′) of less than one pixel, for example, 0.01 pixel unit are calculated. Luminance information of three consecutive pixels 3 and 4 in the x-axis direction, including the two pixels 4 that are adjacent to the pixel (pixel 3 including the end point) of the droplet peripheral coordinates of the portion extracted in the preprocessing 4 For example, as shown in FIG. 6, the relationship between the coordinate value and the coordinate value is analyzed by a cubic function, and the coordinate value of the x coordinate is obtained from the luminance at the time of binarization. In FIG. 5, by performing sub-pixel processing in the endpoint-containing pixel 3 from the density distribution of the endpoint-containing pixel 3 and two pixels 4 adjacent to the endpoint-containing pixel 3 on the reference line, Although an example in which an algorithm for calculating the end point coordinates of each pixel in less than one pixel unit has been shown, the end point-containing pixel 3 and a plurality of end point-containing pixels 3 separated from the end point by a certain distance on the reference line It is also possible to use an algorithm that calculates the end point coordinates of a droplet in units of less than one pixel by performing sub-pixel processing in the end point containing pixel 3 from the density distribution with the pixel. In this case, as the plurality of pixels that are separated from the end point by a certain distance, for example, two adjacent pixels adjacent to the end point-containing pixel 3 are selected, and two adjacent pixels counted from there are also included. It is possible to select a plurality of pixels.

(接触角算出)
液滴2の形状を曲線近似(円・だ円)により関数表現する場合、左右それぞれ、端点座標を含む3点が必要なので、前記前処理1で取得した周囲座標上で、図7に示すように、左側;L1(xL1,yL1)・L2(xL2,yL2)、右側;R1(xR1,yR1)・R2(xR2,yR2)を取得する。幾何学的条件(基準線と平行に延びる直線で、一定間隔nで配置された直線上におけるピクセル)を設定することにより、基準線と距離nと2nの距離を持つ平行な直線と液滴周囲座標との交点を、それぞれ、L1(xL1,yL1)・R1(xR1,yR1)、L2(xL2,yL2)・R2(xR2,yR2)とする。さらに、これら4点は、液滴端点抽出の前処理3と同様に、1 /100ピクセル単位で、座標値を求める。L’・L’1・L’2とR’・R’1・R’2のそれぞれ3点を通る円(円:C1・C2)を、それぞれ求める(図8)。円C1とC2の中心と交点L’とR’を通る直線の垂線を、それぞれ求め(図9)、垂線と基準直線となす角を、それぞれの接触角θLとθRとした(図10)。
(Contact angle calculation)
When the shape of the liquid droplet 2 is expressed as a function by curve approximation (circle / ellipse), three points including the end point coordinates are required on each of the left and right sides, and therefore, as shown in FIG. L1 (xL1, yL1) · L2 (xL2, yL2), right side: R1 (xR1, yR1) · R2 (xR2, yR2). By setting geometric conditions (straight lines parallel to the reference line and pixels on a straight line arranged at a constant interval n), the parallel straight line having a distance n and 2n from the reference line and the periphery of the droplet The intersections with the coordinates are L1 (xL1, yL1), R1 (xR1, yR1), L2 (xL2, yL2), R2 (xR2, yR2), respectively. Further, the coordinate values of these four points are obtained in units of 1/100 pixels as in the preprocessing 3 for extracting the droplet end points. Circles (circles: C1 and C2) passing through 3 points each of L ', L'1, and L'2 and R', R'1, and R'2 are obtained (Fig. 8). The perpendiculars of the straight lines passing through the centers of the circles C1 and C2 and the intersections L ′ and R ′ were respectively obtained (FIG. 9), and the angles formed between the perpendiculars and the reference line were defined as the contact angles θL and θR (FIG. 10).

(底面の長さの算出)
点L’とR’の座標から、2点間の距離を算出した。
(Calculation of bottom length)
The distance between the two points was calculated from the coordinates of the points L ′ and R ′.

(高さの算出)
基準線と平行な直線が、基準線との距離が最も大きい、前処理1で取得した液滴周囲座標Hを持つとき、そのHと基準線の間の距離を液滴の高さとした。
(Height calculation)
When a straight line parallel to the reference line has the droplet peripheral coordinate H acquired in the pretreatment 1 having the largest distance from the reference line, the distance between the H and the reference line is defined as the height of the droplet.

このように、妥当な幾何学的条件の確立及び設定とサブピクセル処理を行なうことにより、液滴がセル間を移動するときの座標値のバラツキを低減させ、移動時の滑落性を示す端点の速度をはじめ、滑落時の形態変化を示す測定項目(転落方向に対して側面から見た液滴の前進接触角、転落方向に対して側面から見た液滴の後退接触角、転落方向に対して側面から見た液滴の固体表面との接触部分の長さ、転落方向に対して側面から見た液滴の高さなど)の精度を向上させることができる。さらに、従来は、静的な接触角を計測するアルゴリズムは存在したが、固体表面上で高速滑落するときの液滴転落挙動の計測については、本アルゴリズムにより、初めて実現することができる。   In this way, by establishing and setting appropriate geometric conditions and performing sub-pixel processing, variation in coordinate values when droplets move between cells is reduced, and endpoints that show sliding properties during movement are reduced. Measurement items that show the shape change at the time of sliding, including velocity (advanced contact angle of the droplet viewed from the side with respect to the falling direction, receding contact angle of the droplet viewed from the side with respect to the falling direction, and the falling direction Thus, the accuracy of the length of the contact portion of the droplet with the solid surface viewed from the side surface, the height of the droplet viewed from the side surface with respect to the falling direction, and the like can be improved. Further, conventionally, there has been an algorithm for measuring a static contact angle. However, measurement of a droplet falling behavior when sliding on a solid surface at high speed can be realized for the first time by this algorithm.

以下、本発明により実際に計測、評価した実施例を例示して、本発明をより具体的に説明する。なお、これらの実施例は単に例示であって本発明を制限するものではない。   Hereinafter, the present invention will be described more specifically with reference to examples actually measured and evaluated according to the present invention. In addition, these Examples are only illustrations and do not restrict | limit this invention.

実施例1(サブピクセル処理+独自の幾何学的条件導入後の接触角算出結果)
図11に、サブピクセル処理+独自の幾何学的条件導入後の接触角算出結果を示す。このようにy座標を固定してL’1・L’2・R’1・R’2の4点を決めることにより、液滴のピクセル間の移動により発生していた、前処理7で算出されるθLとθRのばらつきが抑えられる。
Example 1 (subpixel processing + contact angle calculation result after introducing unique geometric conditions)
FIG. 11 shows the calculation result of the contact angle after subpixel processing + introducing unique geometric conditions. In this way, the y-coordinate is fixed and the four points L'1, L'2, R'1, and R'2 are determined. Variation of θL and θR is suppressed.

比較例(従来技術を用いた接触角の算出結果)
図12に、サブピクセル処理を用いないアルゴリズムで測定した接触角の算出結果を示す。
Comparative example 1 (calculation result of contact angle using conventional technology)
FIG. 12 shows the calculation result of the contact angle measured by an algorithm that does not use subpixel processing.

実施例1と比較例1を比較すると、明らかに、本発明によるサブピクセル処理と幾何学的パターンマッチングを行なうことにより、測定精度が向上したことが分かる。   Comparing Example 1 and Comparative Example 1, it can be clearly seen that the measurement accuracy is improved by performing the sub-pixel processing and the geometric pattern matching according to the present invention.

本発明は、液滴転落挙動を高精度に把握することが望まれるあらゆる産業分野において適用することができる。 The present invention can be applied to all industrial fields in which it is desired to accurately grasp the droplet falling behavior.

前進、後退接触角と転落角の関係を示す概略説明図である。It is a schematic explanatory drawing which shows the relationship between a forward and backward contact angle, and a fall angle. 転落加速度とともに測定する項目を示す概略説明図である。It is a schematic explanatory drawing which shows the item measured with a fall acceleration. 背景画像から液滴部分を抽出した時の概略説明図である。It is a schematic explanatory drawing when a droplet part is extracted from a background image. 測定項目算出アルゴリズムの作業フローの概略説明図である。It is a schematic explanatory drawing of the work flow of a measurement item calculation algorithm. 左右3つずつのピクセルの輝度パターンから、0.01ピクセル単位の座標値を求める時の概略説明図である。It is a schematic explanatory drawing when the coordinate value of 0.01 pixel unit is calculated | required from the luminance pattern of three pixels on either side. x軸方向に3つ連続したピクセルの輝度情報と座標値の関係を3次関数で解析し、2値化した時の輝度からx座標の座標値を得る時の概略説明図である。It is a schematic explanatory drawing when the relationship between the luminance information and coordinate values of three consecutive pixels in the x-axis direction is analyzed with a cubic function, and the coordinate value of the x coordinate is obtained from the binarized luminance. 液滴形状を曲線近似(円・だ円)により関数表現する場合、左右それぞれ、端点座標以外に必要な周囲座標上の2点を設定する時の概略説明図である。FIG. 5 is a schematic explanatory diagram when two points on peripheral coordinates other than the end point coordinates are set when the droplet shape is expressed as a function by curve approximation (circle / ellipse). 端点座標と周囲座標上の2点を通る円を求めた時の概略説明図である。It is a schematic explanatory drawing when the circle which passes 2 points | pieces on an end point coordinate and a surrounding coordinate is calculated | required. 求めた円上の端点を接点として接線を求めた時の概略説明図である。It is a schematic explanatory drawing when the tangent is calculated | required by making the end point on the calculated | required circle into a contact. 接線と基板設定した線とのなす角を求めた時の概略説明図である。It is a schematic explanatory drawing when the angle | corner which the tangent and the line which set the board | substrate set was calculated | required. 実施例1におけるサブピクセル処理と独自の幾何学的条件導入後の接触角算出結果を示す特性図である。It is a characteristic view which shows the contact angle calculation result after the subpixel process in Example 1, and original geometric conditions introduction. 比較例1におけるサブピクセル処理を用いないアルゴリズムで測定した接触角の算出結果を示す特性図である。It is a characteristic view which shows the calculation result of the contact angle measured with the algorithm which does not use the sub pixel process in the comparative example 1.

符号の説明Explanation of symbols

1 固体表面(基準線)
2 液滴
3 端点を含むピクセル
4 隣接ピクセル
1 Solid surface (reference line)
2 Droplet 3 Pixel including the end point 4 Adjacent pixel

Claims (6)

基準線に対する液滴の転落挙動を、多数のピクセルを含む画像を撮像して解析するに際し、液滴と前記基準線との交点としての液滴の端点を含む端点含有ピクセルと、該端点含有ピクセルに対し前記基準線上にて隣接する2ピクセル、若しくは、該端点から一定の距離だけ離れた複数のピクセルとの濃度分布から、前記端点含有ピクセル内のサブピクセル処理を行うことにより、液滴の端点座標を1ピクセル単位未満で算出するアルゴリズムを用い、前記基準線上の液滴の端点と、前記基準線に対し平行に延びるとともに一定間隔nと2nにて配置された2直線と液滴との交点を、前記アルゴリズムを用いて1ピクセル単位未満の座標として算出し、算出した3点の座標を用いて曲線補間を行い、前記基準線と前記液滴との交点である前記液滴の端点をその曲線の接点として接線を求め、該接線と前記基準線のなす角度を液滴の接触角として算出することを特徴とする液滴転落挙動解析方法。 In analyzing the falling behavior of the droplet relative to the reference line by capturing an image including a large number of pixels, an endpoint-containing pixel including the endpoint of the droplet as an intersection of the droplet and the reference line, and the endpoint-containing pixel By performing sub-pixel processing in the end point-containing pixels from the density distribution with two pixels adjacent on the reference line or with a plurality of pixels separated from the end point by a certain distance, Using an algorithm for calculating coordinates in units of less than one pixel, the end point of the droplet on the reference line and the intersection of the two straight lines that extend parallel to the reference line and are arranged at constant intervals n and 2n and the droplet Is calculated as coordinates of less than one pixel unit using the algorithm, curve interpolation is performed using the calculated coordinates of the three points, and the liquid is an intersection of the reference line and the droplet Droplet sliding behavior analysis method characterized in that the end points determine the tangent line as the contact of the curve to calculate the angle between the reference line and該接line as the contact angle of the droplet. 一つの液滴と前記基準線との交点としての2つの端点の座標をそれぞれ1ピクセル単位未満で算出する、請求項1に記載の液滴転落挙動解析方法。 The droplet falling behavior analysis method according to claim 1, wherein coordinates of two end points as intersections of one droplet and the reference line are calculated in units of less than one pixel. 前記1ピクセル単位未満で算出された2つの端点の座標から液滴底面の長さを算出する、請求項2に記載の液滴転落挙動解析方法。 The droplet falling behavior analysis method according to claim 2, wherein the length of the droplet bottom surface is calculated from the coordinates of the two end points calculated in units of less than one pixel. 前記撮像における各フレームのキャプチャ画像から、前記1ピクセル単位未満で算出された前記端点の座標を求め、その端点の移動距離と各フレームの時間間隔から液滴の移動速度及び/又は加速度を算出する、請求項1〜3のいずれかに記載の液滴転落挙動解析方法。 From the captured image of each frame in the imaging, the coordinates of the end points calculated in units of less than one pixel are obtained, and the moving speed and / or acceleration of the droplet are calculated from the moving distance of the end points and the time interval of each frame. The droplet falling behavior analysis method according to any one of claims 1 to 3. 液滴の前記基準線から最も離れた位置にある点を前記アルゴリズムを用いて1ピクセル単位未満の座標として算出し、該点と基準線との距離を液滴の高さとして算出する、請求項1〜4のいずれかに記載の液滴転落挙動解析方法。 The point at the position farthest from the reference line of the droplet is calculated as coordinates of less than one pixel unit using the algorithm, and the distance between the point and the reference line is calculated as the height of the droplet. The droplet falling behavior analysis method according to any one of 1 to 4. 請求項1〜5のいずれかに記載の方法の少なくとも1つを用いる手段を含むことを特徴とする液滴転落挙動解析装置。 A droplet falling behavior analysis apparatus comprising means for using at least one of the methods according to claim 1.
JP2006082971A 2006-03-24 2006-03-24 Droplet falling behavior analysis method and apparatus Expired - Fee Related JP4922633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082971A JP4922633B2 (en) 2006-03-24 2006-03-24 Droplet falling behavior analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082971A JP4922633B2 (en) 2006-03-24 2006-03-24 Droplet falling behavior analysis method and apparatus

Publications (2)

Publication Number Publication Date
JP2007256168A JP2007256168A (en) 2007-10-04
JP4922633B2 true JP4922633B2 (en) 2012-04-25

Family

ID=38630553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082971A Expired - Fee Related JP4922633B2 (en) 2006-03-24 2006-03-24 Droplet falling behavior analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP4922633B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539676B1 (en) * 2014-02-27 2015-07-27 경상대학교산학협력단 Contact angle measuring method
CN112378953A (en) * 2020-11-25 2021-02-19 清华大学 Observation device for liquid drops colliding with metal bottom plate and application of observation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120767B2 (en) * 1998-01-16 2000-12-25 日本電気株式会社 Appearance inspection device, appearance inspection method, and recording medium recording appearance inspection program
JP4106836B2 (en) * 1999-12-09 2008-06-25 ソニー株式会社 Inspection device
JP3767500B2 (en) * 2002-03-12 2006-04-19 セイコーエプソン株式会社 Method and apparatus for measuring dynamic contact angle
JP2004325087A (en) * 2003-04-21 2004-11-18 Seiko Epson Corp Liquid coating evaluation method and apparatus
JP2005030963A (en) * 2003-07-08 2005-02-03 Canon Inc Position detecting method
JP4563890B2 (en) * 2004-08-10 2010-10-13 財団法人神奈川科学技術アカデミー Method and apparatus for measuring droplet movement behavior

Also Published As

Publication number Publication date
JP2007256168A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Song et al. A generalized drop length–height method for determination of contact angle in drop-on-fiber systems
CN108562250B (en) Keyboard keycap flatness rapid measurement method and device based on structured light imaging
Andersen et al. Drop shape analysis for determination of dynamic contact angles by double sided elliptical fitting method
JP2014228357A (en) Crack detecting method
CN103268409B (en) A kind of method measuring tunnel-liner rock fracture width
KR102483920B1 (en) Methods for Characterization by CD-SEM Scanning Electron Microscopy
JP4922633B2 (en) Droplet falling behavior analysis method and apparatus
CN101504770A (en) Structural light strip center extraction method
CN211927018U (en) Novel liquid level measuring device
Khan et al. Integrated digital image analyses for understanding the particle shape effects on sand–geomembrane interface shear
Parikh et al. Volumetric defect analysis in friction stir welding based on three dimensional reconstructed images
US7885467B2 (en) Systems and methods for automatically determining object information and systems and methods for control based on automatically determined object information
CN103411562B (en) A kind of structured light strip center extraction method based on dynamic programming and average drifting
CN111077055B (en) Chloride ion penetration depth measuring method
KR20190097110A (en) How to implement CD-SEM characterization technology
JP2010085376A (en) Method for measuring pattern using scanning electron microscope
CN104165615A (en) Surface microtexture detecting method
Taylor et al. Investigating applicability of surface roughness parameters in describing the metallic AM process
Ahmed et al. Electrolyte jet tomography: Three-dimensional microstructure mapping with an electrochemical machine tool and an optical microscope
CN115096202A (en) Method for detecting deformation defect of cylindrical surface to-be-detected body
JPH0339603A (en) Contour detecting method for pattern and length measuring instrument using same method
CN109345579B (en) A kind of acquisition method of liquid-liquid interface in micro-capillary
JP4424065B2 (en) Measuring method using scanning probe microscope
CN114037705B (en) Metal fracture fatigue source detection method and system based on moire lines
CN119006443B (en) Wear-resistant material testing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4922633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees