[go: up one dir, main page]

JP4911822B2 - Production method of ion exchange resin membrane - Google Patents

Production method of ion exchange resin membrane Download PDF

Info

Publication number
JP4911822B2
JP4911822B2 JP2001030970A JP2001030970A JP4911822B2 JP 4911822 B2 JP4911822 B2 JP 4911822B2 JP 2001030970 A JP2001030970 A JP 2001030970A JP 2001030970 A JP2001030970 A JP 2001030970A JP 4911822 B2 JP4911822 B2 JP 4911822B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
membrane
resin membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001030970A
Other languages
Japanese (ja)
Other versions
JP2002231270A (en
Inventor
直人 三宅
卓也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2001030970A priority Critical patent/JP4911822B2/en
Publication of JP2002231270A publication Critical patent/JP2002231270A/en
Application granted granted Critical
Publication of JP4911822B2 publication Critical patent/JP4911822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に用いられるイオン交換樹脂膜に関するものである。
【0002】
【従来の技術】
イオン交換樹脂は、高分子鎖中にスルホン酸基やカルボン酸基等の強酸基を有する高分子材料であって特定のイオンを選択的に透過する性質を有しているため、固体高分子型燃料電池をはじめ、クロルアルカリ、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等の様々な用途に用いられている。中でも燃料電池は、水素やメタノール等を電気化学的に酸化する事により、燃料の化学エネルギーを電気エネルギーに変換するものであり、クリーンな電気エネルギー供給源として注目されている。
【0003】
ところで、このような燃料電池に用いるイオン交換樹脂膜には高いイオン伝導度を示す事が求められる。
イオン交換樹脂膜のイオン伝導度は膜の含水率に大きく依存することが特開平4−366137号公報、特開平6−342665号公報に報告されており、高含水率を有するイオン交換樹脂膜ほど高いイオン伝導度を示す事がわかっている。そのため、燃料電池に用いる場合、高含水率となるイオン交換樹脂膜を使用して、高イオン伝導度を達成する事で、発電時の電気抵抗を低くする工夫がなされている。
【0004】
しかしながら、このような高含水率を有するイオン交換樹脂膜は、吸水及び脱水に伴う膜の寸法変化が大きく、取り扱いが極めて煩雑であると同時に、燃料電池運転時において、存在する水の増減により、イオン交換樹脂膜が膨張収縮を繰り返す事により劣化し、長期耐久性の面でも問題があった。
一方、イオン交換樹脂膜のイオン伝導度は、イオン交換基の数にも大きく依存しており、通常イオン交換基1当量当たりの乾燥重量(EW)が小さい方が、即ち、イオン交換基の数が多いイオン交換樹脂膜ほど、より大きなイオン伝導度を示すことがわかっている。しかしながら、EWが小さい場合においても、吸水及び脱水に伴う膜の寸法変化が大きくなってしまううえに、水や温水に溶解しやすくなるという問題も生じる。そのため、燃料電池用としては、通常EWが950〜1200程度のものに限定されている。
【0005】
また、パーフルオロスルホン酸系イオン交換樹脂膜をまずメタノール等のアルコール水溶液に含浸後、金属アルコキシドであるテトラエトキシシランとアルコールの混合溶媒を添加して、スルホン酸基の触媒作用によりテトラエトキシシランを加水分解及び重縮合反応させ、パーフルオロスルホン酸系イオン樹脂交換膜中にシリカを含有させたイオン交換樹脂膜も報告されている( K. A. Mauritz, R. F. Storey and C. K. Jones, in Multiphase Polymer Materials: Blends and Ionomers, L. A. Utracki and R. A. Weiss, Editors, ACS Symposium Series No. 395, p. 401, American Chemical Society, Washington, DC (1989))。このイオン交換樹脂膜を本発明者が評価したところ、吸水及び脱水に伴う膜の寸法変化が小さくなる事がわかった。しかしながら、このようなシリカを含有させたイオン交換樹脂膜の製造においては、アルコール水溶液によるイオン交換樹脂膜の膨潤過程を伴うため、大量生産が極めて困難であった。
【0006】
一方、特開平6−111827号公報に微細粒子のシリカ及び又はシリカファイバーを含有するイオン交換樹脂膜が、及び特開平9−251857号公報に吸湿性無機多孔質粒子が分散混合されているイオン交換樹脂膜が開示されている。これらのイオン交換樹脂膜についても本発明者が検討したところ、吸水及び脱水に伴う膜の寸法変化、及び低EW時の水への溶解に関して、顕著な効果は見出せなかった。
【0007】
【発明が解決しようとする課題】
本発明は、燃料電池に用いる事のできる、吸水及び脱水に伴う膜の寸法変化が小さく、かつEWが小さくても水に溶解しにくいイオン交換樹脂膜の製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者が鋭意検討した結果、イオン交換樹脂を含有する溶液に金属酸化物前駆体を添加し、該金属酸化物前駆体を加水分解及び重縮合反応させて得た液体を、キャスト製膜して製造されたイオン交換樹脂膜が、吸水及び脱水に伴う膜の寸法変化が小さく、かつEWが小さくても水に溶解しにくい事を見出し本発明に到った。
【0009】
即ち、本発明は、
.EWが250以上800以下である、スルホン酸基又はカルボン酸基を有する下記式(2)で表されるイオン交換樹脂を含有する溶液に、Al、Si、Yから選ばれる金属酸化物前駆体を添加し、該金属酸化物前駆体を加水分解及び重縮合反応させて得た液体を、キャスト製膜する事を特徴とする、燃料電池用イオン交換樹脂膜の製造方法、
−[CF 2 CX 1 2 a −[CF 2 −CF(−O−(CF 2 −CF(CF 2 3 )) b −O C −(CFR 1 d −(CFR 2 e −(CF 2 f −X 4 )]− (2)
(式中のX 1 、X 2 及びX 3 は独立にハロゲン元素又は炭素数1〜3のパーフルオロアルキル基、aは0〜20の整数、bは0〜8の整数、cは0又は1、d及びe及びfは独立に0〜6の整数(但しd+e+fは0に等しくない)、R 1 及びR 2 は独立にハロゲン元素ないしは炭素数1〜10のパーフルオロアルキル基又はフルオロクロロアルキル基、X 4 はCOOZ又はSO 3 Z(Zは水素原子))
2.イオン交換樹脂が上記式(2)(ただしb=0)で表される事を特徴とする上記1記載のイオン交換樹脂膜の製造方法、
3.上記1又は2に記載の方法により製造される事を特徴とする燃料電池用イオン交換樹脂膜、
4.上記3記載のイオン交換樹脂膜を備える事を特徴とする、膜電極接合体、
5.上記3記載のイオン交換樹脂膜を備える事を特徴とする固体高分子型燃料電池
に関する。
【0010】
以下に、本発明のイオン交換樹脂膜の製造方法を詳細に説明する。本発明の製造方法は、イオン交換樹脂を含有する溶液に金属酸化物前駆体を添加し、該金属酸化物前駆体を加水分解及び重縮合反応させて得た液体を、キャスト製膜する、イオン交換樹脂膜の製造方法に関する。
本発明で用いるイオン交換樹脂は、フッ化オレフィンと、イオン交換基前駆体(スルホン酸基前駆体又はカルボン酸基前駆体)を有するフッ化ビニル化合物とを共重合したフルオロカーボン重合体(以下、イオン交換樹脂前駆体と称する)を製造し、引き続き、イオン交換基前駆体を加水分解して、スルホン酸基又はカルボン酸基を有するフルオロカーボン重合体にすることによって製造される。
イオン交換樹脂前駆体は、CF2=CX12(X1及びX2は独立にハロゲン元素ないしは炭素数1〜10のパーフルオロアルキル基又はフルオロクロロアルキル基)で表されるフッ化オレフィンと、CF2=CF(−O−(CF2−CF(CF23))b−OC−(CFR1d−(CFR2e−(CF2f−X5)で表されるフッ化ビニル化合物(cは0又は1、d及びe及びfは独立に0〜6の整数(但しd+e+fは0に等しくない)、R1及びR2は独立にハロゲン元素ないしは炭素数1〜10のパーフルオロアルキル基又はフルオロクロロアルキル基、X5はCO23、COR4、又はSO24(R3は炭素数1〜3の炭化水素系アルキル基、R4はハロゲン元素))とのフルオロカーボン共重合体が好ましい。
【0011】
代表的なフッ化オレフィンとしては、CF2=CF2、CF2=CFCl、CF2=CCl2が挙げられる。フッ化ビニル化合物としては、具体的には、CF2=CFO(CF2z−SO2F、CF2=CFOCF2CF(CF3)O(CF2z−SO2F、CF2=CF(CF2z−SO2F、CF2=CF(OCF2CF(CF3))z-1−(CF22−SO2F、CF2=CFO(CF2z−CO2R、CF2=CFOCF2CF(CF3)O(CF2z−CO2R、CF2=CF(CF2z−CO2R、CF2=CF(OCF2CF(CF3))z−(CF22−CO2R(zは1〜8の整数、Rは炭素数1〜3の炭化水素系アルキル基を表す)が挙げられる。
【0012】
なお、上記フルオロカーボン共重合体は、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のパーフルオロオレフィン、又はパーフルオロアルキルビニルエーテル等の第三成分を含む共重合体であってもよい。
このようなイオン交換樹脂前駆体の重合方法としては、上記フッ化ビニル化合物をフロン等の溶媒に溶かした後、フッ化オレフィンのガスと反応させ重合する溶液重合法、フロン等の溶媒を使用せずに重合する塊状重合法、フッ化ビニル化合物を界面活性剤とともに水中に仕込んで乳化させた後、フッ化オレフィンのガスと反応させ重合する乳化重合法等が挙げられる。イオン交換樹脂前駆体は、下記式(1)のように表される。
−[CF2CX12a−[CF2−CF(−O−(CF2−CF(CF23))b−OC−(CFR1d−(CFR2e−(CF2f−X5)]− (1)
(式中のX1、X2及びX3は独立にハロゲン元素又は炭素数1〜3のパーフルオロアルキル基、aは0〜20の整数、bは0〜8の整数、cは0又は1、d及びe及びfは独立に0〜6の整数(但しd+e+fは0に等しくない)、R1及びR2は独立にハロゲン元素ないしは炭素数1〜10のパーフルオロアルキル基又はフルオロクロロアルキル基、X5はCO23、COR4、又はSO24(R3は炭素数1〜3の炭化水素系アルキル基、R4はハロゲン元素))
【0013】
次に、上記方法によって製造されたイオン交換樹脂前駆体をアルカリ溶液に接触させる事でイオン交換基前駆体を加水分解してイオン交換樹脂を製造する。イオン交換基前駆体の加水分解は、水酸化アルカリ水溶液中で実施する事ができ、さらに加水分解反応速度を増加させるために比較的高温の溶液を使用するのが有利である。例えば、特開昭61−19638号公報に示されている水酸化ナトリウムを20〜25%含んだ水溶液を用い70〜90℃において16時間加水分解処理する方法等がこれである。また、膜を膨潤させ加水分解反応速度を促進するために水酸化アルカリ水溶液とメチルアルコール、エチルアルコール、プロピルアルコールのようなアルコール系溶剤、もしくはジメチルスルオキシド等の水溶性有機溶剤との混合物により加水分解する方法が用いられている。例えば、特開昭57−139127号公報の水酸化カリウムを11〜13%とジメチルスルオキシドを30%含んだ水溶液を用い90℃で1時間加水分解処理する方法、特開平3−6240号公報の水酸化アルカリを15〜50wt%と水溶性有機化合物を0.1〜30wt%含んだ水溶液を用いて60〜130℃で20分〜24時間加水分解処理する方法がこれである。
【0014】
このように加水分解処理によりイオン交換基を形成させた後、水洗する事で、アルカリ金属型イオン交換基ないしはアルカリ土類金属型イオン交換基を有する下記式(2)で表されるイオン交換樹脂を得る事ができる。さらに塩酸等の無機酸で酸処理する事で、酸型イオン交換基を有するイオン交換樹脂を製造する事も可能である。
−[CF2CX12a−[CF2−CF(−O−(CF2−CF(CF23))b−OC−(CFR1d−(CFR2e−(CF2f−X4)]− (2)
(式中のX1、X2及びX3は独立にハロゲン元素又は炭素数1〜3のパーフルオロアルキル基、aは0〜20の整数、bは0〜8の整数、cは0又は1、d及びe及びfは独立に0〜6の整数(但しd+e+fは0に等しくない)、R1及びR2は独立にハロゲン元素ないしは炭素数1〜10のパーフルオロアルキル基又はフルオロクロロアルキル基、X4はCOOZ又はSO3Z(Zはアルカリ金属原子、又はアルカリ土類金属原子、又は水素原子))
【0015】
本発明の製造方法に用いるイオン交換樹脂のEWは特に限定されないが、250以上1200以下であり、好ましくは250以上1000以下、より好ましくは250以上800以下、更により好ましくは250以上700以下である。
次に、以上の方法で製造したイオン交換樹脂を水、又は非水溶媒、又は水と非水溶媒の混合溶媒に一般的な方法で溶解させて溶液化する。ここで言う非水溶媒としては特に限定されないが、メタノールやエタノール、イソプロパノール等のアルコール溶媒が好ましい。また、ここで言う溶液化とは、イオン交換樹脂がミセル状に分散した状態も含む。イオン交換樹脂が溶解しにくい場合には、加温またはオートクレーブ等の加圧下で溶解することも可能である。
【0016】
更に、イオン交換樹脂を含有する溶液に金属酸化物前駆体を添加する。金属酸化物前駆体の添加量は特に限定されないが、イオン交換樹脂1当量に対し、0.01以上200当量以下、好ましくは0.1以上100当量以下、より好ましくは0.1以上50当量以下、更により好ましくは0.1以上20当量以下である。
【0017】
本発明で用いる金属酸化物前駆体は特に限定されないが、 Al,B,P,Si,Ti,Zr,Yを含有するアルコキシドが好ましい。Alのアルコキシドの具体例としては、Al(OCH33,Al(OC253,Al(OC373,Al(OC493、Bを含有するアルコキシドの具体例としては、B(OCH33、 Pを含有するアルコキシドの具体例としては、P(OCH33、 Siを含有するアルコキシドの具体例としては、Si(OCH34,Si(OC254,Si(OC374,Si(OC494、 Tiを含有するアルコキシドの具体例としては、Ti(OCH34, Ti(OC254,Ti(OC374,Ti(OC494、Zrを含有するアルコキシドの具体例としては、Zr(OCH34,Zr(OC254,Zr(OC374,Zr(OC494が挙げられる。Yを含有するアルコキシドの具体例としては、Y(OC493が挙げられる。これらは、単独でもちいても、2種以上を混合してもちいても構わない。また、La[Al(i−OC374]3,Mg[Al(i−OC374]2,Mg[Al(sec−OC494]2,Ni[Al(i−OC374]2,(C37O)2Zr[Al(OC374]2,Ba[Zr2(OC259]2といった2金属アルコキシドを用いても良い。
【0018】
イオン交換樹脂を含有する溶液が水を含む場合、金属酸化物前駆体の添加と同時に、金属酸化物前駆体の加水分解及び重縮合反応が開始する。イオン交換樹脂を含有する溶液が非水又は含水量が小さい場合、金属酸化物前駆体を添加、攪拌後に水を添加、攪拌して金属酸化物前駆体を加水分解及び重縮合反応を開始させる。水の量としては特に限定されないが、金属酸化物前駆体1当量に対し1当量以上100当量以下、好ましくは2当量以上80当量以下、より好ましくは3当量以上50当量以下、更により好ましくは3当量以上30当量以下である。
【0019】
反応温度としては、特に限定されないが、好ましくは1℃以上100℃以下、より好ましくは10℃以上80℃以下、更により好ましくは20℃以上50℃以下である。尚、金属酸化物前駆体の添加時から上記温度にしていても構わない。反応時間としては、特に限定されないが、1秒以上24時間以下が好ましく、より好ましくは30秒以上8時間以下、更により好ましくは1分以上1時間以下である。金属酸化物前駆体の加水分解及び重縮合反応の進行に伴い、溶液の粘度は上昇する。
【0020】
尚、本発明のイオン交換樹脂溶液を用いて製膜したイオン交換樹脂膜に柔軟性を付与するため、金属酸化物前駆体添加と同時に有機珪素化合物を添加することも可能である。
有機珪素化合物としては特に限定されないが、例えば、トリメチルクロロシラン、ジメチルジクロロシラン、ヘキサメチルジシラザン等のシリル化剤、ビニルトリクロロシラン、ビニルトリメトキシシラン等のシランカップリング剤、その他、エチルジクロロシラン、エチルトリクロロシラン、ジメチルジクロロシラン、テトライソシアネートシラン、テトラメチルシラン、トリクロロシラン、トリメチルクロロシラン、ビニルトリクロロシラン、メチルジクロロシラン、メチルトリクロロシラン、モノメチルトリイソイサネートシラン、ジエトキシジメチルシラン等が挙げられる。
【0021】
また、イオン交換樹脂膜のひび割れを防止するため、乾燥制御剤を添加することもある。乾燥制御剤としては特に限定されないが、ジメチルホルムアミド、ホルムアミド等が挙げられる。
以上のように製造されたイオン交換樹脂を含有した溶液に金属酸化物前駆体を添加し、該金属酸化物前駆体を加水分解及び重縮合反応させて得た液体を基材上にキャスト製膜する事によって、イオン交換樹脂膜を得る事ができる。該液体の粘度としては特に限定されないが、1〜100000cpsであることが好ましい。また、該液体は未反応の金属酸化物前駆体を含んでいても良い。
【0022】
キャスト方法は特に限定されず、例えばグラビアロールコータ−、ナチュラルロールコータ、リバースロールコータ、ナイフコータ−、ディップコータ−等、公知の塗工方法を用いる事ができる。
また、基材としては特に限定されないが、一般的なポリマーフィルムや金属箔、またはアルミナやSi等の基板、また特開平8−162132号公報記載のPTFE膜を延伸処理した多孔質膜、特開昭53−149881号公報及び特公昭63−61337号公報に示されるフィブリル化繊維等を用いる事ができる。
【0023】
キャスト後、熱風乾燥等の公知の方法により、乾燥及びまたは熱処理を行い固化させて、イオン交換樹脂膜を得る。このようにして製膜したイオン交換樹脂膜を、燃料電池に用いる場合は、基材ごと使用する場合と、基材からイオン交換樹脂膜を剥離させて、イオン交換樹脂膜のみを使用する場合がある。
本発明の製造方法で得られるイオン交換樹脂膜のEWは特に限定されないが、250以上1200以下であり、好ましくは250以上1000以下、より好ましくは250以上800以下、更により好ましくは250以上700以下である。厚みとしては特に限定されないが、ガス透過率を低くするために1μm以上、また発電時の電気抵抗を小さくする500μm以下である事が好ましい。
【0024】
本発明の製造方法で得られるイオン交換樹脂膜は、金属酸化物を含有する。金属酸化物としては、特に限定されないが、Al,B,P,Si,Ti,Zr,Yからなる酸化物であることが好ましい。金属酸化物の含有量としては特に限定されないが、水に溶解せず、かつ吸水及び脱水に伴う寸法変化の小さいイオン交換樹脂膜を得るためには1wt%以上、また十分なプロトン伝導度を得るためには90wt%以下である事が好ましい。より好ましくは2wt%以上70wt%以下、更により好ましくは5wt%以上50wt%以下である。
【0025】
また、本発明の製造方法を適切に用いる事で、吸水及び脱水に伴う膜の寸法変化が小さい、イオン交換樹脂膜を得る事ができる。ここで言う寸法変化とは、30℃の水中の24時間浸漬した後の膜面積と、それを30℃にて減圧乾燥を8時間おこなった後の膜面積を測定し、その変化率で表すことで評価する。燃料電池に用いる場合、耐久性を満足させるために特に限定はされないが、100%以下である事が好ましく、より好ましくは50%以下、更により好ましくは30%以下である。
【0026】
さらに、本発明の製造方法を適切に用いる事で、EWが小さくても水に溶解しにくいイオン交換樹脂膜を得る事もできる。水分に対する溶解性は、膜を90℃の水中に8時間浸漬した前後の膜の重量減少率で評価する。燃料電池に用いる場合、特に限定されないが、5%以下である事が好ましく、より好ましくは2%以下、更により好ましくは1%以下である。
次に、本発明の製造方法により得られたイオン交換樹脂膜を燃料電池に用いる場合について説明する。
【0027】
本発明のイオン交換樹脂膜を固体高分子型燃料電池に用いる場合、アノードとカソード2種類の電極が両側に接合された膜電極接合体(MEA)として使用される。電極は触媒金属の微粒子とこれを担持した導電剤より構成され、必要に応じて撥水剤が含まれる。電極に使用される触媒としては水素の酸化反応および酸素の還元反応を促進する金属であれば特に限定されず、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウムあるいはそれらの合金が挙げられる。この中では主として白金が用いられる。前記電極と本発明のイオン交換樹脂膜よりMEAを作製するには、例えば次のような方法が行われる。フッ素系イオン交換樹脂をアルコールと水の混合溶液に溶解したものに電極物質となる白金担持カーボンを分散させてペースト状にする。これをPTFEシートに一定量塗布して乾燥させる。次に当該PTFEシートの塗布面を向かい合わせにしてその間にイオン交換樹脂膜を挟み込み、熱プレスにより転写接合する。熱プレス温度はイオン交換樹脂膜の種類によるが、通常は100℃以上であり、好ましくは130℃以上、さらに好ましくは150℃以上である。
【0028】
固体高分子型燃料電池は、上記のように製造されたMEA、集電体、燃料電池フレーム、ガス供給装置等から構成される。このうち集電体(バイポーラプレート)は、表面などにガス流路を有するグラファイト製あるいは金属製のフランジの事であり、電子を外部負荷回路へ伝達する他に水素や酸素をMEA表面に供給する流路としての機能を持っている。こうした集電体の間にMEAを挿入して複数積み重ねる事により、燃料電池を作製される。燃料電池の運転は、一方の電極に水素を、他方の電極に酸素あるいは空気を供給する事によって行われる。燃料電池の作動温度は高温であるほど触媒活性が上がるために好ましく通常は水分管理が容易な50℃〜100℃で運転する事が多いが、100℃〜150℃で作動させる事もある。酸素や水素の供給圧力については高いほど燃料電池出力が高まるため好ましいが、膜の破損が起きないように適当な圧力範囲に調整する事が好ましい。
【0029】
本発明のイオン交換樹脂溶液から製膜されたイオン交換樹脂膜は、燃料電池以外にも、クロルアルカリ、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いる事も可能である。
【0030】
【発明の実施の形態】
以下、本発明を実施例に基づいて更に詳細に説明するが、本発明は実施例に制限されるものではない。
【0031】
【実施例1】
イオン交換樹脂前駆体として、CF2CF2とCF2=CFOCF2CF(CF3)O(CF22−SO2Fとのフルオロカーボン共重合体を用いた。このイオン交換樹脂前駆体のEWは614、JIS K−7210に基づいた温度270℃、荷重2.16kgで測定されるメルトインデックス(MI(g/10分))は44230であった。このイオン交換樹脂前駆体を溶融押出して500μm厚に成形した1g程度の成形物を、15wt%の水酸化カリウムと30wt%のジメチルスルオキシドと55wt%の水を含有する反応液体に、60℃にて4時間接触させて、加水分解処理を行った。
【0032】
そして、30℃のイオン交換水で洗浄し、次に30℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水にて酸を洗い出し、スルホン酸基を有するイオン交換樹脂を得た。
このイオン交換樹脂を60℃のイオン交換水に溶かした50%溶液2gに、テトラエトキシシランとメタノールを1:1の重量割合で混合した1.4gの混合溶媒を添加、攪拌して加水分解及び重縮合反応を開始させた。60℃にてこの液体を攪拌して反応を進行させ、液体が高粘度になった時点で、シャーレに液体を注いだ。この液体を室温で1晩乾燥後、110℃で熱処理を行い、本発明のイオン交換樹脂膜を得た。
【0033】
次に、この膜を30℃で8時間真空乾燥し、膜重量W1(g)を測定した。秤量後、膜を再びイオン交換水中に入れ、90℃で8時間浸漬した。冷却後、膜を水中から取りだしイオン交換水で洗浄した。そして、この膜を再び、30℃で8時間真空乾燥し、フィルム重量W2(g)を測定した。沸騰処理前の乾燥重量基準での沸騰処理による重量減少率Y(%)を以下の式で算出したところ、重量減少率は4%であった。
Y=(W1−W2)/W1×100
【0034】
【比較例1】
実施例1と同様な方法で作製したイオン交換樹脂をそのままイオン交換水中に入れ、90℃で8時間浸漬したところ、全て水に溶解した。
【0035】
【実施例2】
イオン交換樹脂前駆体として、のCF2CF2とCF2=CFOCF2CF(CF3)O(CF22−SO2Fとのフルオロカーボン共重合体(EW:673、MI:2061)を用いた。実施例1と同様な方法で、1g程度のスルホン酸基を有するイオン交換樹脂の成形体を得た。
このイオン交換樹脂をイオン交換水に入れて沸騰させて溶かした50%溶液2gに、60℃にてテトラエトキシシランとメタノールを1:1の重量割合で混合した1.4gの混合溶媒を添加、攪拌して加水分解及び重縮合反応を開始させた。60℃にてこの液体を攪拌して反応を進行させ、液体が高粘度になった時点で、シャーレに液体を注いだ。この液体を室温で1晩乾燥後、110℃で熱処理を行い、100μm厚の本発明のイオン交換樹脂膜を得た。
【0036】
次に、この膜を30℃のイオン交換水中に1日浸漬させた後、膜を取り出して寸法を測定し、膜面積A1を算出した。この膜を30℃で8時間真空乾燥した後、再び膜の寸法を測定し、膜面積A2を算出した。湿潤時と乾燥時の寸法変化Dを以下の式で算出したところ、90%であった。
D=(A1−A2)/A1×100
【0037】
【比較例2】
実施例2と同じイオン交換樹脂前駆体を用いて、実施例1と同様な方法で、100μm厚のイオン交換樹脂膜を得た。この膜を実施例2と同様な方法で、湿潤時と乾燥時の寸法変化を測定したところ、150%であった。
【0038】
【発明の効果】
本発明の製造方法で得られるイオン交換樹脂膜は、吸水及び脱水に伴う膜の寸法変化が小さく、またEWが小さい場合でも水に溶けにくい膜であるため、燃料電池用途として非常に有効である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion exchange resin membrane used in a fuel cell.
[0002]
[Prior art]
An ion exchange resin is a polymer material having a strong acid group such as a sulfonic acid group or a carboxylic acid group in the polymer chain, and has a property of selectively permeating specific ions. It is used in various applications such as fuel cells, chloroalkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors and the like. In particular, fuel cells convert fuel chemical energy into electrical energy by electrochemically oxidizing hydrogen, methanol, or the like, and are attracting attention as a clean electrical energy supply source.
[0003]
By the way, an ion exchange resin membrane used in such a fuel cell is required to exhibit high ion conductivity.
It has been reported in JP-A-4-366137 and JP-A-6-342665 that the ionic conductivity of the ion-exchange resin membrane greatly depends on the water content of the membrane. It is known to show high ionic conductivity. Therefore, when using for a fuel cell, the device which lowers | hangs the electrical resistance at the time of electric power generation is achieved by using the ion-exchange resin film | membrane used as a high moisture content, and achieving high ion conductivity.
[0004]
However, the ion exchange resin membrane having such a high moisture content has a large dimensional change due to water absorption and dehydration, and is extremely complicated to handle. The ion exchange resin membrane deteriorates due to repeated expansion and contraction, and there is a problem in terms of long-term durability.
On the other hand, the ionic conductivity of the ion exchange resin membrane also greatly depends on the number of ion exchange groups. Usually, the smaller the dry weight (EW) per equivalent of ion exchange groups, that is, the number of ion exchange groups. It has been found that ion exchange resin membranes with higher amounts exhibit greater ionic conductivity. However, even when the EW is small, the dimensional change of the film accompanying water absorption and dehydration becomes large, and there is a problem that it is easily dissolved in water or hot water. Therefore, for fuel cells, the EW is normally limited to about 950 to 1200.
[0005]
Also, after impregnating the perfluorosulfonic acid ion exchange resin membrane in an alcohol aqueous solution such as methanol, a mixed solvent of tetraethoxysilane and alcohol, which is a metal alkoxide, is added, and tetraethoxysilane is added by the catalytic action of the sulfonic acid group. An ion exchange resin membrane in which silica is contained in a perfluorosulfonic acid ion resin exchange membrane by hydrolysis and polycondensation reaction has also been reported (KA Mauritz, RF Storey and CK Jones, in Multiphase Polymer Materials: Blends and Ionomers, LA Utracki and RA Weiss, Editors, ACS Symposium Series No. 395, p. 401, American Chemical Society, Washington, DC (1989)). When this inventor evaluated this ion exchange resin membrane, it turned out that the dimensional change of the membrane accompanying water absorption and dehydration becomes small. However, the production of such an ion exchange resin membrane containing silica is accompanied by a swelling process of the ion exchange resin membrane with an aqueous alcohol solution, so that mass production is extremely difficult.
[0006]
On the other hand, ion exchange resin membranes containing fine particles of silica and / or silica fibers are disclosed in JP-A-6-1111827, and hygroscopic inorganic porous particles are dispersed and mixed in JP-A-9-251857. A resin film is disclosed. The present inventors also examined these ion exchange resin membranes. As a result, no remarkable effect was found with respect to the dimensional change of the membranes due to water absorption and dehydration and dissolution in water at low EW.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an ion exchange resin membrane that can be used in a fuel cell and has a small dimensional change due to water absorption and dehydration and is hardly dissolved in water even when EW is small. Is.
[0008]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, a metal oxide precursor was added to a solution containing an ion exchange resin, and a liquid obtained by hydrolysis and polycondensation reaction of the metal oxide precursor was cast into a film. It was found that the ion exchange resin membrane produced in this way has little change in the dimensional change of the membrane due to water absorption and dehydration, and it is difficult to dissolve in water even if the EW is small.
[0009]
That is, the present invention
1 . A metal oxide precursor selected from Al, Si, and Y is added to a solution containing an ion exchange resin represented by the following formula (2) having a sulfonic acid group or a carboxylic acid group having an EW of 250 or more and 800 or less. A method for producing an ion exchange resin membrane for a fuel cell , characterized in that a liquid obtained by adding and hydrolyzing and polycondensing the metal oxide precursor is cast into a membrane,
- [CF 2 CX 1 X 2 ] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O C - (CFR 1) d - (CFR 2) e - ( CF 2) f -X 4)] - (2)
(In the formula, X 1 , X 2 and X 3 are independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, a is an integer of 0 to 20, b is an integer of 0 to 8, and c is 0 or 1. , D and e and f are each independently an integer of 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 are independently a halogen element or a C 1-10 perfluoroalkyl group or fluorochloroalkyl group , X 4 is COOZ or SO 3 Z (Z is a hydrogen atom))
2. The method for producing an ion exchange resin membrane according to the above 1, wherein the ion exchange resin is represented by the above formula (2) (where b = 0),
3. An ion exchange resin membrane for a fuel cell , characterized by being produced by the method according to 1 or 2 above ,
4). A membrane electrode assembly comprising the ion exchange resin membrane according to 3 above ,
5. A polymer electrolyte fuel cell comprising the ion exchange resin membrane according to 3 above ,
About.
[0010]
Below, the manufacturing method of the ion exchange resin membrane of this invention is demonstrated in detail. In the production method of the present invention, a metal oxide precursor is added to a solution containing an ion exchange resin, and a liquid obtained by hydrolysis and polycondensation reaction of the metal oxide precursor is cast into a film. The present invention relates to a method for producing an exchange resin membrane.
The ion exchange resin used in the present invention is a fluorocarbon polymer (hereinafter referred to as an ion) obtained by copolymerizing a fluorinated olefin and a vinyl fluoride compound having an ion exchange group precursor (a sulfonic acid group precursor or a carboxylic acid group precursor). (Referred to as an exchange resin precursor) and subsequently hydrolyzing the ion exchange group precursor to a fluorocarbon polymer having a sulfonic acid group or a carboxylic acid group.
The ion exchange resin precursor is composed of a fluorinated olefin represented by CF 2 = CX 1 X 2 (X 1 and X 2 are each independently a halogen element, a C 1-10 perfluoroalkyl group or a fluorochloroalkyl group) , CF 2 = CF (-O- ( CF 2 -CF (CF 2 X 3)) b -O C - (CF 2) f -X 5 (CFR 1) d - - (CFR 2) e) is represented by Vinyl fluoride compound (c is 0 or 1, d and e and f are each independently an integer of 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 are independently a halogen element or 1 to 10 perfluoroalkyl groups or fluorochloroalkyl groups, X 5 is CO 2 R 3 , COR 4 , or SO 2 R 4 (R 3 is a hydrocarbon alkyl group having 1 to 3 carbon atoms, R 4 is a halogen element) ) And a fluorocarbon copolymer.
[0011]
Typical fluorinated olefins include CF 2 = CF 2 , CF 2 = CFCl, CF 2 = CCl 2 . The fluorinated vinyl compound, specifically, CF 2 = CFO (CF 2 ) z -SO 2 F, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) z -SO 2 F, CF 2 = CF (CF 2) z -SO 2 F, CF 2 = CF (OCF 2 CF (CF 3)) z-1 - (CF 2) 2 -SO 2 F, CF 2 = CFO (CF 2) z -CO 2 R, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) z -CO 2 R, CF 2 = CF (CF 2) z -CO 2 R, CF 2 = CF (OCF 2 CF (CF 3)) z - (CF 2) 2 -CO 2 R (z is an integer of 1 to 8, R represents a hydrocarbon-based alkyl group having 1 to 3 carbon atoms).
[0012]
The fluorocarbon copolymer may be a copolymer containing a third component such as perfluoroolefin such as hexafluoropropylene or chlorotrifluoroethylene, or perfluoroalkyl vinyl ether.
As a polymerization method of such an ion exchange resin precursor, a solution polymerization method in which the above-mentioned vinyl fluoride compound is dissolved in a solvent such as chlorofluorocarbon and then reacted with a gas of fluorinated olefin, and a solvent such as chlorofluorocarbon is used. A bulk polymerization method in which polymerization is performed without polymerization, and an emulsion polymerization method in which a vinyl fluoride compound is charged together with a surfactant in water and emulsified, and then reacted with a fluoroolefin gas for polymerization. The ion exchange resin precursor is represented by the following formula (1).
- [CF 2 CX 1 X 2 ] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O C - (CFR 1) d - (CFR 2) e - ( CF 2) f -X 5)] - (1)
(In the formula, X 1 , X 2 and X 3 are independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, a is an integer of 0 to 20, b is an integer of 0 to 8, and c is 0 or 1. , D and e and f are each independently an integer of 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 are independently a halogen element or a C 1-10 perfluoroalkyl group or fluorochloroalkyl group , X 5 is CO 2 R 3 , COR 4 , or SO 2 R 4 (R 3 is a hydrocarbon alkyl group having 1 to 3 carbon atoms, R 4 is a halogen element))
[0013]
Next, the ion exchange resin precursor produced by the above method is brought into contact with an alkaline solution to hydrolyze the ion exchange group precursor to produce an ion exchange resin. The hydrolysis of the ion exchange group precursor can be carried out in an aqueous alkali hydroxide solution, and it is advantageous to use a relatively hot solution to further increase the hydrolysis reaction rate. For example, this is a method of hydrolyzing at 70 to 90 ° C. for 16 hours using an aqueous solution containing 20 to 25% sodium hydroxide as disclosed in JP-A 61-19638. Further, in order to swell the membrane and accelerate the hydrolysis reaction rate, the mixture is hydrolyzed with a mixture of an alkali hydroxide aqueous solution and an alcohol solvent such as methyl alcohol, ethyl alcohol or propyl alcohol, or a water-soluble organic solvent such as dimethyl sulfoxide. A method of decomposing is used. For example, a method of hydrolyzing at 90 ° C. for 1 hour using an aqueous solution containing 11 to 13% potassium hydroxide and 30% dimethyl sulfoxide disclosed in JP-A-57-139127, JP-A-3-6240 This is a method of hydrolyzing at 60 to 130 ° C. for 20 minutes to 24 hours using an aqueous solution containing 15 to 50 wt% of alkali hydroxide and 0.1 to 30 wt% of a water-soluble organic compound.
[0014]
Thus, after forming an ion exchange group by hydrolysis, the ion exchange resin represented by the following formula (2) having an alkali metal ion exchange group or an alkaline earth metal ion exchange group by washing with water. Can be obtained. Furthermore, it is also possible to produce an ion exchange resin having an acid ion exchange group by acid treatment with an inorganic acid such as hydrochloric acid.
- [CF 2 CX 1 X 2 ] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O C - (CFR 1) d - (CFR 2) e - ( CF 2) f -X 4)] - (2)
(In the formula, X 1 , X 2 and X 3 are independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, a is an integer of 0 to 20, b is an integer of 0 to 8, and c is 0 or 1. , D and e and f are each independently an integer of 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 are independently a halogen element or a C 1-10 perfluoroalkyl group or fluorochloroalkyl group , X 4 is COOZ or SO 3 Z (Z is an alkali metal atom, an alkaline earth metal atom, or a hydrogen atom))
[0015]
The EW of the ion exchange resin used in the production method of the present invention is not particularly limited, but is 250 or more and 1200 or less, preferably 250 or more and 1000 or less, more preferably 250 or more and 800 or less, and even more preferably 250 or more and 700 or less. .
Next, the ion exchange resin produced by the above method is dissolved in water, a non-aqueous solvent, or a mixed solvent of water and a non-aqueous solvent by a general method to form a solution. Although it does not specifically limit as a non-aqueous solvent said here, Alcohol solvents, such as methanol, ethanol, and isopropanol, are preferable. Moreover, the solution-ization mentioned here also includes a state in which the ion exchange resin is dispersed in a micelle form. If the ion exchange resin is difficult to dissolve, it can also be dissolved under pressure such as heating or autoclave.
[0016]
Further, a metal oxide precursor is added to the solution containing the ion exchange resin. The addition amount of the metal oxide precursor is not particularly limited, but is 0.01 to 200 equivalents, preferably 0.1 to 100 equivalents, more preferably 0.1 to 50 equivalents with respect to 1 equivalent of the ion exchange resin. Even more preferably, it is 0.1 to 20 equivalents.
[0017]
The metal oxide precursor used in the present invention is not particularly limited, but an alkoxide containing Al, B, P, Si, Ti, Zr, and Y is preferable. Specific examples of Al alkoxides include Al (OCH 3 ) 3 , Al (OC 2 H 5 ) 3 , Al (OC 3 H 7 ) 3 , Al (OC 4 H 9 ) 3 , and alkoxides containing B. For example, as specific examples of alkoxides containing B (OCH 3 ) 3 and P, P (OCH 3 ) 3 and as specific examples of alkoxides containing Si, Si (OCH 3 ) 4 and Si (OC As specific examples of alkoxides containing 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4 , and Ti, Ti (OCH 3 ) 4 and Ti (OC 2 H 5 ) 4 , Ti (OC 3 H 7 ) 4 , Ti (OC 4 H 9 ) 4 and Zr-containing specific examples of alkoxide include Zr (OCH 3 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7) 4, Zr (OC 4 H 9) 4 and the like. Specific examples of the alkoxide containing Y include Y (OC 4 H 9 ) 3 . These may be used alone or in combination of two or more. Moreover, La [Al (i-OC 3 H 7) 4] 3, Mg [Al (i-OC 3 H 7) 4] 2, Mg [Al (sec-OC 4 H 9) 4] 2, Ni [Al Bimetallic alkoxides such as (i-OC 3 H 7 ) 4 ] 2 , (C 3 H 7 O) 2 Zr [Al (OC 3 H 7 ) 4 ] 2 , Ba [Zr 2 (OC 2 H 5 ) 9 ] 2 May be used.
[0018]
When the solution containing the ion exchange resin contains water, hydrolysis and polycondensation reaction of the metal oxide precursor starts simultaneously with the addition of the metal oxide precursor. When the solution containing the ion exchange resin is non-aqueous or has a small water content, the metal oxide precursor is added, and after stirring, water is added and stirred to start hydrolysis and polycondensation reaction of the metal oxide precursor. The amount of water is not particularly limited, but is 1 equivalent to 100 equivalents, preferably 2 equivalents to 80 equivalents, more preferably 3 equivalents to 50 equivalents, and even more preferably 3 to 1 equivalent of the metal oxide precursor. Equivalent to 30 equivalents.
[0019]
Although it does not specifically limit as reaction temperature, Preferably it is 1 to 100 degreeC, More preferably, it is 10 to 80 degreeC, More preferably, it is 20 to 50 degreeC. Note that the above temperature may be set from the time of addition of the metal oxide precursor. Although it does not specifically limit as reaction time, 1 second or more and 24 hours or less are preferable, More preferably, they are 30 seconds or more and 8 hours or less, More preferably, they are 1 minute or more and 1 hour or less. As the metal oxide precursor undergoes hydrolysis and polycondensation, the viscosity of the solution increases.
[0020]
In order to impart flexibility to the ion exchange resin film formed using the ion exchange resin solution of the present invention, an organosilicon compound can be added simultaneously with the addition of the metal oxide precursor.
The organosilicon compound is not particularly limited. For example, silylating agents such as trimethylchlorosilane, dimethyldichlorosilane and hexamethyldisilazane, silane coupling agents such as vinyltrichlorosilane and vinyltrimethoxysilane, and others, ethyldichlorosilane, Examples include ethyltrichlorosilane, dimethyldichlorosilane, tetraisocyanate silane, tetramethylsilane, trichlorosilane, trimethylchlorosilane, vinyltrichlorosilane, methyldichlorosilane, methyltrichlorosilane, monomethyltriisoisanate silane, and diethoxydimethylsilane.
[0021]
In addition, a drying control agent may be added to prevent cracking of the ion exchange resin membrane. Although it does not specifically limit as a drying control agent, Dimethylformamide, formamide, etc. are mentioned.
A film obtained by adding a metal oxide precursor to a solution containing the ion exchange resin produced as described above, and subjecting the metal oxide precursor to hydrolysis and polycondensation reaction is cast on a substrate. By doing so, an ion exchange resin membrane can be obtained. Although it does not specifically limit as a viscosity of this liquid, It is preferable that it is 1-100000 cps. The liquid may contain an unreacted metal oxide precursor.
[0022]
The casting method is not particularly limited, and for example, a known coating method such as a gravure roll coater, a natural roll coater, a reverse roll coater, a knife coater, or a dip coater can be used.
Further, the substrate is not particularly limited, but a general polymer film, metal foil, a substrate such as alumina or Si, a porous film obtained by stretching a PTFE film described in JP-A-8-162132, JP The fibrillated fibers shown in Japanese Patent Publication No. 53-149981 and Japanese Patent Publication No. 63-61337 can be used.
[0023]
After casting, it is solidified by drying and / or heat treatment by a known method such as hot air drying to obtain an ion exchange resin membrane. When the ion exchange resin membrane thus formed is used for a fuel cell, there are cases where the whole substrate is used, and only the ion exchange resin membrane is used after peeling the ion exchange resin membrane from the substrate. is there.
The EW of the ion exchange resin membrane obtained by the production method of the present invention is not particularly limited, but is 250 or more and 1200 or less, preferably 250 or more and 1000 or less, more preferably 250 or more and 800 or less, and even more preferably 250 or more and 700 or less. It is. Although it does not specifically limit as thickness, It is preferable that it is 1 micrometer or more in order to make a gas permeability low, and it is 500 micrometers or less which makes the electrical resistance at the time of electric power generation small.
[0024]
The ion exchange resin membrane obtained by the production method of the present invention contains a metal oxide. Although it does not specifically limit as a metal oxide, It is preferable that it is an oxide which consists of Al, B, P, Si, Ti, Zr, and Y. The content of the metal oxide is not particularly limited, but it is 1 wt% or more and sufficient proton conductivity is obtained in order to obtain an ion exchange resin membrane that does not dissolve in water and has a small dimensional change due to water absorption and dehydration. Therefore, it is preferably 90 wt% or less. More preferably, they are 2 wt% or more and 70 wt% or less, More preferably, they are 5 wt% or more and 50 wt% or less.
[0025]
Further, by appropriately using the production method of the present invention, an ion exchange resin membrane can be obtained in which the dimensional change of the membrane accompanying water absorption and dehydration is small. The dimensional change referred to here is the film area after being immersed in water at 30 ° C. for 24 hours and the film area after being dried under reduced pressure at 30 ° C. for 8 hours, and expressed as the rate of change. Evaluate with. When used in a fuel cell, there is no particular limitation to satisfy the durability, but it is preferably 100% or less, more preferably 50% or less, and even more preferably 30% or less.
[0026]
Furthermore, by appropriately using the production method of the present invention, an ion exchange resin membrane that is difficult to dissolve in water even if the EW is small can be obtained. The solubility in water is evaluated by the weight reduction rate of the membrane before and after immersing the membrane in 90 ° C. water for 8 hours. When used in a fuel cell, it is not particularly limited, but it is preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less.
Next, the case where the ion exchange resin membrane obtained by the manufacturing method of the present invention is used for a fuel cell will be described.
[0027]
When the ion exchange resin membrane of the present invention is used for a polymer electrolyte fuel cell, it is used as a membrane electrode assembly (MEA) in which two types of electrodes of an anode and a cathode are joined on both sides. The electrode is composed of fine particles of a catalytic metal and a conductive agent supporting the fine particle, and a water repellent is included as necessary. The catalyst used for the electrode is not particularly limited as long as it is a metal that promotes hydrogen oxidation and oxygen reduction. Platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium , Tungsten, manganese, vanadium, or alloys thereof. Of these, platinum is mainly used. In order to produce MEA from the electrode and the ion exchange resin membrane of the present invention, for example, the following method is performed. A platinum-supported carbon serving as an electrode material is dispersed in a solution obtained by dissolving a fluorine-based ion exchange resin in a mixed solution of alcohol and water to form a paste. A certain amount of this is applied to a PTFE sheet and dried. Next, the application surfaces of the PTFE sheet are faced to each other, an ion exchange resin film is sandwiched therebetween, and transfer bonding is performed by hot pressing. The hot press temperature depends on the type of the ion exchange resin membrane, but is usually 100 ° C. or higher, preferably 130 ° C. or higher, more preferably 150 ° C. or higher.
[0028]
The polymer electrolyte fuel cell includes the MEA manufactured as described above, a current collector, a fuel cell frame, a gas supply device, and the like. Among them, the current collector (bipolar plate) is a graphite or metal flange having a gas flow path on the surface and the like, and supplies hydrogen and oxygen to the MEA surface in addition to transmitting electrons to an external load circuit. Has a function as a flow path. By inserting a plurality of MEAs between such current collectors and stacking them, a fuel cell is manufactured. The fuel cell is operated by supplying hydrogen to one electrode and oxygen or air to the other electrode. The higher the operating temperature of the fuel cell, the higher the catalyst activity. Therefore, the fuel cell is preferably operated at 50 ° C to 100 ° C, where moisture management is easy, but it may be operated at 100 ° C to 150 ° C. A higher supply pressure of oxygen or hydrogen is preferable because the fuel cell output increases, but it is preferable to adjust the pressure to an appropriate pressure range so as not to damage the membrane.
[0029]
The ion exchange resin membrane formed from the ion exchange resin solution of the present invention can be used for chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor, etc. in addition to fuel cells. It is also possible to use it.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not restrict | limited to an Example.
[0031]
[Example 1]
As an ion exchange resin precursor, a fluorocarbon copolymer of CF 2 CF 2 and CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 —SO 2 F was used. The EW of this ion exchange resin precursor was 614, and the melt index (MI (g / 10 minutes)) measured at a temperature of 270 ° C. and a load of 2.16 kg based on JIS K-7210 was 44230. About 1 g of a molded product obtained by melt-extruding this ion exchange resin precursor and molded to a thickness of 500 μm was converted to a reaction liquid containing 15 wt% potassium hydroxide, 30 wt% dimethyl sulfoxide and 55 wt% water at 60 ° C. For 4 hours to perform hydrolysis treatment.
[0032]
Then, it was washed with ion exchange water at 30 ° C. and then immersed in a 2N hydrochloric acid aqueous solution at 30 ° C. for 3 hours, and then the acid was washed out with ion exchange water to obtain an ion exchange resin having a sulfonic acid group.
1.4 g of a mixed solvent in which tetraethoxysilane and methanol are mixed at a weight ratio of 1: 1 is added to 2 g of a 50% solution obtained by dissolving the ion exchange resin in ion exchange water at 60 ° C. The polycondensation reaction was started. The liquid was stirred at 60 ° C. to advance the reaction. When the liquid became highly viscous, the liquid was poured into the petri dish. This liquid was dried at room temperature overnight and then heat-treated at 110 ° C. to obtain an ion exchange resin membrane of the present invention.
[0033]
Next, this membrane was vacuum-dried at 30 ° C. for 8 hours, and the membrane weight W 1 (g) was measured. After weighing, the membrane was again placed in ion exchange water and immersed at 90 ° C. for 8 hours. After cooling, the membrane was taken out of the water and washed with ion exchange water. The membrane was again vacuum dried at 30 ° C. for 8 hours, and the film weight W 2 (g) was measured. When the weight reduction rate Y (%) by the boiling treatment on the basis of the dry weight before the boiling treatment was calculated by the following formula, the weight reduction rate was 4%.
Y = (W 1 −W 2 ) / W 1 × 100
[0034]
[Comparative Example 1]
When the ion exchange resin produced by the same method as in Example 1 was put in ion exchange water as it was and immersed at 90 ° C. for 8 hours, it was completely dissolved in water.
[0035]
[Example 2]
As an ion exchange resin precursor, a fluorocarbon copolymer (EW: 673, MI: 2061) of CF 2 CF 2 and CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 —SO 2 F is used. It was. A molded body of an ion exchange resin having about 1 g of a sulfonic acid group was obtained in the same manner as in Example 1.
1.4 g of a mixed solvent in which tetraethoxysilane and methanol are mixed at a weight ratio of 1: 1 at 60 ° C. is added to 2 g of a 50% solution obtained by boiling the ion exchange resin in ion exchange water. Stirring to initiate the hydrolysis and polycondensation reaction. The liquid was stirred at 60 ° C. to advance the reaction. When the liquid became highly viscous, the liquid was poured into the petri dish. This liquid was dried at room temperature overnight and then heat-treated at 110 ° C. to obtain an ion exchange resin membrane of the present invention having a thickness of 100 μm.
[0036]
Next, this membrane was immersed in ion-exchanged water at 30 ° C. for 1 day, and then the membrane was taken out and measured for dimensions to calculate membrane area A 1 . This film was vacuum-dried at 30 ° C. for 8 hours, and then the dimension of the film was measured again to calculate the film area A 2 . The dimensional change D when wet and dry was calculated by the following formula and found to be 90%.
D = (A 1 −A 2 ) / A 1 × 100
[0037]
[Comparative Example 2]
Using the same ion exchange resin precursor as in Example 2, an ion exchange resin film having a thickness of 100 μm was obtained in the same manner as in Example 1. When the dimensional change of this membrane was measured in the same manner as in Example 2 when wet and dry, it was 150%.
[0038]
【Effect of the invention】
The ion exchange resin membrane obtained by the production method of the present invention is very effective as a fuel cell application because it has a small membrane dimensional change due to water absorption and dehydration and is hardly soluble in water even when EW is small. .

Claims (5)

EWが250以上800以下である、スルホン酸基又はカルボン酸基を有する下記式(2)で表されるイオン交換樹脂を含有する溶液に、Al、Si、Yから選ばれる金属酸化物前駆体を添加し、該金属酸化物前駆体を加水分解及び重縮合反応させて得た液体を、キャスト製膜する事を特徴とする、燃料電池用イオン交換樹脂膜の製造方法。
−[CF 2 CX 1 2 a −[CF 2 −CF(−O−(CF 2 −CF(CF 2 3 )) b −O C −(CFR 1 d −(CFR 2 e −(CF 2 f −X 4 )]− (2)
(式中のX 1 、X 2 及びX 3 は独立にハロゲン元素又は炭素数1〜3のパーフルオロアルキル基、aは0〜20の整数、bは0〜8の整数、cは0又は1、d及びe及びfは独立に0〜6の整数(但しd+e+fは0に等しくない)、R 1 及びR 2 は独立にハロゲン元素ないしは炭素数1〜10のパーフルオロアルキル基又はフルオロクロロアルキル基、X 4 はCOOZ又はSO 3 Z(Zは水素原子))
A metal oxide precursor selected from Al, Si, and Y is added to a solution containing an ion exchange resin represented by the following formula (2) having a sulfonic acid group or a carboxylic acid group having an EW of 250 or more and 800 or less. A method for producing an ion exchange resin membrane for a fuel cell , characterized in that a liquid obtained by adding and hydrolyzing and polycondensing the metal oxide precursor is cast into a membrane.
- [CF 2 CX 1 X 2 ] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O C - (CFR 1) d - (CFR 2) e - ( CF 2) f -X 4)] - (2)
(In the formula, X 1 , X 2 and X 3 are independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, a is an integer of 0 to 20, b is an integer of 0 to 8, and c is 0 or 1. , D and e and f are each independently an integer of 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 are independently a halogen element or a C 1-10 perfluoroalkyl group or fluorochloroalkyl group , X 4 is COOZ or SO 3 Z (Z is a hydrogen atom))
イオン交換樹脂が上記式(2)(ただしb=0)で表される事を特徴とする請求項1記載のイオン交換樹脂膜の製造方法。2. The method for producing an ion exchange resin membrane according to claim 1, wherein the ion exchange resin is represented by the above formula (2) (where b = 0). 請求項1又は2に記載の方法により製造される事を特徴とする燃料電池用イオン交換樹脂膜。Claim 1 or 2 for a fuel cell ion exchange resin membrane, characterized in that is manufactured by the method described in. 請求項記載のイオン交換樹脂膜を備える事を特徴とする、膜電極接合体。A membrane electrode assembly comprising the ion exchange resin membrane according to claim 3 . 請求項記載のイオン交換樹脂膜を備える事を特徴とする固体高分子型燃料電池。A solid polymer fuel cell comprising the ion exchange resin membrane according to claim 3 .
JP2001030970A 2001-02-07 2001-02-07 Production method of ion exchange resin membrane Expired - Lifetime JP4911822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001030970A JP4911822B2 (en) 2001-02-07 2001-02-07 Production method of ion exchange resin membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030970A JP4911822B2 (en) 2001-02-07 2001-02-07 Production method of ion exchange resin membrane

Publications (2)

Publication Number Publication Date
JP2002231270A JP2002231270A (en) 2002-08-16
JP4911822B2 true JP4911822B2 (en) 2012-04-04

Family

ID=18895115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030970A Expired - Lifetime JP4911822B2 (en) 2001-02-07 2001-02-07 Production method of ion exchange resin membrane

Country Status (1)

Country Link
JP (1) JP4911822B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390558B2 (en) 2001-09-10 2009-12-24 旭化成イーマテリアルズ株式会社 Electrocatalyst layer for fuel cells
DE10207411A1 (en) * 2002-02-21 2003-09-04 Daimler Chrysler Ag Preparation of composite membranes from branched polyalkoxysilane, useful in production of polymer electrolyte membrane fuel cells, comprises mixing branched polyalkoxysilane and organic proton conductor
JP4649094B2 (en) * 2003-03-07 2011-03-09 旭化成イーマテリアルズ株式会社 Manufacturing method of membrane electrode assembly for fuel cell
JP4969126B2 (en) 2005-07-07 2012-07-04 富士フイルム株式会社 SOLID ELECTROLYTE FILM, ITS MANUFACTURING METHOD, MANUFACTURING EQUIPMENT, ELECTRODE MEMBRANE COMPOSITION AND FUEL CELL
JP5044131B2 (en) 2005-07-07 2012-10-10 富士フイルム株式会社 Production method and production facility for solid electrolyte multilayer film
JP5093870B2 (en) 2005-07-07 2012-12-12 富士フイルム株式会社 Method for producing solid electrolyte multilayer film
CN101682044B (en) * 2007-04-25 2016-04-27 日本奥亚特克斯股份有限公司 The manufacture method of use in solid polymer fuel cell polyelectrolyte membrane, use in solid polymer fuel cell membrane electrode assemblies and polymer electrolyte fuel cell
JP5354935B2 (en) * 2008-03-05 2013-11-27 旭化成イーマテリアルズ株式会社 POLYMER ELECTROLYTIC COMPOSITION AND USE THEREOF
KR101000214B1 (en) 2008-05-28 2010-12-10 주식회사 엘지화학 Ion conductive resin fiber, ion conductive composite membrane, membrane-electrode assembly and fuel cell
JP5348387B2 (en) * 2008-10-24 2013-11-20 トヨタ自動車株式会社 Manufacturing method of electrolyte membrane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827018B2 (en) * 1995-03-20 2006-09-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Membrane containing inorganic filler and membrane-electrode assembly and electrochemical cell using the same
DE19943244A1 (en) * 1999-09-10 2001-03-15 Daimler Chrysler Ag Membrane for a fuel cell and manufacturing method
JP4457462B2 (en) * 2000-04-19 2010-04-28 株式会社カネカ Proton conducting membrane manufacturing method and fuel cell comprising the same
DE10021104A1 (en) * 2000-05-02 2001-11-08 Univ Stuttgart Organic-inorganic membranes

Also Published As

Publication number Publication date
JP2002231270A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
JP4390558B2 (en) Electrocatalyst layer for fuel cells
JP4911822B2 (en) Production method of ion exchange resin membrane
WO2006067872A1 (en) Highly durable electrode catalyst layer
JPH1140172A (en) Method for producing film-electrode joined body for fuel cell
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
JP4067315B2 (en) Fluorine ion exchange resin membrane
US20040097603A1 (en) Ion-exchange fluororesin membrane
JP6338896B2 (en) Electrode layer with resin, electrode composite with resin, and redox flow secondary battery
JP4025582B2 (en) High heat resistant ion exchange membrane
JPH10284087A (en) Electrode and membrane-electrode joining body for solid polymer fuel cell
WO2020175677A1 (en) Solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer water electrolysis device
JP4576813B2 (en) Polymer electrolyte membrane and membrane electrode assembly
JP5058429B2 (en) Composite thin film
JP2000188111A (en) Solid high polymer electrolyte fuel cell
JP5465840B2 (en) Method for producing polymer electrolyte fuel cell
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP4201599B2 (en) Ion exchange resin membrane and method for producing the same
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
JPH06349498A (en) Gas diffusion electrode, connecting body, fuel cell, and manufacture thereof
JP2005060516A (en) Fluorine-based ion exchange membrane
JP4896435B2 (en) Electrolyte for electrode of polymer electrolyte fuel cell
JPH06251782A (en) Manufacture of joined body of membrane having high electric conductivity with electrode
JP2003346815A (en) Membrane electrode assembly and method for producing the same
JP7152318B2 (en) Membrane and method
JP2009110950A (en) Membrane-electrode assembly manufacturing method, membrane-electrode assembly, and fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term