[go: up one dir, main page]

JP4910898B2 - High strength steel plate and manufacturing method thereof - Google Patents

High strength steel plate and manufacturing method thereof Download PDF

Info

Publication number
JP4910898B2
JP4910898B2 JP2007156538A JP2007156538A JP4910898B2 JP 4910898 B2 JP4910898 B2 JP 4910898B2 JP 2007156538 A JP2007156538 A JP 2007156538A JP 2007156538 A JP2007156538 A JP 2007156538A JP 4910898 B2 JP4910898 B2 JP 4910898B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007156538A
Other languages
Japanese (ja)
Other versions
JP2008308717A (en
Inventor
英樹 松田
知明 倉永
宏太郎 林
一彦 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007156538A priority Critical patent/JP4910898B2/en
Publication of JP2008308717A publication Critical patent/JP2008308717A/en
Application granted granted Critical
Publication of JP4910898B2 publication Critical patent/JP4910898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、引張強度780MPa以上の高強度鋼板とその製造方法に関する。本発明は、特に、自動車、機械などの産業分野において、絞り、張り出しなどのプレス成形をはじめ様々な形状に成形される構造部材の素材として好適な、引張強度780MPa以上の高強度鋼板とその製造方法に関する。   The present invention relates to a high-strength steel sheet having a tensile strength of 780 MPa or more and a manufacturing method thereof. The present invention is a high-strength steel sheet having a tensile strength of 780 MPa or more, which is suitable as a material for structural members formed into various shapes including press molding such as drawing and overhanging, particularly in industrial fields such as automobiles and machinery, and the production thereof. Regarding the method.

近年、各種機械・装置類には高性能化と同時に軽量化が強く推進されており、これを受けて適用される鋼板の高強度化技術が数多く開発されてきた。しかし、一般に鋼板の高強度化は延性の劣化を伴うため、良好な加工性と高強度を兼ね備えた鋼板の製造は非常に困難であるとされていた。ところが、「SiとMnを複合添加した低炭素鋼板に2相域において焼鈍を行った後に350〜550℃まで急冷し、その温度域で短時間保持するか階段状の冷却を行うかしてオ−ステナイトを一部ベイナイトに変態させ最終的にフェライト+ベイナイト+残留オ−ステナイトから成る組織としたものは、加工時の変形中に残留オ−ステナイトが歪誘起変態を起こして大きな伸びを示す」との現象が見出されて以来、この現象を利用して高延性高強度鋼板を製造する試みがなされてきた。   In recent years, various machines and devices have been strongly promoted to achieve high performance and light weight, and many techniques for increasing the strength of steel sheets have been developed. However, in general, increasing the strength of a steel sheet is accompanied by deterioration of ductility, so that it has been considered very difficult to manufacture a steel sheet having both good workability and high strength. However, after annealing in a two-phase region to a low-carbon steel sheet with a combined addition of Si and Mn, it is rapidly cooled to 350 to 550 ° C. and kept in that temperature range for a short time or by stepped cooling. -When the structure of stenite partially transformed into bainite and finally composed of ferrite + bainite + retained austenite, the retained austenite undergoes strain-induced transformation during deformation during processing and exhibits a large elongation. '' Since this phenomenon was found, attempts have been made to produce high ductility and high strength steel sheets using this phenomenon.

例えば、特許文献1には、0.4〜1.8%のSi(以下、成分割合を表わす「%」は「質量%」とする)と0.2〜2.5%のMnの他、必要により適量のP、Ni、Cu、Cr、Ti、Nb、V、Moの1種又は2種以上を含む鋼板をフェライト+オ−ステナイト2相域に加熱した後、冷却途中の500〜350℃の温度域で30秒〜30分間保持することで前記混合組織を実現し、高延性を示す高強度鋼板とする方法が開示されている。   For example, Patent Document 1 includes 0.4 to 1.8% Si (hereinafter, “%” representing the component ratio is “mass%”) and 0.2 to 2.5% Mn, If necessary, a steel plate containing one or more of P, Ni, Cu, Cr, Ti, Nb, V, and Mo is heated to a ferrite + austenite two-phase region, and then cooled to 500 to 350 ° C. A method is disclosed in which the mixed structure is realized by holding in a temperature range of 30 seconds to 30 minutes to obtain a high-strength steel sheet exhibiting high ductility.

また、特許文献2には、高延性を示す高強度鋼板の製造法として、0.7〜2.0%のSiと0.5〜2.0%のMnを含有する鋼板を焼鈍過程でフェライト+オ−ステナイト2相域に加熱した後、冷却過程の650〜450℃間にて合計10〜50秒の定温保持を行い、マルテンサイト或いはベイナイト中に体積率で10%以上のフェライトと残留オ−ステナイトを含む混合組織鋼板とする方法が開示されている。
特開昭61−157625号公報 特開昭60−43430号公報
In Patent Document 2, as a method for producing a high-strength steel sheet exhibiting high ductility, a steel sheet containing 0.7 to 2.0% Si and 0.5 to 2.0% Mn is annealed in the annealing process. + After heating to austenite two-phase region, hold constant temperature for 10 to 50 seconds between 650 and 450 ° C. in the cooling process. -A method for producing a mixed structure steel plate containing stenite is disclosed.
JP-A 61-157625 Japanese Patent Laid-Open No. 60-43430

しかし、実際には、上記のような混合組織を有する鋼板は一般に引張試験において良好な延性を示したとしてもプレス加工時等の成形性については必ずしも良好でなく、加工用鋼板として十分に満足できるものではなかった。例えば、前記混合組織鋼板を加工すると、変形後期では大部分の残留オ−ステナイトが歪誘起変態して高炭素マルテンサイトに変化してしまっているので局部延性が極めて悪い状態となる。この現象は穴広げのような伸びフランジ加工の場合に顕著に現れ、そのため該混合組織鋼板の穴広げ性は従来の低炭素鋼板のそれよりも劣った結果となる。これは、打ち抜きにより穴開け加工を行った際、歪誘起変態で生成した高炭素マルテンサイトが非常に硬質なためにクラックが生じ、このクラックがその後の穴広げ時に拡大・伝播するためであると考えられている。   In practice, however, steel sheets having the above mixed structure generally do not necessarily have good formability during press working even if they exhibit good ductility in a tensile test, and are sufficiently satisfactory as a working steel sheet. It was not a thing. For example, when the mixed-structure steel sheet is processed, most of the retained austenite is strain-induced and transformed into high carbon martensite in the later stage of deformation, so that the local ductility becomes extremely poor. This phenomenon appears remarkably in the case of stretch flange processing such as hole expansion, so that the hole expansion property of the mixed structure steel plate is inferior to that of the conventional low carbon steel plate. This is because when punching is performed by punching, the high carbon martensite generated by strain-induced transformation is very hard and cracks are generated, and this crack expands and propagates during subsequent hole expansion. It is considered.

本発明は、上記現状に鑑みてなされたものであり、その課題は延性と穴広げ性が両立した加工性に優れた高強度鋼板およびその製造方法を提供することである。   This invention is made | formed in view of the said present condition, The subject is providing the high strength steel plate excellent in the workability in which ductility and hole expansibility were compatible, and its manufacturing method.

そこで、本発明者は上記課題を解決すべく鋭意研究を重ねたところ、次のような知見を得ることができたのである。
(1)引張強度780MPa以上を確保し、かつ延性を確保するには、フェライト体積率を特定の範囲内とする必要がある。
Then, when this inventor repeated earnest research in order to solve the said subject, the following knowledge was able to be acquired.
(1) In order to ensure a tensile strength of 780 MPa or more and ensure ductility, the ferrite volume ratio needs to be within a specific range.

(2)穴広げのような局部変形においては、過度に硬いマルテンサイトが亀裂の起点となるほかに、マルテンサイト以外の低温変態相の内部に亀裂の起点が存在する場合があり、そこには粗大な鉄炭化物が観察された。   (2) In local deformation such as hole expansion, in addition to excessively hard martensite being the starting point of cracks, crack starting points may exist inside low-temperature transformation phases other than martensite. Coarse iron carbide was observed.

(3)Si、AlとMn等他の合金元素の含有量と製造条件とをコントロールして、変態前の焼鈍過程におけるオーステナイト中のC量とそのオーステナイトの変態過程とを調整し、亀裂の起点となるような過度に硬いマルテンサイトあるいは粗大な鉄炭化物の生成を抑制することにより、延性と穴広げ性を両立した加工性に優れた高強度鋼板の製造が可能である。   (3) The content of other alloy elements such as Si, Al and Mn and the production conditions are controlled to adjust the amount of C in the austenite and the transformation process of the austenite in the annealing process before transformation, and the origin of cracks By suppressing the formation of excessively hard martensite or coarse iron carbide, it is possible to produce a high-strength steel sheet excellent in workability that achieves both ductility and hole expansibility.

本発明は、上記知見事項等を基にして完成されたものであり、その要旨は、次の通りである。
(1)質量%で、C:0.08〜0.3%、Si:0.25〜1.1%、Mn:2%超3.5%以下、P:0.028%以下、S:0.01%以下、sol.Al:0.03〜1%およびN:0.01%以下を含有し、残部がFeおよび不純物からなるとともに下記式(1)を満たす鋼組成を有し、鋼組織は、フェライト、低温変態相および残留オーステナイトからなり、前記フェライトの体積率VFが0.1〜0.80であるとともに下記式(2)を満たし、前記残留オーステナイトの体積率VAが0.30以下であり、かつ前記低温変態相に含まれる鉄炭化物の粒径が500nm以下であることを特徴とする引張強度780MPa以上の高強度鋼板。
The present invention has been completed on the basis of the above knowledge and the like, and the gist thereof is as follows.
(1) By mass%, C: 0.08 to 0.3%, Si: 0.25 to 1.1%, Mn: more than 2%, 3.5% or less, P: 0.028% or less, S: 0.01% or less, sol. Al: 0.03 to 1% and N: 0.01% or less, with the balance being Fe and impurities and having a steel composition satisfying the following formula (1), the steel structure is ferrite, low-temperature transformation phase And the volume fraction VF of the ferrite is 0.1 to 0.80, satisfies the following formula (2), the volume fraction VA of the residual austenite is 0.30 or less, and the low temperature transformation A high-strength steel sheet having a tensile strength of 780 MPa or more, wherein the particle size of iron carbide contained in the phase is 500 nm or less.

0.2≦(Si+Al)/Mn≦0.80 (1)
0.15≦C/(1−VF)≦0.50 (2)
ここで、式中のSi、Al、Mn、Cはそれぞれの元素の含有量(単位:質量%)を示す。
(2)質量%で、C:0.08〜0.3%、Si:0.25〜1.1%、Mn:2%超3.5%以下、P:0.028%以下、S:0.01%以下、sol.Al:0.03〜1%およびN:0.01%以下を含有し、さらにCu:1%以下、Ni:1%以下、Cr:1%以下、Mo:0.5%以下およびB:0.005%以下からなる群から選ばれた1種または2種以上を含有し、残部がFeおよび不純物からなるとともに下記式(3)を満たす鋼組成を有し、鋼組織は、フェライト、低温変態相および残留オーステナイトからなり、前記フェライトの体積率VFが0.1〜0.80であり下記式(2)を満たし、前記残留オーステナイト体積率VAが0.30以下であり、かつ前記低温変態相に含まれる鉄炭化物の粒径が500nm以下であることを特徴とする引張強度780MPa以上の高強度鋼板。
0.2 ≦ (Si + Al) /Mn≦0.80 (1)
0.15 ≦ C / (1-VF) ≦ 0.50 (2)
Here, Si, Al, Mn, and C in the formula indicate the content (unit: mass%) of each element.
(2) By mass%, C: 0.08 to 0.3%, Si: 0.25 to 1.1%, Mn: more than 2%, 3.5% or less, P: 0.028% or less, S: 0.01% or less, sol. Al: 0.03 to 1% and N: 0.01% or less, further Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less and B: 0 The steel composition contains one or more selected from the group consisting of 0.005% or less , the balance is Fe and impurities, and satisfies the following formula (3). The steel structure is ferrite, low temperature transformation A volume fraction VF of the ferrite is 0.1 to 0.80, satisfies the following formula (2), the volume fraction of residual austenite VA is 0.30 or less, and the low temperature transformation phase A high-strength steel sheet having a tensile strength of 780 MPa or more, wherein the iron carbide contained in the steel has a particle size of 500 nm or less.

0.2≦(Si+Al)/(Mn+Ni)≦0.80 (3)
0.15≦C/(1−VF)≦0.50 (2)
ここで、Si、Al、Mn、Ni、Cはそれぞれの元素の含有量(単位:質量%)を示す。
(3)鋼板表面にめっき層を備えることを特徴とする上記(1)または(2)に記載の高強度鋼板。
(4)質量%で、C:0.08〜0.3%、Si:0.25〜1.1%、Mn:2%超3.5%以下、P:0.028%以下、S:0.01%以下、sol.Al:0.03〜1%、およびN:0.01%以下を含有し、残部がFeおよび不純物からなるとともに下記式(1)を満たす鋼組成を有する鋼塊または鋼片に、熱間圧延を施し、脱スケール後、得られた熱延鋼板に冷間圧延を施し、次いで、得られた冷延鋼板に連続焼鈍を施し、あるいはさらにめっきを施す高強度鋼板の製造方法において、前記熱間圧延の後の巻取温度を450〜700℃とし、前記連続焼鈍において前記冷延鋼板をAc1変態点以上の温度域に加熱し、3℃/秒以上の平均冷却速度で350℃未満の温度域まで冷却することを特徴とする上記(1)に記載の高強度鋼板の製造方法。
0.2≦(Si+Al)/Mn≦0.8 (1)
ここで、式中のSi、Al、Mnはそれぞれの元素の含有量(単位:質量%)を示す。
(5)質量%で、C:0.08〜0.3%、Si:0.25〜1.1%、Mn:2%超3.5%以下、P:0.028%以下、S:0.01%以下、sol.Al:0.03〜1%、およびN:0.01%以下を含有し、さらにCu:1%以下、Ni:1%以下、Cr:1%以下、Mo:0.5%以下およびB:0.005%以下からなる群から選ばれた1種または2種以上を含有し、残部がFeおよび不純物からなるとともに下記式(3)を満たす鋼組成を有する鋼塊または鋼片に、熱間圧延を施し、脱スケール後、得られた熱延鋼板に冷間圧延を施し、次いで、得られた冷延鋼板に連続焼鈍を施し、あるいはさらにめっきを施す高強度鋼板の製造方法において、前記熱間圧延の後の巻取温度を450〜700℃とし、前記連続焼鈍において前記冷延鋼板をAc1変態点以上の温度域に加熱し、3℃/秒以上の平均冷却速度で350℃未満の温度域まで冷却することを特徴とする上記(2)に記載の高強度鋼板の製造方法。
0.2≦(Si+Al)/(Mn+Ni)≦0.80 (3)
ここで、式中のSi、Al、Mn、Niはそれぞれの元素の含有量(単位:質量%)を示す。
(6)前記連続焼鈍において、冷延鋼板を350℃未満の温度域まで冷却したのちに、該冷延鋼板を200〜350℃の温度域に500秒以下滞在させたのちに室温まで冷却することを特徴とする上記(4)または(5)に記載の高強度鋼板の製造方法。
0.2 ≦ (Si + Al) / (Mn + Ni) ≦ 0.80 (3)
0.15 ≦ C / (1-VF) ≦ 0.50 (2)
Here, Si, Al, Mn, Ni, and C indicate the content (unit: mass%) of each element.
(3) The high-strength steel plate according to (1) or (2) above, wherein a plating layer is provided on the steel plate surface.
(4) By mass%, C: 0.08 to 0.3%, Si: 0.25 to 1.1%, Mn: more than 2%, 3.5% or less, P: 0.028% or less, S: 0.01% or less, sol. Hot rolled into a steel ingot or steel slab containing Al: 0.03 to 1% and N: 0.01% or less, the balance being Fe and impurities and having a steel composition satisfying the following formula (1) In the method for producing a high-strength steel sheet, after the descaling, the obtained hot-rolled steel sheet is subjected to cold rolling, and then the obtained cold-rolled steel sheet is subjected to continuous annealing or further plating. The coiling temperature after rolling is set to 450 to 700 ° C., and the cold-rolled steel sheet is heated to a temperature range equal to or higher than the Ac1 transformation point in the continuous annealing, and a temperature range of less than 350 ° C. at an average cooling rate of 3 ° C./second or more. The method for producing a high-strength steel sheet as described in (1) above, wherein
0.2 ≦ (Si + Al) /Mn≦0.8 (1)
Here, Si, Al, and Mn in the formula indicate the content (unit: mass%) of each element.
(5) By mass%, C: 0.08 to 0.3%, Si: 0.25 to 1.1%, Mn: more than 2%, 3.5% or less, P: 0.028% or less, S: 0.01% or less, sol. Al: 0.03 to 1% and N: 0.01% or less, further Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less and B: A steel ingot or steel slab containing one or two or more selected from the group consisting of 0.005% or less and having the steel composition satisfying the following formula (3) with the balance consisting of Fe and impurities , In the method for producing a high-strength steel sheet, after rolling and descaling, the obtained hot-rolled steel sheet is cold-rolled, and then the obtained cold-rolled steel sheet is subjected to continuous annealing or further plating. The coiling temperature after hot rolling is set to 450 to 700 ° C., and the cold-rolled steel sheet is heated to a temperature range equal to or higher than the Ac1 transformation point in the continuous annealing, and the temperature is less than 350 ° C. at an average cooling rate of 3 ° C./second or more. As described in (2) above, which is cooled to an area Method of manufacturing a high-strength steel sheet.
0.2 ≦ (Si + Al) / (Mn + Ni) ≦ 0.80 (3)
Here, Si, Al, Mn, and Ni in the formula indicate the content (unit: mass%) of each element.
(6) In the continuous annealing, after the cold-rolled steel sheet is cooled to a temperature range of less than 350 ° C., the cold-rolled steel sheet is allowed to stay in the temperature range of 200 to 350 ° C. for 500 seconds or less and then cooled to room temperature. The method for producing a high-strength steel sheet according to the above (4) or (5).

本発明によれば、延性に優れ、良好な穴拡げ性等の加工性を示す高強度鋼板、特に自動車などの構造部材用の高強度薄鋼板が安定して得られるなど、産業上極めて有用な効果がもたらされる。   According to the present invention, a high-strength steel sheet having excellent ductility and good workability such as hole expansibility, in particular, a high-strength thin steel sheet for structural members such as automobiles can be stably obtained. The effect is brought about.

本発明において、鋼組成および製造条件を上述のように規定した理由について説明する。
まず、鋼組成を規定する理由は次の通りである。なお、本明細書において鋼組成を示す「%」は、「質量%」である。
In the present invention, the reason why the steel composition and production conditions are defined as described above will be described.
First, the reason for defining the steel composition is as follows. In the present specification, “%” indicating the steel composition is “mass%”.

C:0.08〜0.3%
Cは、鋼板の引張強度を高める作用を有する。C含有量が0.08%未満では、本発明が目的とする引張強度を確保することが困難となる場合があるので、C含有量の下限を0.08%とする。一方、C含有量が0.3%を超えると鋼板が過度に硬質化して、通常の製板工程では鋼板に加工することが困難となる。したがって、C含有量を0.08〜0.3%とする。好ましくは0.08〜0.2%である。さらに、溶接性を考慮すれば0.08〜0.15%が最も好ましい。
C: 0.08 to 0.3%
C has the effect | action which raises the tensile strength of a steel plate. If the C content is less than 0.08%, it may be difficult to ensure the intended tensile strength of the present invention, so the lower limit of the C content is 0.08%. On the other hand, if the C content exceeds 0.3%, the steel plate becomes excessively hard, and it becomes difficult to process the steel plate in a normal plate making process. Therefore, the C content is 0.08 to 0.3%. Preferably it is 0.08 to 0.2%. Furthermore, if considering weldability, 0.08 to 0.15% is most preferable.

Si:0.25〜1.1%
Siはフェライト安定化元素で、フェライト体積率を増加させて平衡するオ−ステナイト相のC濃度を高める効果を有しており、本発明において重要な元素である。また、Siは低温変態相の焼き戻しを抑制する効果も有している。この2つの効果により、高温での焼き戻しで穴広げに有害な粗大な鉄炭化物の生成を抑えて、穴広げ性を確保するために0.25%以上含有させる。しかしながら、1.1%を超えてSiを含有させるとSi添加鋼板特有のSiスケ−ルによる表面品質の劣化が著しく生じるばかりでなく、オ−ステナイト相のC濃度が高まり過ぎて過度に硬いマルテンサイトが生じることで穴広げ性もむしろ劣化してしまうので、Si含有量は1.1%以下とする。好ましくは、0.8%以下である。
Si: 0.25 to 1.1%
Si is a ferrite stabilizing element and has an effect of increasing the C concentration of the austenite phase which is balanced by increasing the ferrite volume fraction, and is an important element in the present invention. Si also has the effect of suppressing tempering of the low temperature transformation phase. Due to these two effects, the formation of coarse iron carbide harmful to hole expansion by tempering at high temperature is suppressed, and 0.25% or more is contained in order to ensure the hole expansion property. However, if Si exceeds 1.1%, not only the surface quality deteriorates due to the Si scale unique to the Si-added steel sheet, but the C concentration of the austenite phase is excessively increased, resulting in excessively hard martensite. Since the hole-expanding property is rather deteriorated by the generation of the site, the Si content is set to 1.1% or less. Preferably, it is 0.8% or less.

Mn:2%超3.5%以下
Mnは引張強度780MPa以上という強度確保に必要な元素であり2%を超えて含有させる。ただし、3.5%を超えるとフェライトの生成が抑制されて延性が劣化するため、3.5%を上限とするのが良い。さらに好ましくは、2.8%以下である。
Mn: more than 2% and 3.5% or less Mn is an element necessary for ensuring the strength of a tensile strength of 780 MPa or more and is contained in excess of 2%. However, if it exceeds 3.5%, the formation of ferrite is suppressed and ductility deteriorates, so 3.5% should be made the upper limit. More preferably, it is 2.8% or less.

P:0.028%以下
Pは不純物として鋼中に不可避的に含有される元素であって、出来るだけ低い方が好ましい。特に、0.028%を超えて含有されると溶接部靭性の劣化が顕著であることから、P含有量は0.028%以下と定めた。
P: 0.028% or less P is an element unavoidably contained in steel as an impurity, and is preferably as low as possible. In particular, if the content exceeds 0.028%, the deterioration of the toughness of the welded portion is significant, so the P content is determined to be 0.028% or less.

S:0.01%以下
Sも不純物として鋼中に不可避的に含有される元素であって、やはり低い方が好ましい。特に、0.01%を超えて含有されると溶接部靭性の劣化が顕著であることから、S含有量は0.01%以下と定めた。
S: 0.01% or less S is an element inevitably contained in steel as an impurity, and the lower one is preferable. In particular, when the content exceeds 0.01%, the deterioration of the toughness of the welded portion is remarkable, so the S content is determined to be 0.01% or less.

sol.Al:0.03〜1%
Alはフェライト安定化元素で、フェライト体積率を増加させて平衡するオ−ステナイト相のC濃度を高める効果を有しており、本発明において重要な元素である。また、これと共に溶鋼を脱酸するために必要であり、少なくとも0.03%以上含有させる必要がある。ただし、Al含有量が1%を超えると溶接性が問題となるため、Alは1%以下と定めた。好ましくは、0.7%以下である。なお、AlはSiと比べてフェライトを形成する作用が強く、0.3%以上含有させることが好ましい。
sol. Al: 0.03 to 1%
Al is a ferrite stabilizing element and has an effect of increasing the C concentration of the austenite phase which is balanced by increasing the ferrite volume fraction, and is an important element in the present invention. Moreover, it is necessary for deoxidizing the molten steel together with this, and it is necessary to contain at least 0.03% or more. However, since weldability becomes a problem when the Al content exceeds 1%, Al is determined to be 1% or less. Preferably, it is 0.7% or less. Al has a stronger effect of forming ferrite than Si, and is preferably contained in an amount of 0.3% or more.

N:0.01%以下
Nは不純物として鋼中に不可避的に含有される元素であり、その含有量は低い方が好ましい。特に、N含有量が0.01%を超えるとAlNとして消費されるAlの量が多くAl添加の効果が小さくなると共に、AlNによる延性の劣化が目立つようになることから、N含有量の上限を0.01%と定めた。
N: 0.01% or less N is an element inevitably contained in steel as an impurity, and its content is preferably low. In particular, if the N content exceeds 0.01%, the amount of Al consumed as AlN is large and the effect of Al addition becomes small, and the deterioration of ductility due to AlN becomes conspicuous, so the upper limit of the N content Was determined to be 0.01%.

Cu:1%、Ni:1%以下、Cr:1%以下、Mo:0.5%以下、B:0.005%以下の少なくとも1種
Cu、Ni、Cr、Mo、Bは、強度向上を目的に少なくとも1種含有させることができる。それぞれ上記上限を超えて含有させると延性の劣化が顕著となるため、上記上限以下の範囲内で含有させることができる。
Cu: 1%, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less, B: 0.005% or less Cu, Ni, Cr, Mo, B improves strength. At least one kind can be contained for the purpose. When the content exceeds each of the above upper limits, the ductility is remarkably deteriorated.

0.2≦(Si+Al)/Mn≦0.80 (1)
0.2≦(Si+Al)/(Mn+Ni)≦0.80 (3)
本発明ではフェライト体積率を多くして、延性を確保するとともに、焼鈍過程におけるオーステナイト中へのCの適度な濃化により低温変態相の硬さを適正化することが重要である。上記式(1)、(3)は連続焼鈍の均熱から冷却過程におけるフェライト形成のしやすさに関与し、式の値が0.2未満の場合は軟質なフェライトが少なく、延性が不十分となり、0.80を超えるとフェライトが多過ぎて、過度に硬い低温変態相が形成され、穴広げ性が劣る。好ましくは0.3〜0.6である。
0.2 ≦ (Si + Al) /Mn≦0.80 (1)
0.2 ≦ (Si + Al) / (Mn + Ni) ≦ 0.80 (3)
In the present invention, it is important to increase the ferrite volume fraction to ensure ductility and to optimize the hardness of the low temperature transformation phase by appropriate concentration of C in the austenite during the annealing process. The above formulas (1) and (3) are related to the ease of ferrite formation in the cooling process from the soaking of the continuous annealing. When the value of the formula is less than 0.2, there are few soft ferrites and the ductility is insufficient. When 0.80 is exceeded, too much ferrite is formed, an excessively hard low-temperature transformation phase is formed, and the hole expandability is poor. Preferably it is 0.3-0.6.

式(3)は、Niを含有する鋼組成の場合に、式(1)に代えて適用される。したがって、本発明においては、NiはCu、Moなどと同様に強度向上元素としてばかりでなく、フェライト抑制元素とてしてMnと同様に作用する。   Formula (3) is applied instead of Formula (1) in the case of a steel composition containing Ni. Therefore, in the present invention, Ni acts not only as a strength improving element like Cu and Mo but also as Mn as a ferrite suppressing element.

本発明にかかる高強度鋼板は、その鋼組織がフェライト相、低温変態相、そして残留オーステナイト相とから構成されるが、それらの量的関係は次の通りである。なお、各組織の体積率は、全体積を1としたときのその組織の体積割合を表したものである。   The high-strength steel sheet according to the present invention is composed of a ferrite phase, a low-temperature transformation phase, and a retained austenite phase, and their quantitative relationship is as follows. In addition, the volume ratio of each structure | tissue represents the volume ratio of the structure | tissue when the whole volume is set to 1.

フェライト体積率VF:0.1〜0.80
本発明では780MPa以上の引張強度を確保しつつ延性を向上させるため、フェライト体積率を0.1以上に限定する。一方、0.8を超えると引張強度の確保が困難となるため0.80以下に限定する。好ましくは0.4〜0.7である。
Ferrite volume fraction VF: 0.1 to 0.80
In the present invention, the ferrite volume fraction is limited to 0.1 or more in order to improve the ductility while ensuring a tensile strength of 780 MPa or more. On the other hand, if it exceeds 0.8, it will be difficult to ensure the tensile strength, so it is limited to 0.80 or less. Preferably it is 0.4-0.7.

このようなフェライト体積率の調整は、SiやAlなどのフェライト安定化元素とMnやNiなどのオーステナイト安定化元素の配合量を変えたり、焼鈍条件の均熱温度や冷却速度等を変えたりして行うことができ、これまでの説明からも当業者には容易に理解できる。   Such adjustment of the ferrite volume fraction may change the blending amount of ferrite stabilizing elements such as Si and Al and austenite stabilizing elements such as Mn and Ni, or change the soaking temperature and cooling rate of annealing conditions. Those skilled in the art can easily understand from the above description.

なお、ここでいうフェライト体積率には、低温変態相を構成しているフェライトは含まない。
0.15≦C/(1−VF)≦0.50 (2)
フェライト以外の第2相(低温変態相および残留オーステナイト)に含まれるC量をコントロールするため、C/(1−VF)の値を0.15から0.50の間に限定する。0.15未満ではVF≧0.1とした上での強度確保に必要な低温変態相の硬さが得られず、0.50を超えると非常に硬質なマルテンサイトや残留オーステナイトの体積率が多くなり穴広げ性の劣化をもたらす。
In addition, the ferrite which comprises the low temperature transformation phase is not included in the ferrite volume fraction here.
0.15 ≦ C / (1-VF) ≦ 0.50 (2)
In order to control the amount of C contained in the second phase other than ferrite (low-temperature transformation phase and retained austenite), the value of C / (1-VF) is limited to 0.15 to 0.50. If it is less than 0.15, the hardness of the low temperature transformation phase necessary for securing the strength when VF ≧ 0.1 is not obtained, and if it exceeds 0.50, the volume fraction of very hard martensite and residual austenite is low. Increases and causes deterioration of hole expansibility.

残留オーステナイト体積率VA:0.30以下
本発明において残留オーステナイトは不可避的に混入する相である。鋼板の伸びを高くするのに好都合な組織である反面、加工による歪誘起変態で生成したマルテンサイトは非常に硬いため、穴広げ性の劣化をもたらす。よって、残留オーステナイトは体積率で0.30以下に制限する。
Residual austenite volume fraction VA: 0.30 or less In the present invention, retained austenite is a phase inevitably mixed. While it is a convenient structure for increasing the elongation of a steel sheet, martensite produced by strain-induced transformation by processing is very hard and therefore causes deterioration of hole expansibility. Therefore, the retained austenite is limited to 0.30 or less in volume ratio.

残留オーステナイトの体積率は、フェライト以外の第2相のC量と、そのC量に応じて焼鈍過程の均熱温度、冷却速度などの条件を適切に制御することにより調整できる。
本発明において鋼組織は残留オーステナイト体積率はX線反射強度によって、フェライト体積率および鉄炭化物の大きさは断面の電子顕微鏡写真によってそれぞれ測定することで決定するものとする。
The volume fraction of retained austenite can be adjusted by appropriately controlling the amount of C in the second phase other than ferrite and the conditions such as the soaking temperature and cooling rate in the annealing process according to the amount of C.
In the present invention, the steel structure is determined by measuring the retained austenite volume fraction by the X-ray reflection intensity, and the ferrite volume fraction and the size of the iron carbide by the cross-sectional electron micrograph.

低温変態相に含まれる鉄炭化物の粒径:500nm以下
本発明の低温変態相とは、マルテンサイト、ベイナイト、およびそれらが焼き戻されたものを指し、本発明の高強度鋼板は、鋼組織としてこれらのうちいずれか1種または2種以上を必ず含むものとする。本発明の低温変態相は、過度に硬くなって穴広げ性の劣化をもたらすことを避けるため、相の内部において一部のCを微細鉄炭化物として析出した状態とする。つまり、本発明の低温変態相は粒径1〜100nmの鉄炭化物を含んだものであることが好ましい。
ただし、機構は必ずしも明らかではないが、低温変態相中に粗大な鉄炭化物が生じる場合があり、その鉄炭化物の粒径が500nmを超えると、それを起点とした亀裂の発生により穴広げ性の劣化をもたらすため、500nm以下に制限しなければならない。
Particle size of iron carbide contained in low-temperature transformation phase: 500 nm or less The low-temperature transformation phase of the present invention refers to martensite, bainite, and those tempered, and the high-strength steel sheet of the present invention has a steel structure. Any one or more of these must be included. In order to avoid that the low-temperature transformation phase of the present invention becomes excessively hard and causes deterioration of hole expansibility, a part of C is precipitated as fine iron carbide inside the phase. That is, the low temperature transformation phase of the present invention preferably contains iron carbide having a particle size of 1 to 100 nm.
However, although the mechanism is not necessarily clear, coarse iron carbide may occur in the low-temperature transformation phase, and when the particle size of the iron carbide exceeds 500 nm, the hole expandability is caused by the generation of cracks starting from the particle size. In order to bring about deterioration, it must be limited to 500 nm or less.

このような粗大な鉄炭化物の生成は、(1)Si量が0.5%未満、(2)熱間圧延の巻取温度が600℃以上、(3)焼鈍過程で冷却中の600〜350℃間の保持時間が長い、といった条件が重なった場合に顕著である。鉄炭化物の大きさを500nm以下とするには、通常の条件下では、これらの条件を避けるとともに、好ましくはCrまたはMoを添加するとよい。   Such coarse iron carbide is produced by (1) Si content of less than 0.5%, (2) Hot rolling coiling temperature of 600 ° C. or higher, and (3) 600 to 350 during cooling in the annealing process. This is remarkable when conditions such as a long holding time between ° C. overlap. In order to make the size of the iron carbide 500 nm or less, these conditions are avoided under normal conditions, and Cr or Mo is preferably added.

低温変態相はその量、つまり体積率が特に限定されないが、好ましくは、体積率で0.25程度は存在するのがよい。
本発明にかかる高強度鋼板の製造方法は、上述のような鋼組成を備えた鋼塊または鋼片に熱間圧延、冷間圧延そして熱処理を行うことで上述のような鋼組織を実現できるものであればよく、特に制限されないが、その一例を説明する。
The amount of the low-temperature transformation phase, that is, the volume ratio is not particularly limited, but preferably it is about 0.25 in volume ratio.
The method for producing a high-strength steel sheet according to the present invention can realize the steel structure as described above by performing hot rolling, cold rolling and heat treatment on a steel ingot or steel slab having the steel composition as described above. There is no particular limitation, but an example will be described.

本発明に係る組成の鋼は、熱間圧延後、低温で巻取ると焼きが入って硬くなるため後続の冷間圧延が困難になる。逆に高温で巻取ると、易酸化元素のSi、Mn、Alを多く含むため熱延鋼板表面の酸化が顕著となり、酸洗後のスケール残りが問題となる。そのため、熱間圧延後の巻取は上記のような不都合が回避できる450〜700℃で実施することと定めた。ただ、熱延鋼板は出来るだけ酸洗、冷間圧延が容易であることが望まれるため、巻取温度は500〜650℃で実施するのが好ましい。脱スケールの方法としては前記の酸洗のほか、スキンパス圧下によるメカニカルデスケーリングやショットブラスト、研削等を選択できる。   When the steel having the composition according to the present invention is hot-rolled and then wound at a low temperature, it becomes hardened and hardened so that subsequent cold-rolling becomes difficult. On the other hand, when it is wound at a high temperature, since it contains a large amount of easily oxidizable elements such as Si, Mn, and Al, oxidation of the surface of the hot-rolled steel sheet becomes remarkable, and the remaining scale after pickling becomes a problem. Therefore, it was decided that the winding after hot rolling should be performed at 450 to 700 ° C., which can avoid the above disadvantages. However, since it is desired that the hot-rolled steel sheet be easily pickled and cold-rolled as much as possible, the coiling temperature is preferably 500 to 650 ° C. As a descaling method, mechanical descaling, shot blasting, grinding, etc. under skin pass pressure can be selected in addition to the above pickling.

冷延鋼板の連続焼鈍では、最終的に低温変態相を含む組織とするためにAc1変態点以上の温度域で均熱が行われる。ただし、加熱温度が低すぎるとセメンタイトが再固溶するのに時間がかかり過ぎ、高すぎると昇温コストがかさむほか設備への負荷も大きいことから、800〜860℃で均熱することが望ましい。   In continuous annealing of a cold-rolled steel sheet, soaking is performed in a temperature range equal to or higher than the Ac1 transformation point in order to finally form a structure including a low-temperature transformation phase. However, if the heating temperature is too low, it takes too much time for the cementite to re-dissolve, and if it is too high, the heating cost increases and the load on the equipment is large, so it is desirable to soak at 800 to 860 ° C. .

その後の冷却は、焼鈍過程においてオーステナイト中の適切なC濃度を得るとともに粗大な鉄炭化物の生成を抑制するために平均冷却速度3℃/秒以上として350℃未満まで冷却する。平均冷却速度が3℃/秒未満であったり、冷却終了温度が350℃以上であったりすると、非常に硬いマルテンサイトを含む組織が生成したり、粗大な炭化物が生成したりして、強度が低下したり穴広げ性が劣化したりする場合がある。   Subsequent cooling is performed at an average cooling rate of 3 ° C./second or more to less than 350 ° C. in order to obtain an appropriate C concentration in the austenite during the annealing process and to suppress the formation of coarse iron carbide. When the average cooling rate is less than 3 ° C./second or the cooling end temperature is 350 ° C. or more, a structure containing very hard martensite or coarse carbide is generated, and the strength is increased. It may decrease or the hole expandability may deteriorate.

低温変態相を適度に軟質化させることにより穴広げ性をさらに向上させるという観点からは、上記冷却ののちに200〜350℃の温度域に500秒以下の時間滞在させることが好ましい。ここで、上記温度が350℃を上回ると低温変態相中の鉄炭化物が粗くなって目的とする強度が得られない場合がある。好ましくは330℃以下である。一方、200℃を下回ると低温変態相を適度に軟質化させることにより穴広げ性をさらに向上させるという効果を十分に得ることが難しい。また、滞在時間が500秒を超えると変態相が過度に軟質化して目的とする強度が得られない場合がある。好ましくは400秒以内である。上記効果を確実に得るために、滞在時間は50秒以上が好ましく、100秒以上がより好ましい。   From the viewpoint of further improving the hole expanding property by appropriately softening the low-temperature transformation phase, it is preferable to stay in the temperature range of 200 to 350 ° C. for 500 seconds or less after the cooling. Here, if the temperature exceeds 350 ° C., the iron carbide in the low-temperature transformation phase becomes coarse and the intended strength may not be obtained. Preferably it is 330 degrees C or less. On the other hand, when the temperature is lower than 200 ° C., it is difficult to sufficiently obtain the effect of further improving the hole expanding property by appropriately softening the low temperature transformation phase. Further, if the staying time exceeds 500 seconds, the transformation phase may become excessively soft and the intended strength may not be obtained. Preferably it is within 400 seconds. In order to surely obtain the above effect, the staying time is preferably 50 seconds or longer, and more preferably 100 seconds or longer.

このように、本発明によれば、加工に際して従来のように残留オーステナイトの歪誘起変態による大きな伸びが確保され、一方、十分な量の軟質フェライトが存在することから、また低温変態相における炭素量が少ないことから、局部延性が確保されるため、すぐれた穴拡げ性が実現される。また本発明の鋼組成では強度もそのような低温変態相の存在により780MPa以上を確保できる。   Thus, according to the present invention, during processing, a large elongation due to strain-induced transformation of retained austenite is ensured as in the prior art, while a sufficient amount of soft ferrite is present, and the amount of carbon in the low-temperature transformation phase is also increased. Since there is little, local ductility is ensured, and excellent hole expansibility is realized. Further, in the steel composition of the present invention, the strength can be secured at 780 MPa or more due to the presence of such a low temperature transformation phase.

なお、得られた鋼板に各種金属の電気めっきを施しても何ら差し支えない。あるいは、連続焼鈍の冷却途中に溶融めっきを施す場合でも、前記冷却条件および滞在時間を満足する限り、本発明の効果が失われることはない。めっき金属としては実用上からは亜鉛が例示される。   The obtained steel plate may be electroplated with various metals. Alternatively, even when hot-dip plating is performed during the cooling of continuous annealing, the effects of the present invention are not lost as long as the cooling conditions and the residence time are satisfied. An example of the plating metal is zinc from a practical viewpoint.

表1に示す各成分組成の鋼を溶製、鋳造してスラブとした。次に1250℃に1時間均熱した後、仕上温度900℃となるよう熱間圧延機により圧延し、5mm厚の熱延鋼板を得た。そして、巻取シュミレ−ションとして、鋼板は熱間圧延後直ちに強制空冷或いは水スプレ−冷却にて550〜650℃の温度まで冷却し、続いて該温度に保持した電気炉の中に装入して1時間保持した後、20℃/時の冷却速度で炉冷した。次いで、得られた熱延鋼板を表面研削により脱スケ−ルを行い、2.8mm厚の冷延母材とし、これを1.4mm厚まで冷間圧延した。   Steel of each component composition shown in Table 1 was melted and cast to obtain a slab. Next, after soaking at 1250 ° C. for 1 hour, it was rolled with a hot rolling mill so that the finishing temperature was 900 ° C., and a 5 mm thick hot rolled steel sheet was obtained. And as a winding simulation, the steel sheet is cooled to a temperature of 550 to 650 ° C. immediately after hot rolling by forced air cooling or water spray cooling, and then charged into an electric furnace maintained at the temperature. And then kept in the furnace at a cooling rate of 20 ° C./hour. Next, the obtained hot-rolled steel sheet was descaled by surface grinding to obtain a cold-rolled base material having a thickness of 2.8 mm, which was cold-rolled to a thickness of 1.4 mm.

得られた冷延鋼板は、連続焼鈍シュミレ−ションとして、赤外線加熱炉にて10℃/秒で820℃まで加熱し、その温度に40秒間保持してから2〜15℃/秒の平均冷却速度で210〜380℃の温度へ冷却し、その温度で80〜700秒保持した。   The obtained cold-rolled steel sheet was heated to 820 ° C. at 10 ° C./second in an infrared heating furnace as a continuous annealing simulation, held at that temperature for 40 seconds, and then an average cooling rate of 2-15 ° C./second. Was cooled to a temperature of 210 to 380 ° C. and held at that temperature for 80 to 700 seconds.

その後、鋼番号20〜28は片面あたり付着量35g/m2の電気亜鉛めっきを両面に施した。
それぞれ得られた鋼板からJIS5号引張試験片を採取して引張試験に供すると共に、穴広げ試験を実施した。穴広げ試験は、片側クリアランス12%で直径10mmの穴を打ち抜いた試験片について、バリを外側にして60度円錐ポンチを押し込み、亀裂発生限界の穴直径を測定し穴広げ率を求めた。
Then, steel numbers 20 to 28 were subjected to electrogalvanizing on both sides with an adhesion amount of 35 g / m 2 per side.
A JIS No. 5 tensile test piece was collected from each of the obtained steel plates and subjected to a tensile test, and a hole expansion test was performed. In the hole expansion test, a 60 mm conical punch was pushed in with a burr on the outer side of a test piece punched with a 10 mm diameter hole with a clearance of 12% on one side, and the hole expansion rate was determined by measuring the hole diameter at the crack initiation limit.

ここで、穴広げ率は下記のように定義する。
穴広げ率(%)=(亀裂発生限界の穴直径(mm)−10)/10×100
本発明では、TS(MPa)×EL(%)≧15000、かつ、TS(MPa)×穴広げ率(%)≧30000のものを、延性と穴広げ性が両立した加工性に優れた高強度鋼板とした。
Here, the hole expansion rate is defined as follows.
Hole expansion rate (%) = (Hole diameter at crack limit (mm) −10) / 10 × 100
In the present invention, TS (MPa) × EL (%) ≧ 15000 and TS (MPa) × hole expansion ratio (%) ≧ 30000 are high strength excellent in workability in which ductility and hole expansion are compatible. A steel plate was used.

また、各焼鈍板につき、X線反射強度測定により残留オ−ステナイト体積率の測定、および断面組織の電子顕微鏡写真を用いてフェライト体積率の測定も行った。さらに高倍率の電子顕微鏡写真により、低温変態相中の10μm四方相当の視野における最大の鉄炭化物の大きさを測定した。   For each annealed plate, the residual austenite volume fraction was measured by X-ray reflection intensity measurement, and the ferrite volume fraction was also measured using an electron micrograph of the cross-sectional structure. Furthermore, the size of the maximum iron carbide in the visual field corresponding to 10 μm square in the low-temperature transformation phase was measured by a high-magnification electron micrograph.

これらの結果を表2に示す。表2に示される結果から、本発明の規定する範囲を外れる鋼は、目的とする強度レベルで高い伸びと穴広げ性との両立が得られないことが示されている。   These results are shown in Table 2. From the results shown in Table 2, it is shown that steel that is outside the range defined by the present invention cannot achieve both high elongation and hole expandability at the intended strength level.

Figure 0004910898
Figure 0004910898

Figure 0004910898
Figure 0004910898

Claims (6)

質量%で、C:0.08〜0.3%、Si:0.25〜1.1%、Mn:2%超3.5%以下、P:0.028%以下、S:0.01%以下、sol.Al:0.03〜1%、およびN:0.01%以下を含有し、残部がFeおよび不純物からなるとともに下記式(1)を満たす鋼組成を有し、鋼組織は、フェライト、低温変態相および残留オーステナイトからなり、前記フェライトの体積率VFが0.1〜0.80であるとともに下記式(2)を満たし、前記残留オーステナイトの体積率VAが0.30以下であり、かつ前記低温変態相に含まれる鉄炭化物の粒径が500nm以下であることを特徴とする引張強度780MPa以上の高強度鋼板。
0.2≦(Si+Al)/Mn≦0.8 (1)
0.15≦C/(1−VF)≦0.50 (2)
ここで、式中のSi、Al、Mn、Cはそれぞれの元素の含有量(単位:質量%)を示す。
In mass%, C: 0.08 to 0.3%, Si: 0.25 to 1.1%, Mn: more than 2%, 3.5% or less, P: 0.028% or less, S: 0.01 % Or less, sol. Al: 0.03 to 1%, and N: 0.01% or less, the balance is made of Fe and impurities and has a steel composition satisfying the following formula (1), the steel structure is ferrite, low temperature transformation And the volume fraction VF of the ferrite is 0.1 to 0.80 and satisfies the following formula (2), the volume fraction VA of the residual austenite is 0.30 or less, and the low temperature A high-strength steel sheet having a tensile strength of 780 MPa or more, wherein the grain size of iron carbide contained in the transformation phase is 500 nm or less.
0.2 ≦ (Si + Al) /Mn≦0.8 (1)
0.15 ≦ C / (1-VF) ≦ 0.50 (2)
Here, Si, Al, Mn, and C in the formula indicate the content (unit: mass%) of each element.
質量%で、C:0.08〜0.3%、Si:0.25〜1.1%、Mn:2%超3.5%以下、P:0.028%以下、S:0.01%以下、sol.Al:0.03〜1%、およびN:0.01%以下を含有し、さらにCu:1%以下、Ni:1%以下、Cr:1%以下、Mo:0.5%以下およびB:0.005%以下からなる群から選ばれた1種または2種以上を含有し、残部がFeおよび不純物からなるとともに下記式(3)を満たす鋼組成を有し、鋼組織は、フェライト、低温変態相および残留オーステナイトからなり、前記フェライトの体積率VFが0.1〜0.80であり下記式(2)を満たし、前記残留オーステナイト体積率VAが0.30以下であり、かつ前記低温変態相に含まれる鉄炭化物の粒径が500nm以下であることを特徴とする引張強度780MPa以上の高強度鋼板。
0.2≦(Si+Al)/(Mn+Ni)≦0.80 (3)
0.15≦C/(1−VF)≦0.50 (2)
ここで、Si、Al、Mn、Ni、Cはそれぞれの元素の含有量(単位:質量%)を示す。
In mass%, C: 0.08 to 0.3%, Si: 0.25 to 1.1%, Mn: more than 2%, 3.5% or less, P: 0.028% or less, S: 0.01 % Or less, sol. Al: 0.03 to 1% and N: 0.01% or less, further Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less and B: The steel composition contains one or more selected from the group consisting of 0.005% or less , the balance is Fe and impurities, and satisfies the following formula (3). The steel structure is ferrite, low temperature It comprises a transformation phase and residual austenite, the ferrite volume fraction VF is 0.1 to 0.80, satisfies the following formula (2), the residual austenite volume fraction VA is 0.30 or less, and the low temperature transformation A high-strength steel sheet having a tensile strength of 780 MPa or more, wherein the particle size of iron carbide contained in the phase is 500 nm or less.
0.2 ≦ (Si + Al) / (Mn + Ni) ≦ 0.80 (3)
0.15 ≦ C / (1-VF) ≦ 0.50 (2)
Here, Si, Al, Mn, Ni, and C indicate the content (unit: mass%) of each element.
鋼板表面にめっき層を備えることを特徴とする請求項1または2に記載の高強度鋼板。   The high-strength steel plate according to claim 1, further comprising a plating layer on the steel plate surface. 質量%で、C:0.08〜0.3%、Si:0.25〜1.1%、Mn:2%超3.5%以下、P:0.028%以下、S:0.01%以下、sol.Al:0.03〜1%、およびN:0.01%以下を含有し、残部がFeおよび不純物からなるとともに下記式(1)を満たす鋼組成を有する鋼塊または鋼片に、熱間圧延を施し、脱スケール後、得られた熱延鋼板に冷間圧延を施し、次いで、得られた冷延鋼板に連続焼鈍を施し、あるいはさらにめっきを施す高強度鋼板の製造方法において、前記熱間圧延の後の巻取温度を450〜700℃とし、前記連続焼鈍において前記冷延鋼板をAc1変態点以上の温度域に加熱し、3℃/秒以上の平均冷却速度で350℃未満の温度域まで冷却することを特徴とする請求項1に記載された高強度鋼板の製造方法。
0.2≦(Si+Al)/Mn≦0.8 (1)
ここで、式中のSi、Al、Mnはそれぞれの元素の含有量(単位:質量%)を示す。
In mass%, C: 0.08 to 0.3%, Si: 0.25 to 1.1%, Mn: more than 2%, 3.5% or less, P: 0.028% or less, S: 0.01 % Or less, sol. Hot rolled into a steel ingot or steel slab containing Al: 0.03 to 1% and N: 0.01% or less, the balance being Fe and impurities and having a steel composition satisfying the following formula (1) In the method for producing a high-strength steel sheet, after the descaling, the obtained hot-rolled steel sheet is subjected to cold rolling, and then the obtained cold-rolled steel sheet is subjected to continuous annealing or further plating. The coiling temperature after rolling is set to 450 to 700 ° C., and the cold-rolled steel sheet is heated to a temperature range equal to or higher than the Ac1 transformation point in the continuous annealing, and a temperature range of less than 350 ° C. at an average cooling rate of 3 ° C./second or more. The method for producing a high-strength steel sheet according to claim 1, wherein the steel sheet is cooled to a low temperature.
0.2 ≦ (Si + Al) /Mn≦0.8 (1)
Here, Si, Al, and Mn in the formula indicate the content (unit: mass%) of each element.
質量%で、C:0.08〜0.3%、Si:0.25〜1.1%、Mn:2%超3.5%以下、P:0.028%以下、S:0.01%以下、sol.Al:0.03〜1%、およびN:0.01%以下を含有し、さらにCu:1%以下、Ni:1%以下、Cr:1%以下、Mo:0.5%以下およびB:0.005%以下からなる群から選ばれた1種または2種以上を含有し、残部がFeおよび不純物からなるとともに下記式(3)を満たす鋼組成を有する鋼塊または鋼片に、熱間圧延を施し、脱スケール後、得られた熱延鋼板に冷間圧延を施し、次いで、得られた冷延鋼板に連続焼鈍を施し、あるいはさらにめっきを施す高強度鋼板の製造方法において、前記熱間圧延の後の巻取温度を450〜700℃とし、前記連続焼鈍において前記冷延鋼板をAc1変態点以上の温度域に加熱し、3℃/秒以上の平均冷却速度で350℃未満の温度域まで冷却することを特徴とする請求項2に記載された高強度鋼板の製造方法。
0.2≦(Si+Al)/(Mn+Ni)≦0.80 (3)
ここで、式中のSi、Al、Mn、Niはそれぞれの元素の含有量(単位:質量%)を示す。
In mass%, C: 0.08 to 0.3%, Si: 0.25 to 1.1%, Mn: more than 2%, 3.5% or less, P: 0.028% or less, S: 0.01 % Or less, sol. Al: 0.03 to 1% and N: 0.01% or less, further Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 0.5% or less and B: A steel ingot or steel slab containing one or two or more selected from the group consisting of 0.005% or less and having the steel composition satisfying the following formula (3) with the balance consisting of Fe and impurities , In the method for producing a high-strength steel sheet, after rolling and descaling, the obtained hot-rolled steel sheet is cold-rolled, and then the obtained cold-rolled steel sheet is subjected to continuous annealing or further plating. The coiling temperature after hot rolling is set to 450 to 700 ° C., and the cold-rolled steel sheet is heated to a temperature range equal to or higher than the Ac1 transformation point in the continuous annealing, and the temperature is less than 350 ° C. at an average cooling rate of 3 ° C./second or more. 3. Cooling to a zone Method for producing a high strength steel sheet.
0.2 ≦ (Si + Al) / (Mn + Ni) ≦ 0.80 (3)
Here, Si, Al, Mn, and Ni in the formula indicate the content (unit: mass%) of each element.
前記連続焼鈍において、冷延鋼板を350℃未満の温度域まで冷却したのちに、該冷延鋼板を200〜350℃の温度域に500秒以下滞在させたのちに室温まで冷却することを特徴とする請求項4または請求項5に記載の高強度鋼板の製造方法。   In the continuous annealing, after cooling the cold-rolled steel sheet to a temperature range of less than 350 ° C., the cold-rolled steel sheet is allowed to stay in a temperature range of 200 to 350 ° C. for 500 seconds or less and then cooled to room temperature. The manufacturing method of the high strength steel plate of Claim 4 or Claim 5 to do.
JP2007156538A 2007-06-13 2007-06-13 High strength steel plate and manufacturing method thereof Active JP4910898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156538A JP4910898B2 (en) 2007-06-13 2007-06-13 High strength steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156538A JP4910898B2 (en) 2007-06-13 2007-06-13 High strength steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008308717A JP2008308717A (en) 2008-12-25
JP4910898B2 true JP4910898B2 (en) 2012-04-04

Family

ID=40236573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156538A Active JP4910898B2 (en) 2007-06-13 2007-06-13 High strength steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4910898B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685166B2 (en) * 2011-03-31 2015-03-18 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and method for producing the same
JP5685167B2 (en) * 2011-03-31 2015-03-18 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and method for producing the same
US20140044988A1 (en) * 2011-03-31 2014-02-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) High-strength steel sheet excellent in workability and manufacturing method thereof
CN104011242B (en) * 2011-12-26 2016-03-30 杰富意钢铁株式会社 High-strength steel sheet and manufacture method thereof
ES2746285T5 (en) * 2012-03-30 2022-12-19 Voestalpine Stahl Gmbh Cold rolled high strength steel sheet and process for producing said steel sheet
EP2831292B2 (en) 2012-03-30 2022-08-10 voestalpine Stahl GmbH High strength cold rolled steel sheet and method of producing such steel sheet
KR20220128658A (en) 2020-02-28 2022-09-21 제이에프이 스틸 가부시키가이샤 Steel plate, member and manufacturing method thereof
JP7006849B1 (en) 2020-02-28 2022-01-24 Jfeスチール株式会社 Steel sheets, members and their manufacturing methods
MX2022010481A (en) 2020-02-28 2022-09-19 Jfe Steel Corp Steel sheet, member, and methods respectively for producing said steel sheet and said member.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450985B2 (en) * 1997-04-10 2003-09-29 新日本製鐵株式会社 High-strength cold-rolled steel sheet having good shape and excellent bendability and manufacturing method thereof
JP4306202B2 (en) * 2002-08-02 2009-07-29 住友金属工業株式会社 High tensile cold-rolled steel sheet and method for producing the same
JP4441417B2 (en) * 2005-02-14 2010-03-31 新日本製鐵株式会社 High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same

Also Published As

Publication number Publication date
JP2008308717A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP6465266B1 (en) Hot rolled steel sheet and manufacturing method thereof
JP6252713B1 (en) High strength steel plate and manufacturing method thereof
CN110168125B (en) High-strength steel plate
US8828557B2 (en) High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same
CN107709598B (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP6338024B2 (en) High strength steel plate and manufacturing method thereof
JP4910898B2 (en) High strength steel plate and manufacturing method thereof
CN111315908A (en) Cold-rolled steel sheet and method for producing same
JP5387073B2 (en) Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP2006118000A (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JPWO2013150669A1 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2019014933A (en) Steel sheet and method of producing the same
JP2012153957A (en) High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
JP5533146B2 (en) Cold rolled steel sheet and method for producing the same
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
WO2021162084A1 (en) Hot stamp molded article
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
JP5533145B2 (en) Cold rolled steel sheet and method for producing the same
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6252709B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
WO2019131099A1 (en) Hot-rolled steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350