JP4906245B2 - Machine structural steel with excellent machinability - Google Patents
Machine structural steel with excellent machinability Download PDFInfo
- Publication number
- JP4906245B2 JP4906245B2 JP2004170526A JP2004170526A JP4906245B2 JP 4906245 B2 JP4906245 B2 JP 4906245B2 JP 2004170526 A JP2004170526 A JP 2004170526A JP 2004170526 A JP2004170526 A JP 2004170526A JP 4906245 B2 JP4906245 B2 JP 4906245B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- ratio
- sulfide
- oxide
- machinability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
例えば、自動車用部品であるギヤ、シャフトなどの駆動系部品などの用途に用いられる鋼で、熱間圧延ままあるいは熱間鍛造した素材に各種切削加工を施して所定の形状に加工した後、その後、浸炭などの表面硬化処理もしくは焼入れ焼戻しなどを施して使用される被削性に優れた機械構造用快削鋼に関する。 For example, steel used for driving parts such as gears and shafts that are parts for automobiles, etc., after hot-rolled or hot-forged material is subjected to various cutting processes and processed into a predetermined shape, then Further, the present invention relates to a free-cutting steel for machine structure having excellent machinability, which is used after being subjected to surface hardening treatment such as carburizing or quenching and tempering.
主として肌焼鋼が多く用いられる自動車のギヤ、シャフトなどの駆動系部品用途に対して、Pb快削鋼が被削性重視の観点から少なからず使用されている。しかしながら、近年の環境負荷物質低減の時流から、Pb快削鋼の使用量削減が求められている。そこでPb快削鋼に代わる非Pb快削鋼として、鋼に硫黄(S)を添加して鋼中にマンガン硫化物(MnS)を生成させることにより、これを切削時の応力集中源として作用させることで被削性を改善させるS系快削鋼が有望視されている。そして、さらにS系快削鋼の超硬工具加工性を改善するためCaを添加する発明が開示されている(例えば、特許文献1参照。)。一方、本願発明者らは、Caを添加したS系快削鋼において、鋼中のCa含有量やS含有量がほぼ同等であるにも関わらず、工具寿命がばらつき、安定した切削加工性が得られないということを見出している。 Pb free-cutting steel is used in many respects from the viewpoint of machinability, mainly for use in drive system parts such as gears and shafts of automobiles in which mainly case hardening steel is used. However, due to the recent trend of reducing environmentally hazardous substances, reduction of the amount of Pb free-cutting steel is required. Therefore, as non-Pb free-cutting steel that replaces Pb free-cutting steel, sulfur (S) is added to the steel to produce manganese sulfide (MnS) in the steel, which acts as a stress concentration source during cutting. Therefore, S-based free-cutting steel that improves machinability is promising. And invention which adds Ca in order to improve the carbide tool workability of S system free-cutting steel is indicated (for example, refer to patent documents 1). On the other hand, the inventors of the present invention, in the S-based free-cutting steel to which Ca is added, have varying tool life and stable cutting workability despite the Ca content and S content in the steel being substantially equal. I find that I can not get it.
本発明が解決しようとする課題は、環境負荷物質であるPbを含有することなくCaを含有するS系快削鋼において、特に被削性に優れる化学成分および介在物組成を含有する機械構造用鋼を提供することである。 The problem to be solved by the present invention is an S-based free-cutting steel containing Ca without containing Pb, which is an environmentally hazardous substance, especially for a mechanical structure containing chemical components and inclusion compositions excellent in machinability. Is to provide steel.
本願発明者らの鋭意研究の結果、Ca含有量がほぼ同等の鋼においても、鋼中のCaとAlを所定の質量%比に制御することで酸化物組成がAl2O3に富む高融点介在物ではなく、CaO−Al2O3やCaO−Al2O3−SiO2といった若干低融点の化学組成に改質されることを見出し、さらに鋼中に含有される介在物の面積および個数比率を所定の範囲に限定することによって安定した良好な被削性を発揮できることが分かった。 As a result of intensive studies by the inventors of the present application, even in a steel having approximately the same Ca content, a high melting point in which the oxide composition is rich in Al 2 O 3 by controlling Ca and Al in the steel to a predetermined mass% ratio. It was found that it was modified to a slightly lower melting point chemical composition such as CaO—Al 2 O 3 or CaO—Al 2 O 3 —SiO 2 instead of inclusions, and the area and number of inclusions contained in the steel It was found that stable good machinability can be exhibited by limiting the ratio to a predetermined range.
すなわち、Caによる被削性改善効果を得るには、質量%比でCa/Alを0.1以上とする必要がある。一方、質量%比でCa/Alが1.0を超えると超硬工具被覆保護効果が飽和するとともに、硫化物が硬くなりすぎるためにドリル寿命の低下を招くことを見出したものである。 That is, in order to obtain the machinability improving effect by Ca, it is necessary to make Ca / Al 0.1 or more by mass% ratio. On the other hand, it was found that when Ca / Al exceeds 1.0 by mass ratio, the carbide tool covering protective effect is saturated and the sulfide is too hard, leading to a reduction in drill life.
さらに、上記のCa/Al比の範囲に制御された本発明の機械構造用鋼において鋼中に存在する不可避不純物と共に含有される酸化物を内包する硫化物及び酸化物に隣接する硫化物である複合硫化物について、酸化物を内包若しくは酸化物に隣接する複合硫化物の断面積をSSとし、複合硫化物中の酸化物の断面積をSOとするとき、この複合硫化物の断面積(SS+SO)に占める酸化物の断面積SOの割合である面積率が3〜90%であり、さらに単位面積中の全硫化物の個数に対する酸化物を内包若しくは隣接する上記複合硫化物の個数割合である個数率が4〜80%であるものとするとき、安定した良好な被削性を有することを見出したものである。 Furthermore, in the steel for machine structural use of the present invention controlled to the above range of Ca / Al ratio, it is a sulfide including an oxide contained together with inevitable impurities present in the steel and a sulfide adjacent to the oxide. For a composite sulfide, when the cross-sectional area of the composite sulfide containing or adjacent to the oxide is S S and the cross-sectional area of the oxide in the composite sulfide is S O , the cross-sectional area of the composite sulfide is The area ratio, which is the ratio of the cross-sectional area S O of the oxide to (S S + S O ), is 3 to 90%, and the composite sulfide that includes or is adjacent to the oxide with respect to the total number of sulfides in the unit area. It has been found that when the number ratio of the number of objects is 4 to 80%, it has stable and good machinability.
すなわち、上記の課題を解決するための本発明の手段は、請求項1の手段の発明では、質量%で、C:0.17〜0.60%、Si:0.05〜2.0%、Mn:0.3〜2.5%、S:0.03〜0.16%、Al:0.002〜0.030%、Ca:0.0005〜0.01%、O:0.0005〜0.0029%、N:0.0084〜0.02%、残部Feおよび不可避不純物からなり、CaとAlの質量比がCa/Al:0.1〜1.0で、かつ硫化物を含有する鋼であり、この鋼中に含有の酸化物を内包する硫化物若しくは酸化物に隣接する硫化物である複合硫化物の占める断面積に対する酸化物の占める断面積の割合である面積率が3〜90%であり、さらに単位面積中の全硫化物の個数に対する該複合硫化物の個数の割合である個数率が4〜80%であることを特徴とする被削性に優れた機械構造用鋼である。 That is, the means of the present invention for solving the above-described problems is the mass% in the invention of the means of claim 1, C: 0.17 to 0.60%, Si: 0.05 to 2.0%. , Mn: 0.3-2.5%, S: 0.03-0.16%, Al: 0.002-0.030%, Ca: 0.0005-0.01%, O: 0.0005 -0.0029%, N: 0.0084-0.02%, balance Fe and inevitable impurities, the mass ratio of Ca and Al is Ca / Al: 0.1-1.0, and contains sulfide The area ratio which is the ratio of the cross-sectional area occupied by the oxide to the cross-sectional area occupied by the composite sulfide which is the sulfide containing the oxide contained in the steel or the sulfide adjacent to the oxide is 3 was 90%, the proportion der of the number of the composite sulfide to the more the number of the total sulphide in a unit area A machinability excellent mechanical structural steel, wherein the number ratio is 4-80%.
なお、この場合、該複合硫化物の断面積に対する酸化物の占める断面積の割合である面積率は鋼材の圧鍛方向に平行な被検面積1mm2(縦横1mm)中の任意の複合硫化物20個について酸化物の面積率(%)を求め、その平均値を用いるものとする。また、単位面積中の全硫化物の個数に対する酸化物を内包または隣接する複合硫化物の個数の割合である個数率は鋼材の圧延方向に平行な被検面積1mm2(縦横1mm)中の複合硫化物個数を全硫化物個数で除したものである。 In this case, the area ratio, which is the ratio of the cross-sectional area occupied by the oxide to the cross-sectional area of the composite sulfide, is an arbitrary composite sulfide in a test area 1 mm 2 (longitudinal and lateral 1 mm) parallel to the forging direction of the steel material. The area ratio (%) of the oxide is obtained for 20 pieces, and the average value is used. In addition, the number ratio, which is the ratio of the number of composite sulfides containing or adjacent to the oxide to the total number of sulfides in a unit area, is a composite in a test area 1 mm 2 (longitudinal and lateral 1 mm) parallel to the rolling direction of the steel material. The number of sulfides divided by the total number of sulfides.
さらに、上記手段に加えて、鋼成分は質量%で、Ni:0.1〜2.5%、Cr:0.1〜2.5%、Mo:0.05〜1.50%、V:0.01〜0.50%、Nb:0.001〜0.30%、B:0.0003〜0.005%から選択した1種または2種以上を含有することを特徴とする請求項1の手段の被削性に優れた機械構造用鋼である。 Further, in addition to the above means, the steel components are in mass%, Ni: 0.1 to 2.5%, Cr: 0.1 to 2.5%, Mo: 0.05 to 1.50%, V: The composition contains one or more selected from 0.01 to 0.50%, Nb: 0.001 to 0.30%, and B: 0.0003 to 0.005%. It is a steel for machine structural use with excellent machinability.
上記の機械構造用鋼とすることで、疲労強度と強度異方性を改善し、安定した被削性を発揮する機械構造用鋼が得られる。特に上記において、Ca/Al比を0.1〜1.0とするが、これはCaを被削性に有効な介在物組成制御に作用させるために必要であり、さらに酸化物を内包する若しくは酸化物に隣接する硫化物である複合硫化物において、複合硫化物の占める面積に対する酸化物の占める面積の割合の面積率が3〜90%であり、さらに単位面積中の全硫化物の個数に対する酸化物を内包若しくは隣接する複合硫化物の個数の割合である個数率が4〜80%であるものとする。このことにより、安定した被削性を発揮する機械構造用鋼が得られるのである。 By using the above steel for machine structure, a steel for machine structure that improves fatigue strength and strength anisotropy and exhibits stable machinability can be obtained. In particular, in the above, the Ca / Al ratio is set to 0.1 to 1.0, which is necessary to cause Ca to act on inclusion composition control effective for machinability and further includes an oxide. In the composite sulfide which is a sulfide adjacent to the oxide, the area ratio of the ratio of the area occupied by the oxide to the area occupied by the composite sulfide is 3 to 90%, and further to the total number of sulfides in the unit area It is assumed that the number ratio, which is the ratio of the number of complex sulfides containing or adjacent to oxide, is 4 to 80%. As a result, a machine structural steel that exhibits stable machinability is obtained.
本願発明の鋼成分の限定理由を以下に説明する。なお、それぞれの%は質量%を示すものとする。 The reasons for limiting the steel components of the present invention will be described below. In addition, each% shall show the mass%.
C:0.17〜0.60%
Cは、強度確保に必要な元素で、このためには0.17%以上が必要である。しかし0.60%を超えると被削性を低下する。そこでCは0.17〜0.60%とする。
C: 0.17 to 0.60%
C is an element necessary for ensuring the strength. For this purpose, 0.17% or more is necessary. However, if it exceeds 0.60%, the machinability deteriorates. Therefore, C is set to 0.17 to 0.60%.
Si:0.05〜2.0%
Siは、脱酸剤として必要な元素で、このためには0.05%以上必要である。しかし、2.0%を超えると硬質酸化物増大による被削性の低下を招き、さらに、浸炭用途では、浸炭層表面の粒界酸化層深さが増大し、疲労寿命を低下する。そこでSiは0.05〜2.0%とし、望ましくは0.05〜0.5%とする。
Si: 0.05-2.0%
Si is an element necessary as a deoxidizer, and 0.05% or more is necessary for this purpose. However, if it exceeds 2.0%, the machinability is reduced due to an increase in the hard oxide. Further, in carburizing applications, the grain boundary oxide layer depth on the surface of the carburized layer is increased, and the fatigue life is reduced. Therefore, Si is set to 0.05 to 2.0%, preferably 0.05 to 0.5%.
Mn:0.3〜2.5%
Mnは、焼入性確保に必要な元素で、またMnS生成に必要な元素であり、このためには0.3%以上必要である。しかし、2.5%より多過ぎると被削性低下を招き、さらに浸炭用途では過剰Mnが浸炭層表面の浸炭異常層深さを増大し、疲労寿命を低下させる。そこでMnは0.3〜2.5%とし、望ましくは0.4〜1.5%とする。
Mn: 0.3 to 2.5%
Mn is an element necessary for ensuring hardenability and an element necessary for generating MnS. For this purpose, 0.3% or more is necessary. However, if it is more than 2.5%, the machinability is lowered, and in the case of carburizing, excessive Mn increases the carburizing abnormal layer depth on the surface of the carburizing layer and reduces the fatigue life. Therefore, Mn is set to 0.3 to 2.5%, preferably 0.4 to 1.5%.
S:0.03〜0.16%
Sは、ドリル加工や歯切り加工等の際の被削性確保に必要な元素で、また切り屑処理性確保に必要な元素であり、このためには望ましくは0.03%以上必要である。しかし、0.16%より多過ぎると静的強度、疲労強度などの強度特性を低下し、さらに熱間加工性を低下する。そこでSは0.03〜0.16%とする。
S: 0.03-0.16%
S is an element necessary for ensuring machinability at the time of drilling, gear cutting, and the like, and is an element necessary for ensuring chip disposal. For this purpose, 0.03% or more is desirable. . However, if it is more than 0.16%, strength properties such as static strength and fatigue strength are lowered, and hot workability is further lowered. Therefore, S is set to 0.03 to 0.16%.
Al:0.002〜0.030%
Alは、窒化物を形成して浸炭時の結晶粒粗大化抑制に効果のある元素で、このためには0.002%以上必要である。しかし、被削性および疲労寿命に有害なAl2O3を低減する必要があるので、上限を0.030%とする。そこでAlは0.002〜0.030%とし、望ましくは0.002〜0.025%とする。
Al: 0.002 to 0.030%
Al is an element that forms nitrides and is effective in suppressing grain coarsening during carburization. For this purpose, 0.002% or more is necessary. However, since it is necessary to reduce Al 2 O 3 which is harmful to machinability and fatigue life, the upper limit is made 0.030%. Therefore, Al is made 0.002 to 0.030%, preferably 0.002 to 0.025%.
Ca:0.0005〜0.01%
Caは、超硬旋削加工時の工具保護に有効に作用して切削加工性を改善する元素であり、また、硫化物形態制御による疲労強度や静的強度改善にも有効である。そのためには0.0005%以上必要である。しかし、0.01%を超えると疲労寿命や静的強度を低下させる大型介在物が生成し、また製造性の悪化を招くとともに製造コストの増大をもたらす。そこでCaは0.0005〜0.01%とし、望ましくは0.0005〜0.0050%とする。
Ca: 0.0005 to 0.01%
Ca is an element that effectively acts on tool protection during carbide turning to improve machinability, and is also effective in improving fatigue strength and static strength by controlling sulfide morphology. For that purpose, 0.0005% or more is necessary. However, if it exceeds 0.01%, large inclusions that reduce the fatigue life and static strength are generated, and the productivity is deteriorated and the manufacturing cost is increased. Therefore, Ca is 0.0005 to 0.01%, preferably 0.0005 to 0.0050%.
O:0.0005〜0.0029%
Oは、工具被覆保護に有効なCa系酸化物生成に必要な元素で、このためには0.0005%以上必要である。しかし、0.0029%より多過ぎると、酸化物系介在物が多量に生成して疲労強度を低下する。そこでOは0.0005〜0.0029%とする。
O: 0.0005 to 0.0029%
O is an element necessary for the production of Ca-based oxides effective for tool coating protection, and for this purpose, 0.0005% or more is necessary. However, if it is more than 0.0029%, a large amount of oxide inclusions are generated and the fatigue strength is lowered. Therefore, O is set to 0.0005 to 0.0029%.
N:0.0084〜0.02%
Nは、Alと窒化物を形成し、結晶粒粗大化の抑制に効果のある元素である。しかし、0.02%より多くても結晶粒粗大化の抑制効果が飽和する。そこでNは0.0084〜0.02%とする。
N: 0.0084 to 0.02%
N is an element that forms nitrides with Al and is effective in suppressing coarsening of crystal grains. However, even if it exceeds 0.02%, the effect of suppressing the coarsening of crystal grains is saturated. Therefore, N is set to 0.0084 to 0.02%.
質量%比でCa/Al:0.1〜1.0
Ca/Alにおいて、下限の0.1はCaによる酸化物および硫化物の制御に必要であり、上限の1.0を超えると、工具被覆保護効果が飽和し、さらに硫化物が硬くなり過ぎるためにドリル寿命の低下を招く。そこでCa/Alは0.1〜1.0とし、望ましくは0.1〜0.8とする。さらに望ましくは0.1〜0.6とする。
Ca / Al by mass% ratio: 0.1 to 1.0
In Ca / Al, the lower limit of 0.1 is necessary for the control of oxides and sulfides by Ca. If the upper limit of 1.0 is exceeded, the tool covering protection effect is saturated and the sulfide becomes too hard. This will reduce the drill life. Therefore, Ca / Al is 0.1 to 1.0, preferably 0.1 to 0.8. More desirably, it is 0.1 to 0.6.
{SO/(SS+SO)}×100=3〜90(%)……(1)
(酸化物を内包若しくは隣接する硫化物である複合硫化物の個数/全硫化物の個数)×100=4〜80(%)……(2)
酸化物を内包してまたは酸化物に隣接して有する硫化物の断面積をSSとし該酸化物の断面積をSOとするとき、この複合硫化物の断面積(SS+SO)に対する酸化物の占める断面積SOの割合である面積率が3〜90%であり、さらに単位面積すなわち1平方mm中の全硫化物の個数に対する複合硫化物の個数の割合である個数比率が4〜80%であるものとするものである。すなわち、式(1)が3%未満では超硬工具摩耗抑制に効果が無く、90%を超えるとドリル加工時の工具と酸化物の接触頻度が高くなり、工具摩耗量が増大する。さらに全硫化物個数に対する複合硫化物の個数の比率である(2)式が4%未満では超硬工具摩耗抑制効果が不足し、80%を超えると通常のMnSより硬質の複合硫化物が大多数を占めるため、ドリル加工における工具摩耗量の増大を招く。そこで、上記の(1)式および(2)式とする。
{S O / (S S + S O )} × 100 = 3 to 90 (%) (1)
(Number of complex sulfides containing oxide or adjacent sulfides / total number of sulfides) × 100 = 4 to 80 (%) (2)
When the cross-sectional area of the sulfide containing the oxide or adjacent to the oxide is S S and the cross-sectional area of the oxide is S O , the cross-sectional area of this composite sulfide (S S + S O ) The area ratio, which is the ratio of the cross-sectional area S O occupied by the oxide, is 3 to 90%, and the number ratio, which is the ratio of the number of composite sulfides to the total number of sulfides in a unit area, that is, 1 mm 2, is 4. It shall be ~ 80%. That is, if the formula (1) is less than 3%, there is no effect in suppressing carbide tool wear, and if it exceeds 90%, the contact frequency between the tool and the oxide during drilling increases and the amount of tool wear increases. Furthermore, if the formula (2), which is the ratio of the number of composite sulfides to the total number of sulfides, is less than 4%, the effect of suppressing carbide tool wear is insufficient, and if it exceeds 80%, composite sulfides harder than ordinary MnS are larger. Since it occupies a large number, the amount of tool wear in drilling increases. Therefore, the above equations (1) and (2) are used.
Ni:0.1〜2.5%
Niは、焼入性および靱性の確保に必要な元素であり、このためには0.1%以上必要である。しかし、2.5%より多過ぎると切削性を低下させ、また高価な元素であるためコストアップを招く。そこでNiは0.1〜2.5%とする。
Ni: 0.1 to 2.5%
Ni is an element necessary for ensuring hardenability and toughness, and for this purpose, 0.1% or more is necessary. However, if it is more than 2.5%, the machinability is lowered, and the cost is increased because it is an expensive element. Therefore, Ni is set to 0.1 to 2.5%.
Cr:0.1〜2.5%
Crは、基地の焼入性の確保に必要な元素で、このためには0.1%以上必要である。しかし、2.5%より多過ぎると切削性の低下を招く。そこでCrは0.1〜2.5%とし、望ましくは0.6〜1.5%とする。
Cr: 0.1 to 2.5%
Cr is an element necessary for ensuring the hardenability of the base, and for this purpose, 0.1% or more is necessary. However, if it is more than 2.5%, the machinability is lowered. Therefore, Cr is set to 0.1 to 2.5%, preferably 0.6 to 1.5%.
Mo:0.05〜1.50%
Moは、基地の焼入性確保に必要な元素で、このためには0.05%以上必要である。しかし、1.50%より多過ぎると切削性を低下し、また製造コストを増大させる。そこでMoは0.05〜1.50%とする。
Mo: 0.05 to 1.50%
Mo is an element necessary for ensuring the hardenability of the base, and 0.05% or more is necessary for this purpose. However, if it is more than 1.50%, the machinability is lowered and the manufacturing cost is increased. Therefore, Mo is set to 0.05 to 1.50%.
V:0.01〜0.50%
Vは、基地の焼入性の確保に必要な元素で、このためには0.01%以上必要である。しかし、0.50%より多過ぎると切削性を低下し、また製造コストを増大させる。そこでVは0.01〜0.50%とする。
V: 0.01 to 0.50%
V is an element necessary for ensuring the hardenability of the base, and for this purpose, it is necessary to be 0.01% or more. However, if it is more than 0.50%, the machinability is lowered and the production cost is increased. Therefore, V is set to 0.01 to 0.50%.
Nb:0.001〜0.30%
Nbは、浸炭時の結晶粒粗大化抑制に効果のある元素であり、このためには0.001%以上必要である。しかし、0.30%より多過ぎるとコストアップをもたらすとともに、切削性を損なうNbCの生成を抑制することができなくなる。そこでNbは0.001〜0.30%とする。
Nb: 0.001 to 0.30%
Nb is an element effective in suppressing the coarsening of crystal grains during carburization. For this purpose, 0.001% or more is necessary. However, if it is more than 0.30%, the cost is increased, and the production of NbC that impairs the machinability cannot be suppressed. Therefore, Nb is set to 0.001 to 0.30%.
B:0.0003〜0.005%。
Bは、焼入性確保および粒界強化に必要な元素であり、このためには0.0003%以上必要である。しかし、0.005%を超えるとその効果が飽和する。そこでBは0.0003〜0.005%とする。
B: 0.0003 to 0.005%.
B is an element necessary for ensuring hardenability and strengthening grain boundaries. For this purpose, B is required to be 0.0003% or more. However, when it exceeds 0.005%, the effect is saturated. Therefore, B is set to 0.0003 to 0.005%.
本発明の機械構造用鋼は、快削性成分として環境負荷元素であるPbを含有しないにもかかわらず、工具寿命にばらつきのない安定した優れた切削加工性を得ることができ、かつ、環境負荷物質の削減に貢献するなど、優れた効果を奏するものである。 The steel for machine structural use according to the present invention can obtain stable and excellent machinability with no variation in tool life despite the fact that it does not contain Pb, which is an environmental load element, as a free-cutting component. It has excellent effects such as contributing to the reduction of load substances.
本発明を実施するための最良の形態について、以下に表を参照して実施例1により説明する。 The best mode for carrying out the present invention will be described below with reference to a table according to a first embodiment.
表1に示す化学成分の鋼を100kg真空誘導炉で溶解し、インゴットに鋳造し、1200℃に加熱してφ65mm材および40mm角材に圧鍛し、900℃で1時間保持して空冷することで焼きならしを行い、下記の試験の供試材とした。 By melting steel of chemical composition shown in Table 1 in a 100 kg vacuum induction furnace, casting into an ingot, heating to 1200 ° C., forging into φ65 mm material and 40 mm square material, holding at 900 ° C. for 1 hour and air cooling. Normalization was performed and used as test materials for the following tests.
表1に示す1〜3、5〜16および18〜21、および23〜31の比較鋼および発明鋼の上記の焼きならしを行ったφ65mm材をφ60mm材に旋削し、表2に示す評価条件により超硬工具旋削試験に供した。 The evaluation conditions shown in Table 2 were obtained by turning a φ65 mm material subjected to the above normalization of comparative steels 1 to 3, 5 to 16 and 18 to 21 and 23 to 31 shown in Table 1 and 23 to 31 steel into a φ60 mm material. Was used for a carbide tool turning test.
さらに、表1に示す1〜3、5〜16および18〜21、および23〜31の比較鋼および発明鋼の上記の焼きならしを行った40mm角材を35mm角材にフライス加工して表3に示すドリル寿命試験に供した。Ca/Al比、複合硫化物に占める酸化物の面積比、並びに全硫化物の個数に対する複合硫化物個数の個数率が上限を超えるものはドリル加工における工具摩耗が増大し、その特性劣化をドリル寿命(ドリル穿孔不能までの穴数)をもって評価する。 Furthermore, the 40 mm square material which carried out the above-mentioned normalization of the comparative steel of 1 to 3, 5 to 16 and 18 to 21, and 23 to 31 shown in Table 1 and the inventive steel was milled into a 35 mm square material and Table 3 was obtained. It was subjected to the drill life test shown. When the ratio of the number of composite sulfides exceeds the upper limit for the Ca / Al ratio, the oxide area ratio in the composite sulfides, and the number of composite sulfides exceeds the upper limit, the tool wear in drilling increases, and the characteristic deterioration is Evaluation is based on the lifetime (number of holes until drilling is impossible).
これらの1〜3、5〜16および18〜21、および23〜31の比較鋼および発明鋼のCa/Al比、複合硫化物に占める酸化物の面積比、並びに全硫化物の個数に対する複合硫化物個数の個数率(ただし、比較鋼のうちPb含有鋼を除く)、さらにこれらの超硬工具旋削試験およびドリル寿命試験の結果である逃げ面摩耗量およびすくい面摩耗量の超硬工具摩耗並びにドリル寿命について表4に示す。さらに図1に比較鋼2、3および発明鋼5、6、7の組織の複合硫化物の形状をSEM写真で示す。発明鋼5、6、7は被削性に特に優れる。 The composite sulfidation with respect to the Ca / Al ratio, the area ratio of the oxide in the composite sulfide, and the total number of sulfides of these comparative steels 1 to 3, 5 to 16 and 18 to 21, and 23 to 31 and the invention steel Number ratio of objects (excluding Pb-containing steels among comparative steels), flank wear amount and rake face wear amount of carbide tool wear as a result of these carbide tool turning test and drill life test, and Table 4 shows the drill life. Furthermore, the shape of the composite sulfide of the structure of comparative steels 2 and 3 and invention steels 5, 6, and 7 is shown in FIG. Inventive steels 5, 6, and 7 are particularly excellent in machinability.
この表4において、本発明鋼の5〜7、11〜13、18、23〜25および29〜31は、逃げ面摩耗量およびすくい面摩耗量並びにドリル寿命でいずれも優れているが、比較鋼の1〜3、8〜9、14〜15、19〜20、26〜27は超硬工具摩耗の点で本発明に比し劣り、さらに比較鋼の10、16、21、28はドリル寿命の点で本発明に比し劣ることが分かる。 In Table 4, 5-7, 11-13, 18, 23-25, and 29-31 of the steels of the present invention are all excellent in flank wear amount, rake face wear amount, and drill life. 1-3, 8-9, 14-15, 19-20, 26-27 are inferior to the present invention in terms of carbide tool wear, and the comparative steels 10, 16, 21, 28 have a drill life of It turns out that it is inferior to this invention by a point.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004170526A JP4906245B2 (en) | 2004-06-08 | 2004-06-08 | Machine structural steel with excellent machinability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004170526A JP4906245B2 (en) | 2004-06-08 | 2004-06-08 | Machine structural steel with excellent machinability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005350702A JP2005350702A (en) | 2005-12-22 |
JP4906245B2 true JP4906245B2 (en) | 2012-03-28 |
Family
ID=35585426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004170526A Expired - Fee Related JP4906245B2 (en) | 2004-06-08 | 2004-06-08 | Machine structural steel with excellent machinability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4906245B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4964060B2 (en) * | 2007-08-17 | 2012-06-27 | 株式会社神戸製鋼所 | Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability |
CN109496239A (en) * | 2016-07-27 | 2019-03-19 | 新日铁住金株式会社 | Steel for mechanical structures |
JP7417093B2 (en) * | 2020-03-31 | 2024-01-18 | 日本製鉄株式会社 | steel material |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57140853A (en) * | 1981-02-23 | 1982-08-31 | Nippon Steel Corp | Free cutting steel with superior mechanical property |
JPS62103340A (en) * | 1985-10-29 | 1987-05-13 | Kobe Steel Ltd | Ca free cutting steel for mechanical structure |
JPH10287953A (en) * | 1997-04-16 | 1998-10-27 | Daido Steel Co Ltd | Steel for machine structural use, excellent in mechanical property and drilling property |
JP3587348B2 (en) * | 1998-07-14 | 2004-11-10 | 大同特殊鋼株式会社 | Machine structural steel with excellent turning workability |
JP3954751B2 (en) * | 1999-04-02 | 2007-08-08 | 新日本製鐵株式会社 | Steel with excellent forgeability and machinability |
JP4148311B2 (en) * | 2000-12-12 | 2008-09-10 | トヨタ自動車株式会社 | Lead-free mechanical structural steel with excellent machinability and small strength anisotropy |
JP2002322535A (en) * | 2001-04-25 | 2002-11-08 | Sumitomo Metals (Kokura) Ltd | Steel having excellent cold forgeability and machinability |
JP3753054B2 (en) * | 2001-06-08 | 2006-03-08 | 大同特殊鋼株式会社 | Free-cutting steel for machine structures with excellent carbide tool machinability |
JP4023196B2 (en) * | 2001-11-28 | 2007-12-19 | 大同特殊鋼株式会社 | Machine structural steel with excellent machinability |
JP4144224B2 (en) * | 2002-01-29 | 2008-09-03 | 大同特殊鋼株式会社 | Bainite-type non-tempered steel for nitriding, method for producing the same, and nitrided product |
JP2004027259A (en) * | 2002-06-21 | 2004-01-29 | Sanyo Special Steel Co Ltd | Free-cutting steel for machine structural use having excellent quenching crack resistance |
-
2004
- 2004-06-08 JP JP2004170526A patent/JP4906245B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005350702A (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5777090B2 (en) | Steel for machine structural use with excellent surface fatigue strength | |
KR101340729B1 (en) | Steel for high-frequency hardening | |
JP5231101B2 (en) | Machine structural steel with excellent fatigue limit ratio and machinability | |
JP5138991B2 (en) | Machine structural steel with excellent machinability | |
KR20100099749A (en) | Steel for machine structural use with excellent machinability | |
JP4986203B2 (en) | BN free-cutting steel with excellent tool life | |
JP4906245B2 (en) | Machine structural steel with excellent machinability | |
JP2005220423A (en) | Ti-CONTAINING CASE HARDENING STEEL | |
JP2010222697A (en) | Steel for machine structural use having excellent toughness | |
JP4964060B2 (en) | Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability | |
JP5141313B2 (en) | Steel material with excellent black skin peripheral turning and torsional strength | |
JP5111037B2 (en) | Machine structural steel and machine structural parts for machining | |
JPH01129952A (en) | Steel for rotating parts having longer service life and exellent chip treatability | |
JP2615126B2 (en) | Gear steel | |
WO2011155605A1 (en) | High-machinability high-strength steel and manufacturing method therefor | |
JP4557833B2 (en) | High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof | |
JPH0734189A (en) | High-strength steel bar with excellent machinability | |
JP4263648B2 (en) | Ti-added high strength steel with excellent machinability | |
JP2009242910A (en) | Steel for machine structure use having excellent machinability and strength anisotropy and component for machine structure | |
JP4448525B2 (en) | Mowing blade substrate | |
JP2005273000A (en) | Steel for machine structural use having improved machinability | |
JP2021028414A (en) | Steel for carburized gear, carburized gear, and manufacturing method of carburized gear | |
CN107532252B (en) | Case hardening steel | |
JP3996386B2 (en) | Carburizing steel with excellent torsional fatigue properties | |
JPH07286234A (en) | Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100510 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100608 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100907 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101004 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20101022 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120110 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4906245 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |