[go: up one dir, main page]

JP4903926B2 - Water-absorbing agent, production method thereof and use thereof - Google Patents

Water-absorbing agent, production method thereof and use thereof Download PDF

Info

Publication number
JP4903926B2
JP4903926B2 JP04911399A JP4911399A JP4903926B2 JP 4903926 B2 JP4903926 B2 JP 4903926B2 JP 04911399 A JP04911399 A JP 04911399A JP 4911399 A JP4911399 A JP 4911399A JP 4903926 B2 JP4903926 B2 JP 4903926B2
Authority
JP
Japan
Prior art keywords
water
acid
weight
agent
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04911399A
Other languages
Japanese (ja)
Other versions
JPH11315147A (en
Inventor
浩司 三宅
康弘 藤田
卓己 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP04911399A priority Critical patent/JP4903926B2/en
Publication of JPH11315147A publication Critical patent/JPH11315147A/en
Application granted granted Critical
Publication of JP4903926B2 publication Critical patent/JP4903926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は吸水剤の製造方法吸水剤およびその用途に関する。更に詳しくは、尿吸収時の劣化の少ない吸水剤の製造方法吸水剤およびその用途に関する。
【0002】
【従来の技術】
近年、紙おむつ、生理用ナプキン、いわゆる失禁パッドなどの衛生材料には、その構成材として、尿や経血等の体液を吸収させることを目的として、吸水性樹脂(吸水剤)が幅広く利用されている。
このような吸水性樹脂としては、例えば、デンプン−アクリロニトリルグラフト重合体の加水分解物(特公昭49−43395号)、デンプン−アクリル酸グラフト重合体の中和物(特開昭51−125468号)、酢酸ビニル−アクリル酸エステル共重合体のケン化物(特開昭52−14689号)、アクリロニトリル共重合体もしくはアクリルアミド共重合体の加水分解物(特公昭53−15959号)、またはこれらの架橋体、逆相懸濁重合によって得られた自己架橋型ポリアクリル酸ナトリウム(特開昭53−46389号)、ポリアクリル酸部分中和物架橋体(特開昭55−84304号)等が知られている。
【0003】
かかる吸水性樹脂に望まれる特性としては、水性液体に接した際の高い吸収倍率や優れた吸収速度、通液性、膨潤ゲルのゲル強度、水性液体を含んだ基材から水を引き上げる吸引力等が挙げられる。しかしながら、これらの特性間の関係は必ずしも正の相関関係を示さず、例えば、吸収倍率の高いものほど通液性、ゲル強度、吸収速度等の物性は低下してしまうという問題を有している。
【0004】
この様な吸水性樹脂の吸水諸特性をバランスよく改良する方法として吸水性樹脂の表面近傍を架橋する技術が知られており、これまでに様々な方法が提案されている。
例えば、架橋剤として、多価アルコールを用いる方法(特開昭58−180233号、特開昭61−16903号)、多価グリシジル化合物、多価アジリジン化合物、多価アミン化合物、多価イソシアネート化合物を用いる方法(特開昭59−189103号)、多価金属を用いる方法(特開昭51−136588号、同61−257235号、同62−7745号)、モノエポキシ化合物を用いる方法(特開昭61−98121号)、エポキシ化合物とヒドロキシ化合物とを用いる方法(特開平2−132103号)、アルキレンカーボネートを用いる方法(DE−4020780号)等が知られている。
【0005】
しかしながら、これら表面処理により吸水諸特性はバランスは改善されてきてはいるものの、吸水性樹脂をおむつの吸収体に用いると経時的に吸水性樹脂が劣化し、通液性が低下したりゲル強度が低下し、おむつから尿が漏れてしまうという問題があった。吸水性樹脂の劣化は吸水性樹脂の表面から起こり、可溶分が溶出し、通液性やゲル強度が低下する。このような吸水性樹脂の劣化は微量の金属イオンと尿中に含まれるL−アスコルビン酸により起きると考えられている。
【0006】
一方、吸水性樹脂は粉末状であり、100μm以下の微粉を含む場合が有り、取扱い性を改善したりおむつ中での通液性を改善するために、水を加え造粒することが知られている。造粒により粉立ちを防止したり、吸湿時の流動性を改善することができる。
しかしながら、表面架橋処理のなされた吸水性樹脂に水を加え造粒すると、表面架橋層が壊れやすくなるという問題がある。特に近年望まれている加圧下吸収倍率の高い吸水性樹脂は、吸水倍率の高い吸水性樹脂の表面近傍を架橋することにより可溶性成分の溶出を防止しているので、尿を吸収したときにL−アスコルビン酸等により表面架橋層が劣化を受けると、可溶性成分の溶出を抑制できなくなってしまう。そのためおむつに用いたとき、通液性が低下したりゲル強度が低下し、おむつから尿が漏れてしまうという問題があった。
【0007】
【発明が解決しようとする課題】
従って、本発明の目的は尿を吸収したときの経時的な劣化の少ない、耐尿性に優れた吸水剤の製造方法吸水剤およびその用途を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上記目的を達成するため鋭意検討した結果、内部架橋剤の存在下に不飽和カルボン酸を必須に含む単量体成分を重合して得られる吸水性樹脂の表面近傍を架橋処理した後、該架橋処理された吸水性樹脂を水で造粒するときにイオン封鎖剤を添加することにより上記課題を解決できることを見出し、本発明を完成するに至った。
【0009】
従って、本発明の吸水剤の製造方法は、内部架橋剤0.005〜2モル%(対単量体)の存在下に不飽和カルボン酸を必須に含む単量体成分を重合および乾燥して得られる、含水率1〜50%のポリアクリル酸ナトリウム塩部分中和物架橋体からなる吸水性樹脂の表面近傍をさらに表面架橋剤で架橋処理した後、該表面架橋処理された吸水性樹脂100重量部に、水0.1〜20重量部と、ジエチレントリアミンペンタ酢酸、トリエチレンテトラアミンヘキサ酢酸、シクロヘキサン−1,2−ジアミテトラ酢酸、N−ヒドロキシエチルエチレンジアミントリ酢酸およびこれらの塩の中から選ばれるイオン封鎖剤0.0001〜10重量部を添加し造粒することを特徴とする。
また、本発明にかかる吸水剤は、上記本発明の吸水剤の製造方法で得られる吸水剤であって、内部架橋剤0.005〜2モル%(対単量体)の存在下に不飽和カルボン酸を必須に含む単量体成分を重合して得られるポリアクリル酸ナトリウム塩部分中和物架橋体からなる吸水性樹脂を含み、該吸水性樹脂はその表面近傍が表面架橋剤でさらに架橋処理されているとともに造粒されたものであり、かつ、該吸水性樹脂100重量部に対し0.0001〜10重量部の配合割合で、ジエチレントリアミンペンタ酢酸、トリエチレンテトラアミンヘキサ酢酸、シクロヘキサン−1,2−ジアミテトラ酢酸、N−ヒドロキシエチルエチレンジアミントリ酢酸およびこれらの塩の中から選ばれるイオン封鎖剤が配合されているものである。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で用いることのできる吸水性樹脂としては、水中において多量の水を吸収してヒドロゲルを形成するものであり、カルボキシル基を有していることが好ましい。このような吸水性樹脂としては、ポリアクリル酸部分中和物架橋体、デンプンーアクリロニトリルグラフト重合体の加水分解物、デンプンーアクリル酸グラフト重合体の加水分解物、酢酸ビニルーアクリル酸エステル共重合体のケン化物、アクリロニトリル共重合体もしくはアクリルアミド共重合体の加水分解物又はこれらの架橋体、カルボキシル基含有架橋ポリビニルアルコールケン化物、架橋イソブチレンー無水マレイン酸共重合体等を挙げることができる。
【0011】
このような吸水性樹脂は一般に不飽和カルボン酸、例えばアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマール酸、クロトン酸、イタコン酸、β―ヒドロキシアクリル酸、β―アクリルオキシプロピオン酸およびこれらの中和物から選ばれる一種以上を必須に含む単量体成分を重合させることにより得られる。好ましい単量体成分は、アクリル酸、メタクリル酸およびこれらのリチウム、ナトリウム、カリウム等のアルカリ金属塩もしくはアンモニウム塩である。
【0012】
本発明に用いることのできる吸水性樹脂は、必要により他の単量体を上記不飽和カルボン酸に併用して用い重合させてもよい。具体的には、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、ビニルスルホン酸、スチレンスルホン酸等のアニオン性単量体やそのリチウム、ナトリウム、カリウム等のアルカリ金属塩やアンモニウム塩;(メタ)アクリルアミド、N−置換(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、N−ビニルピロリドン、N−ビニルアセトアミド等のノニオン性親水性基含有単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、等のアミノ基含有不飽和単量体やそれらの4級化物等を挙げることができる。また、得られる吸水性樹脂のの親水性を極度に阻害しない程度の量で、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のアクリル酸エステル類や酢酸ビニル、プロピオン酸ビニル等の疎水性単量体を使用してもよい。
【0013】
吸水性樹脂の有するカルボキシル基の量については特に制限ないが、吸水性樹脂100gにつきカルボキシル基が0.01当量以上存在することが好ましい。例えば、ポリアクリル酸未中和物の比率は、1〜60モル%の範囲にあることが望ましく、10〜50モル%の範囲にあることがより望ましい。
また、吸水性樹脂は架橋剤を使用しない自己架橋型のものよりは、2個以上の重合性不飽和基や2個以上の反応性基を有する内部架橋剤をごく少量共重合または反応させたものを使用する。例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、N,N´−メチレンビス(メタ)アクリルアミド、イソシアヌル酸トリアリル、シアヌル酸トリアリル、トリメチロールプロパンジ(メタ)アリルエーテル、トリアリルアミン、テトラアリロキシエタン、グリセロールプロポキシトリアクリレート等の1分子中にエチレン性不飽和基を2個以上有する化合物;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、プロピレングルコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルアルコール、ジエタノールアミン、トリジエタノールアミン、ポリプロピレングリコール、ポリビニルアルコール、ペンタエリスリトール、ソルビット、ソルビタン、グルコース、マンニット、マンニタン、ショ糖、ブドウ糖などの多価アルコール;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル等のポリグリシジルエーテル;エピクロロヒドリン、α−メチルクロルヒドリン等のハロエポキシ化合物;グルタールアルデヒド、グリオキザール等のポリアルデヒド;エチレンジアミン等のポリアミン類;水酸化カルシウム、塩化カルシウム、炭酸カルシウム、酸化カルシウム、塩化硼砂マグネシウム、酸化マグネシウム、塩化アルミニウム、塩化亜鉛および塩化ニッケル等の周期律表2A族、3B族、8族の金属の水酸化物、ハロゲン化物、炭酸塩、酸化物、硼砂等の硼酸塩、アルミニウムイソプロピラート等の多価金属化合物等が挙げられる。これらの1種または2種以上を、反応性を考慮した上で用いることができるが、1分子中にエチレン性不飽和基を2個以上有する化合物を架橋剤として用いるのが最も好ましい。架橋剤の使用量は前記単量体成分に対して、0.005〜2モル%、より好ましくは0.01〜1モル%である。
【0014】
重合に際しては、デンプン、セルロース及びそれらの誘導体;ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体、ポリビニルピロリドン、ポリビニルアルコール等の親水性高分子;次亜リン酸(塩)、長鎖アルキルメルカプタン等の連鎖移動剤;界面活性剤;炭酸塩、ドライアイス、アゾ化合物等の発泡剤等を添加してもよい。
【0015】
本発明の吸水性樹脂を得るために上記単量体を重合する際には、バルク重合や沈殿重合を行うことも可能であるが、性能面や重合の制御の容易さから、単量体を水溶液として、水溶液重合や逆相懸濁重合を行うことが好ましい。その際の水溶液濃度としては、通常10重量%〜飽和濃度、好ましくは20〜40重量%である。重合後得られる含水ゲルはアルカリにより中和することもできる。
【0016】
これらの重合方法で得られた吸水性樹脂の形状は不定形破砕状、球状、繊維状、棒状、略球状、鱗片状等種々のものが本発明に好ましく使用できる。
本発明に用いる吸水性樹脂は、含水率(湿量基準)がたとえば1〜50%、好ましくは1〜20%、更に好ましくは1〜10%で粉体として取り扱えるものである。含水率が50%を越えると表面架橋剤が内部まで浸透しすぎ、吸水性能に優れた吸水性樹脂を得ることが困難となることがある。
【0017】
この発明では吸水性樹脂はその表面近傍が吸水性樹脂の有するカルボキシル基等の官能基と反応することのできる官能基を2個以上有する表面架橋剤で表面架橋処理されている。
本発明に用いることのできるカルボキシル基と反応し得る表面架橋剤としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3−プロパンジオール、ジプロピレングリコール、2,3,4−トリメチル−1,3−ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2−ブテン−1,4−ジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,2−シクロヘキサンジオール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン−オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール化合物;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシドール等のエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン、ポリアミドポリアミン等の多価アミン化合物;エピクロロヒドリン、エピブロムヒドリン、α−メチルエピクロロヒドリン等のハロエポキシ化合物;上記多価アミン化合物と上記ハロエポキシ化合物との縮合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;1,2−エチレンビスオキサゾリン等の多価オキサゾリン化合物;γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン等のシランカップリング剤;1,3−ジオキソラン−2−オン、4−メチル−1,3−ジオキソラン−2−オン、4,5−ジメチル−1,3−ジオキソラン−2−オン、4,4−ジメチル−1,3−ジオキソラン−2−オン、4−エチル−1,3−ジオキソラン−2−オン、4−ヒドロキシメチル−1,3−ジオキソラン−2−オン、1,3−ジオキサン−2−オン、4−メチル−1,3−ジオキサン−2−オン、4,6−ジメチル−1,3−ジオキサン−2−オン、1,3−ジオキソバン−2−オン等のアルキレンカーボネート化合物;亜鉛、カルシウム、マグネシウム、アルミニウム等の水酸化物及び塩化物等の多価金属化合物;等が挙げられるが、特に限定されるものではない。
【0018】
上記例示の表面架橋剤のうち、多価アルコール化合物、エポキシ化合物、多価アミン化合物、多価アミン化合物とハロエポキシ化合物との縮合物、およびアルキレンカーボネート化合物がより好ましい。
これら表面架橋剤は、単独で用いてもよく、また、2種類以上を併用してもよい。2種類以上の表面架橋剤を併用する場合には、溶解度パラメータ(SP値)が互いに異なる第1表面架橋剤および第2表面架橋剤を組み合わせることにより、吸水特性がさらに一層優れた吸水剤を得ることができる。なお、上記の溶解度パラメータとは、化合物の幅性を表すファクターとして一般に用いられる値である。
【0019】
上記の第1表面架橋剤は、吸水性樹脂が有するカルボキシル基と反応可能な、溶解度パラメータが12.5(cal/cm3 1/2 以上の化合物であり、例えばエチレングリコール、プロピレングリコール、グリセリン、エチレンカーボネート、プロピレンカーボネート等が該当する。上記の第2表面架橋剤は、吸水性樹脂が有するカルボキシル基と反応可能な、溶解度パラメータが12.5(cal/cm3 1/2 未満の化合物であり、例えば、グリセロールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル、エチレングリコールジグリシジルエーテル、1,3−ブタンジオール、トリメチロールプロパン、1,3−プロパンジオール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,4−ブタンジオール等が該当する。
【0020】
吸水性樹脂に対する表面架橋剤の使用量は、吸水性樹脂および表面架橋剤の組み合わせ等にもよるが、乾燥状態の吸水性樹脂100重量部に対して0.005〜10重量部の範囲内、より好ましくは0,05〜5重量部の範囲内とすればよい。上記の範囲内で表面架橋剤を用いることにより、尿や汗、経血等の体液(水性液体)に対する吸水特性をさらに一層向上させることができる。表面架橋剤の使用量が0.005重量部未満では、吸水性樹脂の表面近傍の架橋密度をほとんど高めることができない。また、表面架橋剤の使用量が5重量部より多い場合には、該表面架橋剤が過剰となり、不経済であるとともに、架橋密度を適正な値に制御することが困難となるおそれがある。
【0021】
本発明において吸水性樹脂と表面架橋剤とを混合する際、水を用いることが好ましい。本発明において、使用される水の量は、吸水性樹脂の種類や粒度や含水率に応じて異なるが、吸水性樹脂の固形分100重量部に対し、0.5〜10重量部、好ましくは0.5〜3重量部の範囲である。水の使用量が10重量部を越えると吸収倍率が低下してしまうことがある。0.5重量部よりも少ないと加圧下吸収倍率の高い吸水性樹脂を得ることが困難となることがある。
【0022】
また、本発明において吸水性樹脂と表面架橋剤とを混合する際、親水性有機溶媒を用いてもよい。用いられる親水性有機溶媒としては、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、t−ブチルアルコール等の低級アルコール;アセトン等のケトン類;ジオキサン、アルコキシ(ポリ)エチレングリコール、テトラヒドロフラン等のエ―テル類;N,N−ジメチルホルムアミド等のアミド類;ジメチルスルホキサイド等のスルホキサイド類が挙げられる。使用される有機溶媒の量は、吸水性樹脂の種類や粒度によって異なるが、通常、吸水性樹脂100重量部に対し0〜10重量部、好ましくは0.1〜5重量部の範囲である。
【0023】
本発明において、吸水性樹脂と表面架橋剤の混合はシクロヘキサン、ペンタン等の有機溶媒中に吸水性樹脂を分散させた状態で行ったり、必要により水または水と親水性有機溶媒との混合溶媒と表面架橋剤とを予め混合した後、次いで、該混合物を吸水性樹脂に噴霧あるいは滴下により行うことができる。
前記混合に用いられる好適な混合装置は、均一な混合を確実にするため大きな混合力を生み出せることが必要である。本発明に用いることのできる混合装置としては、例えば、円筒型混合機、二重壁円錐型混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、流動型炉ロータリーデスク型混合機、気流型混合機、双腕型ニーダー、内部混合機、粉砕型ニーダー、回転式混合機、スクリュー型押出機等が好適である。
【0024】
本発明で加熱処理を行う場合、処理温度は80〜250℃の範囲が好ましい。加熱温度が80℃未満では、加熱処理に時間がかかり生産性の低下を引き起こすのみならず、均一な架橋が達成されず、本発明の目的とする可溶成分の溶出の抑制や加圧下の吸水特性の高い吸水剤が得られなくなる恐れがある。
加熱処理は通常の乾燥機または加熱炉を用いて行うことができ、溝型混合乾燥機、ロータリー乾燥機、デスク乾燥機、流動層乾燥機、気流型乾燥機、および赤外線乾燥機が例示される。
【0025】
こうして表面架橋処理して得られる吸水性樹脂としては、0.7psiの荷重下における0.9重量%塩化ナトリウム水溶液(生理食塩水)の加圧下吸収倍率が20(g/g)以上、好ましくは22(g/g)以上、より好ましくは24(g/g)以上の吸水性樹脂を後述の造粒に用いるとよい。加圧下吸収倍率が20(g/g)よりも低いと、おむつ中で十分に吸水性能を発揮することができない。
【0026】
本発明に用いられるイオン封鎖剤としては、以下の化合物が挙げられる。
(1)アミノカルボン酸及びその塩、(2)ポリカルボン酸及びその誘導体、(3)(ポリ)リン酸及びその誘導体、(4)N−アシル化グルタミン酸及びN−アシル化アスパラギン酸及びそれらの塩、(5)β―ジケトン誘導体、(6)トロポロン誘導体、(7)有機リン酸化合物。
【0027】
(1)アミノカルボン酸及びその塩としてはジヒドロキシエチルグリシン、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、ジヒドロキシエチルグリシン、ニトリロトリ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸、トリエチレンテトラアミンヘキサ酢酸、シクロヘキサンー1,2−ジアミンテトラ酢酸、N−ヒドロキシエチルエチレンジアミントリ酢酸、エチレングリコールジエチルエーテルジアミンテトラ酢酸、エチレンジアミンテトラプロピオン酸、N−アルキルーN‘−カルボキシメチルアスパラギン酸、N−アルケニルーN’−カルボキシメチルアスパラギン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩もしくはアミン塩が挙げられる。中でもカルボキシル基を3個以上有するアミノカルボン酸及びその塩がイオン封鎖能の点で好ましい。
【0028】
(2)ポリカルボン酸及びその誘導体としては、コハク酸、ポリアクリル酸、クエン酸モノアルキルアミド、クエン酸モノアルケニルアミド、マロン酸モノアルキルアミド、マロン酸モノアルケニルアミド、及びこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩もしくはアミン塩が挙げられる。
(3)(ポリ)リン酸及びその誘導体としては、ヘキサメタリン酸、メタリン酸、トリポリリン酸、リン酸アルキルエステル、リン酸アルケニルエステル及びこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩もしくはアミン塩が挙げられる。
【0029】
(4)N−アシル化グルタミン酸及びN−アシル化アスパラギン酸及びそれらの塩としては、例えば(株)味の素より市販されているアミソフトHS−11やGS−11等が挙げられる。
(5)β―ジケトン誘導体としては、アセチルアセトン、ベンゾイルアセトン等が挙げられる。
【0030】
(6)トロポロン誘導体としてはトロポロン、β―ツヤプリシン、γ―ツヤプリシン等が挙げられる。
(7)有機リン酸化合物としてはエチリデンホスホン酸;1−ヒドロキシエチリデン−1,1−ジホスホン酸;アミノトリメチレンホスホン酸;エチレンジアミンテトラ(メチレンホスホン酸);ジエチレントリアミンペンタ(メチレンホスホン酸)等を挙げることができるが、特に好ましいものは1−ヒドロキシエチリデン−1,1−ジホスホン酸;エチレンジアミンテトラ(メチレンホスホン酸);ジエチレントリアミンペンタ(メチレンホスホン酸)である。塩として好ましいものは、Na塩、K塩等のアルカリ金属塩、アンモニウム塩、アミン塩を挙げることができる。これらの化合物は、金属封鎖剤の一種として知られているものである。
【0031】
これらイオン封鎖剤の中でも好ましくはカルボキシル基を3個以上有するアミノカルボン酸及びその塩であり、中でもジエチレントリアミンペンタ酢酸、トリエチレンテトラアミンヘキサ酢酸、シクロヘキサンー1,2−ジアミテトラ酢酸、N−ヒドロキシエチルエチレンジアミントリ酢酸及びその塩が、耐尿性の点で最も好ましい。
【0032】
本発明において上記イオン封鎖剤の使用量は、通常吸水性樹脂の固形分100重量部に対して0.0001〜10重量部、好ましくは0.0002〜5重量部の範囲である。使用量が10重量部を越えると、使用に見合う効果が得られれず不経済になるばかりか、吸収量が低下するなどの問題が生じる。また、0.0001重量部よりも少ないと耐尿性向上の効果が得られない。
【0033】
本発明では、前述した表面架橋処理剤を用いて予め表面架橋処理のなされた吸水性樹脂に水及び前述イオン封鎖剤を噴霧する等して添加し、水をバインダーとして該吸水性樹脂粒子を結合せしめ、造粒することにより、耐尿性の優れた吸水剤を得る。前記吸水性樹脂は、内部架橋剤の存在下に不飽和カルボン酸を必須に含む単量体成分を重合して得られる吸水性樹脂の表面近傍を架橋処理して得られる。内部架橋剤を用いることで、膨潤ゲルが劣化雰囲気にさらされた時にゲル内部からの可溶分の溶出を抑制することができる。造粒により吸水性樹脂はその平均粒径が大きくなり、また吸湿流動性も改善され取り扱いやすくなる。水の添加量は吸水性樹脂100重量部に対し、0.1〜20重量部の範囲であり好ましくは0.1〜10重量部の範囲であり、より好ましくは0.5〜4重量部の範囲である。水の添加量が0.1重量部よりも少ないと吸水性樹脂粒子を造粒することが困難となる。また、イオン封鎖剤を吸水性樹脂表面近傍に固定することが出来なくなる。また、水の添加量が20重量部よりも多いと、吸水性樹脂の内部まで膨潤しゲルを形成するため本発明の目的とする造粒物が選られなくなると共に、吸水性樹脂表面の表面架橋層が壊れてしまう恐れが有る。
【0034】
イオン封鎖剤を添加しての造粒方法は特に制限なく、上記の方法以外にも、例えば、イオン封鎖剤を吸水性樹脂に添加した後に水を添加し造粒する方法等が挙げられる。イオン封鎖剤及び水と吸水性樹脂との混合性を改善するため、メタノール、エタノール、イソプロピルアルコール等の親水性有機溶媒を併用することができる。更には、界面活性剤やシリカや酸化チタン等の無機微粒子を予めあるいは同時に添加することもできる。
【0035】
イオン封鎖剤の添加は、前述したように、吸水性樹脂の表面近傍を架橋処理した後に、水を加えて造粒する際に行う。これにより、イオン封鎖剤を吸水性樹脂の表面に固定することができる。吸水性樹脂の劣化は樹脂表面から起こるのでイオン封鎖剤を吸水性樹脂の表面近傍に配するのである。吸水性樹脂を形成し得る水溶性単量体を重合する際に前記イオン封鎖剤を加えると、前記イオン封鎖剤の存在下に前記単量体の重合を行うと前記単量体の重合が阻害され、吸収性能に優れた吸水性樹脂が得られなくなる恐れがある。また、重合中にイオン封鎖剤がイオン封鎖能やキレート能を失活する恐れがある。
【0036】
上記の吸水剤に、さらに、必要に応じて、消臭剤、抗菌剤、香料、各種の無機粉末、発泡剤、顔料、染料、親水性短繊維、可塑剤、粘着剤、界面活性剤、肥料、酸化剤、還元剤、水、塩類等を添加し、これにより、吸水剤に種々の機能を付与してもよい。
無機粉末としては、水性液体等に対して不活性な物質、例えば、各種の無機化合物の微粒子、粘土鉱物の微粒子等が挙げられる。該無機粉体は、水に対して適度な親和性を有し、かつ、水に不溶もしくは難溶であるものが好ましい。具体的には、例えば、二酸化珪素や酸化チタン等の金属酸化物、天然ゼオライトや合成ゼオライト等の珪酸(塩)、カオリン、タルク、クレー、ベントナイト等が挙げられる。このうち、二酸化珪素および珪酸(塩)がより好ましく、コールターカウンター法により測定された平均粒子径が200μm以下の二酸化珪素および珪酸(塩)がさらに好ましい。
【0037】
吸水性樹脂に対する無機粉末の使用量は、吸水性樹脂および無機粉体の組み合わせ等にもよるが、吸水性樹脂100重量部に対し0.001〜10重量部の範囲内、より好ましくは0.01〜5重量部の範囲内とすればよい。吸水性樹脂と無機粉体との混合方法は、特に限定されるものではなく、例えばドライブレンド法、湿式混合法等を採用できるが、ドライブレンド法を採用するのが好ましい。
【0038】
このようにして得られた吸水剤は、例えば、パルプ等の繊維質材料と複合化する(組み合わせる)ことにより、吸収性物品とされる。
吸収性物品としては、例えば、紙オムツや生理用ナプキン、失禁パット、創傷保護材、創傷治癒材等の衛生材料(体液吸収物品);ペット用の尿等の吸収物品;建材や土壌用保水材、止水材、パッキング材、ゲル水嚢等の土木建築用資材;ドリップ吸収材や鮮度保持材、保冷材等の食品用物品;油水分離材、結露防止材、凝固材などの各種産業用物品;植物や土壌等の保水材等の農園芸用物品;等が挙げられるが、特に限定されるものではない。なお、例えば紙オムツは、液不透過性の材料からなるバックシート(裏面材)、上記の吸水性組成物、および液透過性の材料からなるトップシート(表面材)を、この順に積層して互いに固定するとともに、この積層物に、ギャザー(弾性部)やいわゆるテープファスナー等を取り付けることにより形成される。また、紙オムツには、幼児に排尿・排便の躾をする際に用いられる紙オムツ付きパンツも含まれる。
【0039】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明の範囲がこれらの実施例にのみに限定されるものではない。また実施例および比較例中の%は特に断りの無い限り重量%を、また部は重量部を意味するものとする。
なお、吸水剤の吸水量、水可溶性成分量、人工尿中での可溶成分溶出量は以下の方法により測定した。
(1)吸水剤の吸水量
吸水性樹脂0.2gをティーバッグ式袋(6cm×6cm)に均一に入れ、開口部をヒートシールした後、生理食塩水中に浸漬した。60分後にティーバック式袋を引き上げ、遠心分離機を用いて250Gで3分間水切りを行った後、該袋の重量W1 (g)を測定した。また、同様の操作を吸水性樹脂を用いないで行い、その時の重量W0 (g)を測定した。そして、これら重量W1 、W0 から次式に従って吸水量(g/g)を算出した。
【0040】
吸水量(g/g)=(W1 −W0 )/吸水性樹脂の重量(g)
(2)吸水剤の可溶性成分溶出量
100mlのビーカー中、吸水剤1gを人工尿25mlに膨潤させ、37℃で16時間放置した。次いで膨潤したゲルを975mlの脱イオン水中に分散させ、1時間攪拌した後、濾紙で濾過した。得られた濾液をコロイド滴定により滴定し吸水剤の可溶性成分溶出量(%)を求めた。
【0041】
人工尿の組成を以下に示す。
尿素 1.9%
塩化ナトリウム 0.8%
塩化マグネシウム 0.1%
塩化カルシウム 0.1%
(3)吸水剤の劣化可溶性成分溶出量
100mlのビーカー中、吸水剤1gをL−アスコルビン酸0.005%含有人工尿25mlに膨潤させ、37℃で16時間放置した。次いで膨潤したゲルを975mlの脱イオン水中に分散させ、溶出した可溶分を脱イオン水でリンスした。1時間攪拌した後濾紙で濾過し、得られた濾液をコロイド滴定により滴定し吸水剤の劣化可溶性成分溶出量(%)を求めた。
(4)荷重下吸収倍率
図1に示す測定装置を用いて荷重下吸水倍率を求めた。図1に示すように、測定装置は、天秤1、天秤1上に載置された所定容量の容器2、外気吸入パイプシート3、導管4、ガラスフィルター6、ガラスフィルター6上に載置された測定部5からなっている。容器2は、頂部に開口部2aと側部に開口部2bを有している。開口部2aには外気吸入パイプ3が嵌入されており、開口部2bには導管4が取り付けられている。また、容器2には所定量の0.9重量%塩化ナトリウム水溶液(以下、生理食塩水と称す)12が入っている。外気吸入パイプ3の下端部は生理食塩水12中に没している。外気吸入パイプ3は、容器2内の圧力をほぼ大気圧に保つために設けられている。上記のガラスフィルター6は、直径55mmに形成されている。容器2及びガラスフィルター6は、シリコーン樹脂からなる導管4によって互いに連通している。また、ガラスフィルター6は、容器2に対する位置および高さが固定されている。上記の測定部5は、濾紙7、支持円筒9、支持円筒9の底部に貼着された金網10、重り11とを有している。測定部5は、ガラスフィルター6上に、濾紙7、支持円筒9(つまり金網10)がこの順に載置されてなっている。金網10はステンレスからなり、その網目の大きさは400メッシュである。金網10の上面、すなわち、金網10と吸水剤15との接触面の高さは、外気吸入パイプ3の下端面3aの高さと等しくなるように設定されている。金網10上には、所定量の吸水剤が均一に散布される。重り11は、金網10、即ち吸水剤15に対して、0.7psiの荷重を均一に加えることができるように、その重量が調整されている。
【0042】
上記構成の測定装置を用いて荷重下吸水倍率を測定した。測定方法について以下に説明する。
容器2に所定量の生理食塩水12をいれる。容器2に外部吸入パイプ3を嵌入する等の所定の準備動作を行った。次に、ガラスフィルター6上に濾紙7を載置した。また、載置と平行して、支持円筒9内部、即ち、金網10上に、吸水剤0.9gを均一に散布し、この吸水剤15上に重り11を載置した。次いで、濾紙7上に、金網10、即ち吸水剤15及び重り11を載置した上記支持円筒9を、その中心部がガラスフィルター6の中心部に一致するように載置した。次いで、濾紙7上に支持円筒9を載置した時点から、60分間にわたって経時的に、該吸水剤15が吸水した生理食塩水の重量を天秤1の測定値から求めた。また、同様の操作を吸水剤15を用いないで行い、吸水剤以外の例えば濾紙7等が吸水した生理食塩水の重量を、天秤1の測定値から求め、これをブランク値とした。荷重下吸水量は以下の式より求めた。
荷重下吸水倍率(g/g)=(60分後の吸水量―ブランク値)/吸水剤の重量
(5)吸水剤の平均粒径
吸水剤を850μm,600μm,500μm,425μm,300μm,220μm,150μm,105μmの篩を用いて篩い分級した後、残留百分率Rを対数確立紙にプロットし、R=50%に相当する粒径を平均粒径とした。
【0043】
(参考例1)
37%アクリル酸ナトリウム水溶液67.0部、アクリル酸10.2部、ポリエチレングリコールジアクリレート(平均ポリエチレンオキサイドユニット数8)0.079部及び水22.0部を混合しモノマー水溶液を調製した。バット中で前記水溶液に窒素を吹き込み溶液中の溶存酸素を0.1ppm以下とした。
【0044】
引き続き窒素雰囲気下前記水溶液の温度を18℃に調整し、次いで5%過硫酸ナトリウム水溶液0.16部、5%2,2’−アゾビス(2−アミジノプロパン)塩酸塩水溶液0.16部、0.5%L−アスコルビン酸水溶液0.15部及び0.35%過酸化水素水溶液0.17部を順番に攪拌下滴下した。
過酸化水素滴下後直ちに重合が開始し、10分後にモノマーの温度はピーク温度に達した。ピーク温度は85℃であった。引き続きバットを80℃の湯浴に浸し、10分間熟成した。
【0045】
得られた透明の含水ゲルをミートチョッパーで砕き、次いで180℃で30分間乾燥した。
乾燥物を粉砕機で粉砕し、500μmの篩を通過し105μmの篩上に残るものに分級した。
この分級物100部にエチレングリコールジグリシジルエーテル0.05部、プロピレングリコール1部、水3部及びイソプロピルアルコール1部からなる組成液を混合し、180℃で40分間処理して吸水性樹脂(A)を得た。
【0046】
(実施例1)
吸水性樹脂(A)100部にジエチレントリアミンペンタ酢酸5ナトリウム0.001部、水3部からなる混合液を噴霧し、造粒した後、80℃で乾燥して吸水剤を得た。得られた吸水剤(1)の評価結果を表1に示した。
(実施例2)
実施例1においてジエチレントリアミンペンタ酢酸5ナトリウムを0.1部添加した他は実施例1と同様にして本発明の吸水剤を得た。得られた吸水剤(2)の評価結果を表1に示した。
【0047】
(実施例3)
実施例1においてジエチレントリアミンペンタ酢酸5ナトリウムに代えてトリエチレンテトラアミンヘキサ酢酸6ナトリウム0.001部を用いた他は実施例1と同様にして本発明の吸水剤を得た。得られた吸水剤(3)の評価結果を表1に示した。
【0048】
(比較例1)
吸水性樹脂(A)をそのままで比較吸水剤(1)とした。比較吸水剤(1)の性能評価結果を表1に示した。
(比較例2)
実施例1において水3部を混合した他は実施例1と同様にして比較吸水剤を得た。得られた比較吸水剤(2)の性能評価結果を表1に示した。
【0049】
【表1】

Figure 0004903926
【0050】
【発明の効果】
本発明の製造方法により、尿による経時的な劣化や溶出成分の少ない吸水剤を容易に得ることが出来る。
【図面の簡単な説明】
【図1】 荷重下吸水倍率の測定装置である。
【符号の説明】
1 天秤
2 容器
2a 頂部の開口部
2b 側部の開口部
3 外気吸入パイプシート
4 導管
5 測定部
6 ガラスフィルター
7 濾紙
9 支持円筒
10 金網
11 重り
12 生理食塩水
15 吸水剤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a water-absorbing agent , a water-absorbing agent and its use . More specifically, the present invention relates to a method for producing a water-absorbing agent with little deterioration during urine absorption , a water-absorbing agent and its use .
[0002]
[Prior art]
In recent years, hygienic materials such as disposable diapers, sanitary napkins, and so-called incontinence pads have widely used water-absorbing resins (water-absorbing agents) as constituent materials for the purpose of absorbing body fluids such as urine and menstrual blood. Yes.
Examples of such a water-absorbing resin include a hydrolyzate of starch-acrylonitrile graft polymer (Japanese Patent Publication No. 49-43395) and a neutralized product of starch-acrylic acid graft polymer (Japanese Patent Laid-Open No. 51-125468). Saponified vinyl acetate-acrylic acid ester copolymer (Japanese Patent Laid-Open No. 52-14589), hydrolyzate of acrylonitrile copolymer or acrylamide copolymer (Japanese Patent Publication No. 53-15959), or a cross-linked product thereof Self-crosslinked sodium polyacrylate obtained by reverse phase suspension polymerization (Japanese Patent Laid-Open No. 53-46389), crosslinked polyacrylic acid partially neutralized product (Japanese Patent Laid-Open No. 55-84304), and the like are known. Yes.
[0003]
The properties desired for such a water-absorbent resin include a high absorption rate and excellent absorption rate when in contact with an aqueous liquid, liquid permeability, gel strength of a swollen gel, and suction force that pulls up water from a substrate containing an aqueous liquid. Etc. However, the relationship between these characteristics does not necessarily show a positive correlation, for example, the higher the absorption capacity, the lower the physical properties such as liquid permeability, gel strength, absorption rate, etc. .
[0004]
As a method for improving the water absorption properties of such a water absorbent resin in a well-balanced manner, a technique for crosslinking the vicinity of the surface of the water absorbent resin is known, and various methods have been proposed so far.
For example, a method using a polyhydric alcohol as a crosslinking agent (Japanese Patent Laid-Open Nos. 58-180233 and 61-16903), a polyvalent glycidyl compound, a polyvalent aziridine compound, a polyvalent amine compound, and a polyvalent isocyanate compound are used. A method using a polyvalent metal (Japanese Patent Laid-Open Nos. 51-136588, 61-257235, 62-7745), a method using a monoepoxy compound (Japanese Patent Laid-Open No. Sho 59-189103) 61-98121), a method using an epoxy compound and a hydroxy compound (JP-A-2-132103), a method using an alkylene carbonate (DE-4020780), and the like are known.
[0005]
However, although the balance of water absorption properties has been improved by these surface treatments, if the water absorbent resin is used in the absorbent body of the diaper, the water absorbent resin deteriorates over time, and the liquid permeability decreases or the gel strength decreases. , And urine leaked from the diaper. Degradation of the water absorbent resin occurs from the surface of the water absorbent resin, so that soluble components are eluted and liquid permeability and gel strength are reduced. Such deterioration of the water-absorbent resin is considered to be caused by a trace amount of metal ions and L-ascorbic acid contained in urine.
[0006]
On the other hand, the water-absorbent resin is in a powder form and may contain fine powders of 100 μm or less, and it is known to granulate by adding water in order to improve handleability or improve liquid permeability in diapers. ing. Granulation can prevent powdering and improve fluidity during moisture absorption.
However, when water is added to the water-absorbent resin subjected to the surface crosslinking treatment and granulated, there is a problem that the surface crosslinking layer is easily broken. In particular, a water-absorbent resin having a high absorption capacity under pressure, which has been desired in recent years, prevents elution of soluble components by cross-linking the vicinity of the surface of the water-absorbent resin having a high water absorption capacity. -When the surface cross-linked layer is deteriorated by ascorbic acid or the like, elution of soluble components cannot be suppressed. Therefore, when used for diapers, there is a problem that liquid permeability is lowered or gel strength is lowered and urine leaks from the diaper.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is less deterioration over time upon absorption of urine, a method of manufacturing a superior water-absorbing agent of urine resistance is to provide a water-absorbing agent and its application.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors of the present invention cross-linked the vicinity of the surface of a water-absorbent resin obtained by polymerizing a monomer component that essentially contains an unsaturated carboxylic acid in the presence of an internal cross-linking agent. After that, it was found that the above problem can be solved by adding an ion sequestering agent when the crosslinked water-absorbing resin is granulated with water, and the present invention has been completed.
[0009]
Therefore, the method for producing a water-absorbing agent of the present invention comprises polymerizing and drying a monomer component essentially containing an unsaturated carboxylic acid in the presence of 0.005 to 2 mol% (based on monomer) of an internal crosslinking agent. The obtained water-absorbing resin 100 after the surface of the water-absorbing resin comprising a crosslinked product of a partially neutralized polyacrylic acid sodium salt having a water content of 1 to 50% is further cross-linked with a surface cross-linking agent. the parts by weight of water 0.1 to 20 parts by weight, diethylenetriaminepentaacetic acid, triethylenetetramine hexaacetic acid, cyclohexane-1,2-diamines tetraacetate, from the N- hydroxyethyl ethylenediamine triacetic acid and salts thereof It is characterized by adding 0.0001 to 10 parts by weight of the sequestering agent selected and granulating.
The water-absorbing agent according to the present invention is a water-absorbing agent obtained by the method for producing a water-absorbing agent of the present invention, and is unsaturated in the presence of 0.005 to 2 mol% (based on monomer) of an internal crosslinking agent. A water-absorbing resin comprising a crosslinked polyacrylic acid sodium salt partially obtained by polymerizing a monomer component essentially containing a carboxylic acid, wherein the water-absorbing resin is further cross-linked with a surface cross-linking agent in the vicinity of the surface. Diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, cyclohexane-1 in a blending ratio of 0.0001 to 10 parts by weight with respect to 100 parts by weight of the water absorbent resin. , in which 2-diamines tetraacetic acid, sequestering agent selected from among N- hydroxyethyl ethylenediamine triacetic acid and salts thereof is blended.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The water absorbent resin that can be used in the present invention absorbs a large amount of water in water to form a hydrogel, and preferably has a carboxyl group. Such water-absorbing resins include polyacrylic acid partially neutralized cross-linked products, starch-acrylonitrile graft polymer hydrolysates, starch-acrylic acid graft polymer hydrolysates, vinyl acetate-acrylic acid ester copolymer Examples include saponified polymers, hydrolysates of acrylonitrile copolymers or acrylamide copolymers or cross-linked products thereof, saponified carboxyl group-containing cross-linked polyvinyl alcohols, cross-linked isobutylene-maleic anhydride copolymers, and the like.
[0011]
Such water absorbent resins are generally unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, β-hydroxyacrylic acid, β-acryloxypropionic acid and the like. It is obtained by polymerizing a monomer component that essentially contains at least one selected from the above neutralized products. Preferred monomer components are acrylic acid, methacrylic acid, and alkali metal salts or ammonium salts thereof such as lithium, sodium and potassium.
[0012]
The water-absorbent resin that can be used in the present invention may be polymerized using other monomers in combination with the unsaturated carboxylic acid, if necessary. Specifically, anionic properties such as 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, vinylsulfonic acid, styrenesulfonic acid, etc. Monomers and alkali metal salts and ammonium salts thereof such as lithium, sodium and potassium; (meth) acrylamide, N-substituted (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, Nonionic hydrophilic group-containing monomers such as methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, N-vinylpyrrolidone, N-vinylacetamide; N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethyl Minopuropiru (meth) acrylate, N, may be mentioned N- dimethylaminopropyl (meth) acrylamide, an amino group-containing unsaturated monomers and quaternized products thereof and the like the like. Further, in an amount that does not extremely impair the hydrophilicity of the resulting water-absorbent resin, for example, acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, vinyl acetate, Hydrophobic monomers such as vinyl propionate may be used.
[0013]
Although there is no restriction | limiting in particular about the quantity of the carboxyl group which a water absorbing resin has, It is preferable that a carboxyl group exists 0.01 equivalent or more per 100 g of water absorbing resins. For example, the ratio of the polyacrylic acid unneutralized product is preferably in the range of 1 to 60 mol%, and more preferably in the range of 10 to 50 mol%.
Also, the water-absorbing resin was copolymerized or reacted in a very small amount with an internal cross-linking agent having two or more polymerizable unsaturated groups or two or more reactive groups, rather than a self-crosslinking type that does not use a cross-linking agent. Use things. For example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate , Trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, N, N'-methylenebis (meth) acrylamide, triallyl isocyanurate, cyanuric Acid triallyl, trimethylolpropane di (meth) allyl ether, triallylamine, tetraallyloxyethane, glycerol propoxy Compounds having two or more ethylenically unsaturated groups in one molecule such as triacrylate; ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, 1,4-butanediol, 1, Polyhydric alcohols such as 5-pentanediol, 1,6-hexanediol, neopentyl alcohol, diethanolamine, tridiethanolamine, polypropylene glycol, polyvinyl alcohol, pentaerythritol, sorbit, sorbitan, glucose, mannitol, mannitan, sucrose, glucose ; Polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerin triglycidyl ether; Haloepoxy compounds such as epichlorohydrin and α-methylchlorohydrin; polyaldehydes such as glutaraldehyde and glyoxal; polyamines such as ethylenediamine; calcium hydroxide, calcium chloride, calcium carbonate, calcium oxide, magnesium borax, Periodic table such as magnesium oxide, aluminum chloride, zinc chloride and nickel chloride Group 2A, 3B, Group 8 metal hydroxides, halides, carbonates, oxides, borates such as borax, aluminum isopropylate, etc. And polyvalent metal compounds. One or more of these can be used in consideration of reactivity, but it is most preferable to use a compound having two or more ethylenically unsaturated groups in one molecule as a crosslinking agent. The amount of the crosslinking agent used is 0.005 to 2 mol%, more preferably 0.01 to 1 mol%, based on the monomer component.
[0014]
Upon polymerization, starch, cellulose and derivatives thereof; hydrophilic polymers such as polyacrylic acid (salt), polyacrylic acid (salt) cross-linked product, polyvinylpyrrolidone, polyvinyl alcohol; hypophosphorous acid (salt), long chain Chain transfer agents such as alkyl mercaptans; surfactants; blowing agents such as carbonates, dry ice and azo compounds may be added.
[0015]
When the monomer is polymerized in order to obtain the water-absorbent resin of the present invention, bulk polymerization or precipitation polymerization can be performed. However, from the viewpoint of performance and ease of polymerization control, the monomer is selected. As the aqueous solution, it is preferable to perform aqueous solution polymerization or reverse phase suspension polymerization. In this case, the concentration of the aqueous solution is usually 10% by weight to a saturated concentration, preferably 20 to 40% by weight. The hydrogel obtained after polymerization can be neutralized with an alkali.
[0016]
The water-absorbent resin obtained by these polymerization methods can be preferably used in the present invention in various shapes such as an irregularly crushed shape, a spherical shape, a fibrous shape, a rod shape, a substantially spherical shape, and a scale shape.
The water-absorbent resin used in the present invention can be handled as a powder with a moisture content (humidity basis) of, for example, 1 to 50%, preferably 1 to 20%, more preferably 1 to 10%. If the water content exceeds 50%, the surface cross-linking agent may permeate too much into the interior, and it may be difficult to obtain a water-absorbing resin having excellent water absorption performance.
[0017]
In the present invention, the surface of the water-absorbent resin is subjected to surface cross-linking treatment with a surface cross-linking agent having two or more functional groups capable of reacting with functional groups such as carboxyl groups of the water-absorbent resin.
Examples of the surface crosslinking agent capable of reacting with a carboxyl group that can be used in the present invention include ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, 1,3-propanediol, dipropylene glycol, 2 , 3,4-trimethyl-1,3-pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,2-cyclohexanedimethanol, 1,2-cyclohexanediol, trimethylolpropane, diethanolamine, triethanolamine, polyoxypropylene, oxyethylene-oxypropylene block Polymers, polyhydric alcohol compounds such as pentaerythritol, sorbitol; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene Epoxy compounds such as glycol diglycidyl ether and glycidol; Polyamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyethyleneimine, and polyamidepolyamine; epichlorohydrin, epibromohydrin, a haloepoxy compound such as α-methylepichlorohydrin; Condensation products of amine compounds and the above haloepoxy compounds; polyvalent isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; polyvalent oxazoline compounds such as 1,2-ethylenebisoxazoline; γ-glycidoxypropyltri Silane coupling agents such as methoxysilane and γ-aminopropyltrimethoxysilane; 1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3 -Dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolane-2- ON, 1,3-dioxan-2-one, 4-methyl-1,3-dioxan-2-one, 4,6-dimethyl Alkylene carbonate compounds such as -1,3-dioxan-2-one and 1,3-dioxovan-2-one; hydroxides such as zinc, calcium, magnesium and aluminum; and polyvalent metal compounds such as chloride; Although it is mentioned, it is not particularly limited.
[0018]
Of the surface crosslinking agents exemplified above, polyhydric alcohol compounds, epoxy compounds, polyvalent amine compounds, condensates of polyvalent amine compounds and haloepoxy compounds, and alkylene carbonate compounds are more preferred.
These surface cross-linking agents may be used alone or in combination of two or more. When two or more types of surface cross-linking agents are used in combination, a water-absorbing agent having even more excellent water absorption characteristics is obtained by combining the first surface cross-linking agent and the second surface cross-linking agent having different solubility parameters (SP values). be able to. In addition, said solubility parameter is a value generally used as a factor showing the breadth of a compound.
[0019]
The first surface cross-linking agent is a compound having a solubility parameter of 12.5 (cal / cm 3 ) 1/2 or more that can react with the carboxyl group of the water-absorbent resin, such as ethylene glycol, propylene glycol, glycerin. , Ethylene carbonate, propylene carbonate and the like. The second surface cross-linking agent is a compound having a solubility parameter of less than 12.5 (cal / cm 3 ) 1/2 that can react with the carboxyl group of the water-absorbent resin, such as glycerol polyglycidyl ether, ( Poly) glycerol polyglycidyl ether, ethylene glycol diglycidyl ether, 1,3-butanediol, trimethylolpropane, 1,3-propanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1, 4-butanediol and the like are applicable.
[0020]
The amount of the surface cross-linking agent used for the water-absorbing resin depends on the combination of the water-absorbing resin and the surface cross-linking agent, but is within the range of 0.005 to 10 parts by weight with respect to 100 parts by weight of the water-absorbing resin in the dry state. More preferably, it may be in the range of 0.05 to 5 parts by weight. By using the surface cross-linking agent within the above range, it is possible to further improve the water absorption characteristics for body fluids (aqueous liquids) such as urine, sweat and menstrual blood. When the amount of the surface crosslinking agent used is less than 0.005 parts by weight, the crosslinking density in the vicinity of the surface of the water-absorbent resin can hardly be increased. Further, when the amount of the surface cross-linking agent used is more than 5 parts by weight, the surface cross-linking agent becomes excessive, which is uneconomical and it may be difficult to control the cross-linking density to an appropriate value.
[0021]
In the present invention, it is preferable to use water when mixing the water-absorbent resin and the surface cross-linking agent. In the present invention, the amount of water used varies depending on the type, particle size, and water content of the water-absorbent resin, but is 0.5 to 10 parts by weight, preferably 100 parts by weight based on the solid content of the water-absorbent resin. The range is 0.5 to 3 parts by weight. If the amount of water used exceeds 10 parts by weight, the absorption capacity may decrease. If the amount is less than 0.5 part by weight, it may be difficult to obtain a water-absorbing resin having a high absorption capacity under pressure.
[0022]
In the present invention, a hydrophilic organic solvent may be used when the water absorbent resin and the surface cross-linking agent are mixed. Examples of the hydrophilic organic solvent used include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, t-butyl alcohol and other lower alcohols; acetone and other ketones; dioxane, alkoxy (poly) ethylene glycol And ethers such as tetrahydrofuran; amides such as N, N-dimethylformamide; and sulfoxides such as dimethyl sulfoxide. The amount of the organic solvent to be used varies depending on the type and particle size of the water absorbent resin, but is usually in the range of 0 to 10 parts by weight, preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the water absorbent resin.
[0023]
In the present invention, the water-absorbing resin and the surface cross-linking agent are mixed in a state where the water-absorbing resin is dispersed in an organic solvent such as cyclohexane or pentane, or if necessary, water or a mixed solvent of water and a hydrophilic organic solvent and After preliminarily mixing with the surface cross-linking agent, the mixture can then be sprayed or dropped onto the water absorbent resin.
A suitable mixing device used for the mixing needs to be able to generate a large mixing force to ensure uniform mixing. Examples of the mixing apparatus that can be used in the present invention include a cylindrical mixer, a double wall conical mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, and a fluidizer. A mold furnace rotary desk mixer, an airflow mixer, a double-arm kneader, an internal mixer, a pulverizer kneader, a rotary mixer, a screw extruder, and the like are suitable.
[0024]
When performing heat processing by this invention, the processing temperature has the preferable range of 80-250 degreeC. When the heating temperature is less than 80 ° C., the heat treatment takes time, not only causing a decrease in productivity, but also a uniform crosslinking is not achieved, and the elution of the soluble component targeted by the present invention and the absorption of water under pressure are performed. There is a risk that a highly water-absorbing agent cannot be obtained.
The heat treatment can be performed using a normal dryer or a heating furnace, and examples include a grooved mixed dryer, a rotary dryer, a desk dryer, a fluidized bed dryer, an airflow dryer, and an infrared dryer. .
[0025]
The water-absorbing resin thus obtained by surface cross-linking treatment has an absorption capacity under load of 20% (g / g) of 0.9% by weight sodium chloride aqueous solution (physiological saline) under a load of 0.7 psi, preferably A water-absorbing resin of 22 (g / g) or more, more preferably 24 (g / g) or more may be used for granulation described later. If the absorption capacity under pressure is lower than 20 (g / g), the water absorption performance cannot be sufficiently exhibited in the diaper.
[0026]
Examples of the sequestering agent used in the present invention include the following compounds.
(1) aminocarboxylic acid and its salt, (2) polycarboxylic acid and its derivative, (3) (poly) phosphoric acid and its derivative, (4) N-acylated glutamic acid and N-acylated aspartic acid and their Salt, (5) β-diketone derivative, (6) tropolone derivative, (7) organophosphate compound.
[0027]
(1) Examples of aminocarboxylic acids and salts thereof include dihydroxyethyl glycine, iminodiacetic acid, hydroxyethyliminodiacetic acid, dihydroxyethylglycine, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, cyclohexane-1, 2-diaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, ethylene glycol diethyl etherdiaminetetraacetic acid, ethylenediaminetetrapropionic acid, N-alkyl-N′-carboxymethylaspartic acid, N-alkenyl-N′-carboxymethylaspartic acid, and These alkali metal salts, alkaline earth metal salts, ammonium salts or amine salts can be mentioned. Of these, aminocarboxylic acids having 3 or more carboxyl groups and salts thereof are preferred in terms of sequestering ability.
[0028]
(2) Examples of polycarboxylic acids and derivatives thereof include succinic acid, polyacrylic acid, citric acid monoalkylamide, citric acid monoalkenylamide, malonic acid monoalkylamide, malonic acid monoalkenylamide, and alkali metal salts thereof. Alkaline earth metal salts, ammonium salts or amine salts are mentioned.
(3) (Poly) phosphoric acid and its derivatives include hexametaphosphoric acid, metaphosphoric acid, tripolyphosphoric acid, phosphoric acid alkyl ester, phosphoric acid alkenyl ester and alkali metal salts, alkaline earth metal salts, ammonium salts or amine salts thereof Is mentioned.
[0029]
(4) Examples of N-acylated glutamic acid, N-acylated aspartic acid and salts thereof include Amisoft HS-11 and GS-11, which are commercially available from Ajinomoto Co., Inc.
(5) Examples of β-diketone derivatives include acetylacetone and benzoylacetone.
[0030]
(6) Examples of tropolone derivatives include tropolone, β-tyaprisin, and γ-tyaprisin.
(7) Examples of the organic phosphate compound include ethylidenephosphonic acid; 1-hydroxyethylidene-1,1-diphosphonic acid; aminotrimethylenephosphonic acid; ethylenediaminetetra (methylenephosphonic acid); diethylenetriaminepenta (methylenephosphonic acid). Particularly preferred are 1-hydroxyethylidene-1,1-diphosphonic acid; ethylenediaminetetra (methylenephosphonic acid); diethylenetriaminepenta (methylenephosphonic acid). Preferable examples of the salt include alkali metal salts such as Na salt and K salt, ammonium salt, and amine salt. These compounds are known as a kind of metal sequestering agent.
[0031]
Among the above ion blocking agents are aminocarboxylic acids and salts thereof having a carboxyl group 3 or more, among them diethylenetriaminepentaacetic acid, triethylenetetramine hexaacetic acid, cyclohexane over 1,2 diamines tetraacetic acid, N- hydroxy Ethylethylenediaminetriacetic acid and its salt are most preferred from the viewpoint of urine resistance.
[0032]
In this invention, the usage-amount of the said sequestering agent is 0.0001-10 weight part with respect to 100 weight part of solid content of a water absorbent resin normally, Preferably it is the range of 0.0002-5 weight part. When the amount used exceeds 10 parts by weight, not only an effect commensurate with the use cannot be obtained, but it becomes uneconomical, and problems such as a decrease in the amount of absorption occur. On the other hand, if the amount is less than 0.0001 part by weight, the effect of improving urine resistance cannot be obtained.
[0033]
In the present invention, water and the above-mentioned sequestering agent are added to the water-absorbing resin that has been subjected to surface cross-linking treatment in advance by using the above-mentioned surface cross-linking agent, and the water-absorbing resin particles are bound using water as a binder. By watering and granulating, a water-absorbing agent having excellent urine resistance is obtained. The water-absorbent resin is obtained by crosslinking the vicinity of the surface of a water-absorbent resin obtained by polymerizing a monomer component that essentially contains an unsaturated carboxylic acid in the presence of an internal crosslinking agent. By using the internal cross-linking agent, it is possible to suppress elution of soluble components from the inside of the gel when the swollen gel is exposed to a deteriorated atmosphere. Granulation increases the average particle size of the water-absorbent resin, improves the hygroscopic fluidity and facilitates handling. The amount of water added is in the range of 0.1 to 20 parts by weight, preferably in the range of 0.1 to 10 parts by weight, more preferably 0.5 to 4 parts by weight with respect to 100 parts by weight of the water absorbent resin. It is a range. If the amount of water added is less than 0.1 parts by weight, it becomes difficult to granulate the water-absorbent resin particles. Moreover, it becomes impossible to fix the ion sequestering agent near the surface of the water absorbent resin. If the amount of water added is more than 20 parts by weight, the water-absorbent resin swells to the inside of the water-absorbent resin to form a gel, and the granulated product targeted by the present invention cannot be selected. There is a risk that the layer will break.
[0034]
The granulation method with the addition of the ion sequestering agent is not particularly limited, and other than the above methods, for example, a method of adding the ion sequestering agent to the water-absorbing resin and then adding water to granulate can be mentioned. In order to improve the mixing properties of the sequestering agent and water and the water-absorbent resin, a hydrophilic organic solvent such as methanol, ethanol, isopropyl alcohol or the like can be used in combination. Furthermore, a surfactant, inorganic fine particles such as silica and titanium oxide can be added in advance or simultaneously.
[0035]
As described above, the ion sequestering agent is added when water is added and granulated after the surface vicinity of the water-absorbent resin is crosslinked. Thereby, an ion sequestering agent can be fixed to the surface of the water absorbent resin. Since the deterioration of the water absorbent resin occurs from the resin surface, an ion sequestering agent is disposed in the vicinity of the surface of the water absorbent resin. If the ion sequestering agent is added when polymerizing a water-soluble monomer capable of forming a water absorbent resin, the polymerization of the monomer is inhibited when the monomer is polymerized in the presence of the ion sequestering agent. Therefore, there is a possibility that a water-absorbing resin excellent in absorption performance cannot be obtained. Moreover, there exists a possibility that an ion sequestering agent may deactivate an ion sequestering ability and a chelating ability during superposition | polymerization.
[0036]
In addition to the above water-absorbing agent, if necessary, deodorant, antibacterial agent, fragrance, various inorganic powders, foaming agent, pigment, dye, hydrophilic short fiber, plasticizer, adhesive, surfactant, fertilizer In addition, an oxidizing agent, a reducing agent, water, salts, and the like may be added to thereby impart various functions to the water absorbing agent.
Examples of the inorganic powder include substances inert to aqueous liquids, such as fine particles of various inorganic compounds, fine particles of clay minerals, and the like. The inorganic powder preferably has an appropriate affinity for water and is insoluble or hardly soluble in water. Specific examples include metal oxides such as silicon dioxide and titanium oxide, silicic acid (salts) such as natural zeolite and synthetic zeolite, kaolin, talc, clay, bentonite and the like. Among these, silicon dioxide and silicic acid (salt) are more preferable, and silicon dioxide and silicic acid (salt) having an average particle diameter measured by a Coulter counter method of 200 μm or less are more preferable.
[0037]
The amount of inorganic powder used for the water-absorbent resin depends on the combination of the water-absorbent resin and the inorganic powder, but is within the range of 0.001 to 10 parts by weight with respect to 100 parts by weight of the water-absorbent resin. What is necessary is just to set it as the range of 01-5 weight part. The mixing method of the water-absorbent resin and the inorganic powder is not particularly limited, and for example, a dry blend method, a wet mixing method, or the like can be employed, but it is preferable to employ the dry blend method.
[0038]
The water-absorbing agent thus obtained is made into an absorbent article by combining (combining) with a fibrous material such as pulp.
Examples of absorbent articles include sanitary materials (body fluid absorbent articles) such as paper diapers, sanitary napkins, incontinence pads, wound protection materials, wound healing materials; absorbent articles such as urine for pets; building materials and water retention materials for soil Civil engineering and construction materials such as water-stopping materials, packing materials, gel water sacs; food articles such as drip absorbers, freshness-keeping materials, and cold insulation materials; various industrial products such as oil-water separators, anti-condensation materials, and solidification materials ; Agricultural and horticultural articles such as water-retaining materials such as plants and soil; and the like, but are not particularly limited. For example, a paper diaper is formed by laminating a back sheet (back material) made of a liquid-impermeable material, the above water-absorbing composition, and a top sheet (surface material) made of a liquid-permeable material in this order. While being fixed to each other, the laminate is formed by attaching a gather (elastic portion), a so-called tape fastener or the like. Paper diapers also include pants with paper diapers that are used when urinating or defecation is performed on infants.
[0039]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the scope of the present invention is not limited only to these Examples. In the examples and comparative examples, “%” means “% by weight” unless otherwise specified, and “part” means “part by weight”.
In addition, the amount of water absorption of the water-absorbing agent, the amount of water-soluble components, and the amount of soluble components eluted in artificial urine were measured by the following methods.
(1) Water absorption amount of water-absorbing agent 0.2 g of water-absorbing resin was uniformly put in a tea bag bag (6 cm × 6 cm), the opening was heat-sealed, and then immersed in physiological saline. After 60 minutes, the tea bag bag was pulled up, drained at 250 G for 3 minutes using a centrifuge, and then the weight W 1 (g) of the bag was measured. The same operation was performed without using the water absorbent resin, and the weight W 0 (g) at that time was measured. The water absorption (g / g) was calculated from these weights W 1 and W 0 according to the following formula.
[0040]
Water absorption (g / g) = (W 1 −W 0 ) / weight of water absorbent resin (g)
(2) 1 g of the water-absorbing agent was swollen in 25 ml of artificial urine in a beaker having a soluble component elution amount of 100 ml of the water-absorbing agent, and allowed to stand at 37 ° C. for 16 hours. The swollen gel was then dispersed in 975 ml of deionized water, stirred for 1 hour and then filtered through filter paper. The obtained filtrate was titrated by colloid titration to determine the soluble component elution amount (%) of the water-absorbing agent.
[0041]
The composition of artificial urine is shown below.
Urea 1.9%
Sodium chloride 0.8%
Magnesium chloride 0.1%
Calcium chloride 0.1%
(3) Degradation of water-absorbing agent 1 g of water-absorbing agent was swollen in 25 ml of artificial urine containing 0.005% L-ascorbic acid in a beaker with a soluble component elution amount of 100 ml and left at 37 ° C. for 16 hours. The swollen gel was then dispersed in 975 ml of deionized water and the eluted solubles were rinsed with deionized water. After stirring for 1 hour, the mixture was filtered through filter paper, and the obtained filtrate was titrated by colloid titration to determine the elution amount (%) of the deteriorated soluble component of the water-absorbing agent.
(4) Absorption capacity under load The water absorption capacity under load was calculated | required using the measuring apparatus shown in FIG. As shown in FIG. 1, the measuring device was placed on a balance 1, a container 2 having a predetermined capacity placed on the balance 1, an outside air suction pipe sheet 3, a conduit 4, a glass filter 6, and a glass filter 6. It consists of a measuring unit 5. The container 2 has an opening 2a at the top and an opening 2b at the side. An outside air suction pipe 3 is fitted into the opening 2a, and a conduit 4 is attached to the opening 2b. The container 2 contains a predetermined amount of a 0.9 wt% sodium chloride aqueous solution (hereinafter referred to as physiological saline) 12. The lower end of the outside air intake pipe 3 is immersed in the physiological saline 12. The outside air suction pipe 3 is provided in order to keep the pressure in the container 2 at almost atmospheric pressure. The glass filter 6 is formed with a diameter of 55 mm. The container 2 and the glass filter 6 communicate with each other by a conduit 4 made of silicone resin. Further, the glass filter 6 is fixed in position and height with respect to the container 2. The measurement unit 5 includes a filter paper 7, a support cylinder 9, a wire mesh 10 attached to the bottom of the support cylinder 9, and a weight 11. The measurement unit 5 includes a filter paper 7 and a support cylinder 9 (that is, a metal mesh 10) placed on a glass filter 6 in this order. The metal mesh 10 is made of stainless steel, and the mesh size is 400 mesh. The height of the upper surface of the metal mesh 10, that is, the contact surface between the metal mesh 10 and the water absorbing agent 15 is set to be equal to the height of the lower end surface 3 a of the outside air intake pipe 3. A predetermined amount of water-absorbing agent is uniformly sprayed on the wire mesh 10. The weight of the weight 11 is adjusted so that a load of 0.7 psi can be uniformly applied to the wire mesh 10, that is, the water absorbent 15.
[0042]
The water absorption magnification under load was measured using the measuring apparatus having the above configuration. The measurement method will be described below.
A predetermined amount of physiological saline 12 is placed in the container 2. A predetermined preparatory operation such as inserting the external suction pipe 3 into the container 2 was performed. Next, the filter paper 7 was placed on the glass filter 6. Further, in parallel with the placement, 0.9 g of the water-absorbing agent was uniformly sprayed inside the support cylinder 9, that is, on the wire net 10, and the weight 11 was placed on the water-absorbing agent 15. Next, the support cylinder 9 on which the wire mesh 10, that is, the water absorbing agent 15 and the weight 11 was placed, was placed on the filter paper 7 so that the center portion thereof coincided with the center portion of the glass filter 6. Next, the weight of the physiological saline absorbed by the water-absorbing agent 15 was determined over time from the time when the support cylinder 9 was placed on the filter paper 7 from the measured value of the balance 1 over 60 minutes. Moreover, the same operation was performed without using the water absorbing agent 15, and the weight of physiological saline absorbed by, for example, the filter paper 7 other than the water absorbing agent was obtained from the measured value of the balance 1 and used as a blank value. The amount of water absorption under load was obtained from the following equation.
Water absorption capacity under load (g / g) = (Amount of water absorption after 60 minutes−blank value) / weight of water absorbent (5) The average particle diameter of the water absorbent is 850 μm, 600 μm, 500 μm, 425 μm, 300 μm, 220 μm, After sieving using 150 μm and 105 μm sieves, the residual percentage R was plotted on logarithmic established paper, and the particle size corresponding to R = 50% was taken as the average particle size.
[0043]
(Reference Example 1)
A monomer aqueous solution was prepared by mixing 67.0 parts of a 37% aqueous sodium acrylate solution, 10.2 parts of acrylic acid, 0.079 parts of polyethylene glycol diacrylate (average number of polyethylene oxide units 8) and 22.0 parts of water. Nitrogen was blown into the aqueous solution in a vat to adjust the dissolved oxygen in the solution to 0.1 ppm or less.
[0044]
Subsequently, the temperature of the aqueous solution was adjusted to 18 ° C. under a nitrogen atmosphere, and then 0.16 part of 5% aqueous sodium persulfate solution and 0.16 part of 5% 2,2′-azobis (2-amidinopropane) hydrochloride aqueous solution, 0 0.15 part of 5% L-ascorbic acid aqueous solution and 0.17 part of 0.35% hydrogen peroxide aqueous solution were added dropwise with stirring in this order.
Polymerization started immediately after the dropwise addition of hydrogen peroxide, and the monomer temperature reached the peak temperature after 10 minutes. The peak temperature was 85 ° C. Subsequently, the vat was immersed in an 80 ° C. hot water bath and aged for 10 minutes.
[0045]
The obtained transparent hydrogel was crushed with a meat chopper and then dried at 180 ° C. for 30 minutes.
The dried product was pulverized by a pulverizer and classified into a material that passed through a 500 μm sieve and remained on a 105 μm sieve.
A composition liquid composed of 0.05 part of ethylene glycol diglycidyl ether, 1 part of propylene glycol, 3 parts of water and 1 part of isopropyl alcohol was mixed with 100 parts of this classified product, and treated at 180 ° C. for 40 minutes to obtain a water absorbent resin (A )
[0046]
Example 1
A mixed liquid composed of 0.001 part of diethylenetriaminepentaacetic acid pentasodium and 3 parts of water was sprayed on 100 parts of the water absorbent resin (A), granulated, and dried at 80 ° C. to obtain a water absorbing agent. The evaluation results of the water-absorbing agent (1) obtained are shown in Table 1.
(Example 2)
A water-absorbing agent of the present invention was obtained in the same manner as in Example 1 except that 0.1 part of 5 sodium diethylenetriaminepentaacetic acid was added in Example 1. The evaluation results of the water-absorbing agent (2) obtained are shown in Table 1.
[0047]
Example 3
A water-absorbing agent of the present invention was obtained in the same manner as in Example 1 except that 0.001 part of trisodium tetraamine hexaacetic acid 6sodium was used in place of 5 sodium diethylenetriaminepentaacetic acid in Example 1. The evaluation results of the water-absorbing agent (3) obtained are shown in Table 1.
[0048]
(Comparative Example 1)
The water absorbent resin (A) was used as it was as the comparative water absorbent (1). The performance evaluation results of the comparative water-absorbing agent (1) are shown in Table 1.
(Comparative Example 2)
A comparative water-absorbing agent was obtained in the same manner as in Example 1 except that 3 parts of water was mixed in Example 1. The performance evaluation results of the comparative water-absorbing agent (2) obtained are shown in Table 1.
[0049]
[Table 1]
Figure 0004903926
[0050]
【Effect of the invention】
By the production method of the present invention, it is possible to easily obtain a water-absorbing agent with little deterioration due to urine and less elution components.
[Brief description of the drawings]
FIG. 1 is a measuring device for water absorption magnification under load.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Balance 2 Container 2a Top opening 2b Side opening 3 Outside air intake pipe sheet 4 Conduit 5 Measuring part 6 Glass filter 7 Filter paper 9 Support cylinder 10 Wire net 11 Weight 12 Saline 15 Water absorbing agent

Claims (7)

内部架橋剤0.005〜2モル%(対単量体)の存在下に不飽和カルボン酸を必須に含む単量体成分を重合および乾燥して得られる、含水率1〜50%のポリアクリル酸ナトリウム塩部分中和物架橋体からなる吸水性樹脂の表面近傍をさらに表面架橋剤で架橋処理した後、該表面架橋処理された吸水性樹脂100重量部に、水0.1〜20重量部と、ジエチレントリアミンペンタ酢酸、トリエチレンテトラアミンヘキサ酢酸、シクロヘキサン−1,2−ジアミテトラ酢酸、N−ヒドロキシエチルエチレンジアミントリ酢酸およびこれらの塩の中から選ばれるイオン封鎖剤0.0001〜10重量部を添加し造粒する、吸水剤の製造方法。A polyacrylic product having a water content of 1 to 50% obtained by polymerizing and drying a monomer component essentially containing an unsaturated carboxylic acid in the presence of 0.005 to 2 mol% (based on monomer) of an internal crosslinking agent After the surface vicinity of the water-absorbent resin composed of a crosslinked product of a partially neutralized sodium salt of an acid salt is further crosslinked with a surface crosslinking agent, 0.1 to 20 parts by weight of water is added to 100 parts by weight of the surface-absorbed water-absorbent resin. If, diethylenetriaminepentaacetic acid, triethylenetetramine hexaacetic acid, cyclohexane-1,2-diamines tetraacetic acid, N- hydroxyethylethylenediaminetriacetic acid and sequestering agents selected from these salts 0.0001 parts by weight A method for producing a water-absorbing agent, wherein granulation is performed by adding water. 表面架橋処理された吸水性樹脂が、0.7psiの荷重下における0.9重量%塩化ナトリウム水溶液に対する60分間での加圧下吸収倍率が少なくとも20(g/g)のものである、請求項1に記載の吸水剤の製造方法。Surface-crosslinking-treated water-absorbent resin, those absorbency against pressure at 60 minutes for 0.9 wt% aqueous sodium chloride solution under a load of 0.7psi is at least 20 (g / g), claim 1 A method for producing the water-absorbing agent described in 1. 吸水性樹脂が、単量体成分に対して内部架橋剤0.005〜2モル%を含む単量体を10重量%〜飽和濃度の水溶液で水溶液重合または逆相懸濁重合し、乾燥することにより得られるものである、請求項1または2に記載の吸水剤の製造方法。A water-absorbing resin is obtained by subjecting a monomer containing an internal cross-linking agent in an amount of 0.005 to 2 mol% to a monomer component to an aqueous solution polymerization or reverse phase suspension polymerization with an aqueous solution having a concentration of 10% by weight to a saturated concentration, and drying in which the resulting method of water absorbing agent according to claim 1 or 2. 請求項1から3までのいずれかに記載の吸水剤の製造方法によって得られる吸水剤であって、内部架橋剤0.005〜2モル%(対単量体)の存在下に不飽和カルボン酸を必須に含む単量体成分を重合して得られるポリアクリル酸ナトリウム塩部分中和物架橋体からなる吸水性樹脂を含み、該吸水性樹脂はその表面近傍が表面架橋剤でさらに架橋処理されているとともに造粒されたものであり、かつ、該吸水性樹脂100重量部に対し0.0001〜10重量部の配合割合で、ジエチレントリアミンペンタ酢酸、トリエチレンテトラアミンヘキサ酢酸、シクロヘキサン−1,2−ジアミテトラ酢酸、N−ヒドロキシエチルエチレンジアミントリ酢酸およびこれらの塩の中から選ばれるイオン封鎖剤が配合されている、吸水剤。 A water-absorbing agent obtained by the method for producing a water-absorbing agent according to any one of claims 1 to 3, wherein the unsaturated carboxylic acid is present in the presence of 0.005 to 2 mol% (based on monomer) of an internal crosslinking agent. A water-absorbing resin comprising a polyacrylic acid sodium salt partially neutralized crosslinked product obtained by polymerizing a monomer component containing essentially, and the water-absorbing resin is further cross-linked with a surface cross-linking agent in the vicinity of the surface. And is granulated, and in a blending ratio of 0.0001 to 10 parts by weight with respect to 100 parts by weight of the water absorbent resin, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid, cyclohexane-1,2 - diamines tetraacetic acid, sequestering agent selected from among N- hydroxyethyl ethylenediamine triacetic acid and salts thereof is blended, water-absorbing agent. 前記吸水性樹脂が、0.7psiの荷重下における0.9重量%塩化ナトリウム水溶液に対する60分間での加圧下吸収倍率が少なくとも20(g/g)のものである、請求項に記載の吸水剤。5. The water absorption according to claim 4 , wherein the water absorbent resin has a absorbency against pressure of 0.9% by weight sodium chloride aqueous solution under a load of 0.7 psi for 60 minutes at least 20 (g / g). Agent. 吸水性樹脂100重量部に対して無機粉体0.001〜10重量部が混合されている、請求項またはに記載の吸水剤。The water-absorbing agent according to claim 4 or 5 , wherein 0.001 to 10 parts by weight of inorganic powder is mixed with 100 parts by weight of the water-absorbing resin. 請求項からまでのいずれかに記載の吸水剤を含む、紙オムツ。A paper diaper comprising the water-absorbing agent according to any one of claims 4 to 6 .
JP04911399A 1998-03-03 1999-02-25 Water-absorbing agent, production method thereof and use thereof Expired - Fee Related JP4903926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04911399A JP4903926B2 (en) 1998-03-03 1999-02-25 Water-absorbing agent, production method thereof and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10-50346 1998-03-03
JP5034698 1998-03-03
JP1998050346 1998-03-03
JP04911399A JP4903926B2 (en) 1998-03-03 1999-02-25 Water-absorbing agent, production method thereof and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009087406A Division JP2009154155A (en) 1998-03-03 2009-03-31 Method for manufacturing water absorbent

Publications (2)

Publication Number Publication Date
JPH11315147A JPH11315147A (en) 1999-11-16
JP4903926B2 true JP4903926B2 (en) 2012-03-28

Family

ID=26389479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04911399A Expired - Fee Related JP4903926B2 (en) 1998-03-03 1999-02-25 Water-absorbing agent, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP4903926B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091373B2 (en) * 1999-12-15 2012-12-05 株式会社日本触媒 Water-absorbent resin composition, method for producing the same, and absorbent article
TWI278480B (en) * 1999-12-15 2007-04-11 Nippon Catalytic Chem Ind Water-absorbent resin composition
BRPI0411370B1 (en) * 2003-06-24 2018-04-10 Nippon Shokubai Co., Ltd. ABSORBENT WATER RESIN COMPOSITION, ABSORBENT, ABSORBENT ARTICLE, METHOD FOR PRODUCING A WATER ABSORBENT RESIN COMPOSITION
TWI353360B (en) 2005-04-07 2011-12-01 Nippon Catalytic Chem Ind Production process of polyacrylic acid (salt) wate
TWI394789B (en) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind Water-absorbent resin composition, method of manufacturing the same, and absorbent article
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
JP5183918B2 (en) * 2006-11-29 2013-04-17 住友精化株式会社 Method for producing water absorbent resin
CN102548654A (en) 2009-09-29 2012-07-04 株式会社日本触媒 Particulate water absorbent and process for production thereof
WO2015053372A1 (en) 2013-10-09 2015-04-16 株式会社日本触媒 Particulate water absorber comprising water-absorbing resin as main component and process for manufacturing same
JP6219711B2 (en) * 2013-12-24 2017-10-25 株式会社リブドゥコーポレーション Treatment method of water absorbent resin
CN114867760A (en) 2019-12-26 2022-08-05 学校法人神奈川大学 Crosslinked polymer compound and method for producing same, absorbent article, diaper, sanitary article, treatment container, and treatment method

Also Published As

Publication number Publication date
JPH11315147A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
JP5451173B2 (en) Water-absorbing agent and sanitary material
KR100393498B1 (en) Water-absorbing agent and its production process and use
JP5706351B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin
JP4380873B2 (en) Water absorbent resin powder and use thereof
JP5903086B2 (en) Water-absorbing agent, absorbent article, and method for producing water-absorbing agent
US7285615B2 (en) Particulate water-absorbent resin composition
JP4326752B2 (en) Method for producing water-absorbing agent
JP4162746B2 (en) Water-absorbing agent composition and absorbent article using the same
EP3381970B1 (en) Superabsorbent polymer and the method of fabricating the same
JP2006297373A (en) Water absorbing agent, water absorbing article and method for production of water absorbing agent
JP2006055833A (en) Particulate water absorbing agent with water-absorbing resin as main component
JP4903926B2 (en) Water-absorbing agent, production method thereof and use thereof
JP4903925B2 (en) Water-absorbing agent, method for producing the same, and use thereof
JP4256484B2 (en) Water-absorbing agent, water-absorbing article, and method for producing water-absorbing agent
JP3466318B2 (en) Water-absorbing agent composition, method for producing the same, and absorbent article containing these water-absorbing agent compositions
JP5143073B2 (en) Use of water absorbent for paper diapers
JP2000007790A (en) Preparation of water-absorbing resin
JP4036954B2 (en) Water-absorbing agent composition and method for producing the same
JP4942235B2 (en) Water-absorbing agent, absorber, absorbent article, and method for measuring absorption characteristics
JP4244084B2 (en) Water-absorbing agent, method for producing the same, and body fluid-absorbing article
JP2005097593A (en) Particulate water-absorbing resin composition
JP4727005B2 (en) Method for producing water-absorbing agent
JP2009154155A (en) Method for manufacturing water absorbent
JP3515679B2 (en) Water absorbent resin and manufacturing method
JP3830223B2 (en) Method for producing high water absorption rate water absorbent resin

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4903926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees