[go: up one dir, main page]

JP4901171B2 - Bearing device and motor equipped with the same - Google Patents

Bearing device and motor equipped with the same Download PDF

Info

Publication number
JP4901171B2
JP4901171B2 JP2005287564A JP2005287564A JP4901171B2 JP 4901171 B2 JP4901171 B2 JP 4901171B2 JP 2005287564 A JP2005287564 A JP 2005287564A JP 2005287564 A JP2005287564 A JP 2005287564A JP 4901171 B2 JP4901171 B2 JP 4901171B2
Authority
JP
Japan
Prior art keywords
bearing
shaft
peripheral surface
resin
electroformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005287564A
Other languages
Japanese (ja)
Other versions
JP2007100720A (en
Inventor
康裕 山本
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005287564A priority Critical patent/JP4901171B2/en
Priority to KR1020087009485A priority patent/KR20080046746A/en
Priority to CN2006800443696A priority patent/CN101321963B/en
Priority to US11/992,313 priority patent/US8052328B2/en
Priority to PCT/JP2006/318749 priority patent/WO2007037169A1/en
Publication of JP2007100720A publication Critical patent/JP2007100720A/en
Application granted granted Critical
Publication of JP4901171B2 publication Critical patent/JP4901171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、軸受装置及びこれを備えたモータに関するものである。 The present invention relates to a bearing device and a motor including the same.

滑り軸受(以下、単に「軸受」と称する)は、軸部材との間の相対的な回転、摺動、もしくは摺動回転を支持する用途に広く用いられている。特に樹脂製の軸受は、軽量で慣性力が小さいことや大量生産が可能であること等の理由から、幅広く利用されている。   Sliding bearings (hereinafter simply referred to as “bearings”) are widely used in applications that support relative rotation, sliding, or sliding rotation with a shaft member. In particular, resin-made bearings are widely used because they are lightweight and have a small inertial force and can be mass-produced.

このような軸受として、例えば特許文献1では、樹脂成形部の軸心に電鋳加工による電鋳部をインサートして型成形した軸受部品が提案されている。このように、樹脂成形部の内周に電鋳部を設け、軸受面となる内周面を金属で形成することにより、高い耐摩耗性が得られる。
特開2003−56552号公報
As such a bearing, for example, Patent Document 1 proposes a bearing component in which an electroformed part by electroforming is inserted into the shaft center of a resin molded part and molded. Thus, by providing the electroformed part on the inner periphery of the resin molded part and forming the inner peripheral surface serving as the bearing surface with metal, high wear resistance can be obtained.
JP 2003-56552 A

上記のような軸受と、軸受の内周に挿入された軸部材とを有する軸受装置では、軸受と軸部材との潤滑性を保つために、軸受の内周面と軸部材の外周面との間に潤滑流体(例えば潤滑油)を介在させることがある。しかし、軸受の内周面と軸部材の外周面との間の軸受隙間は、軸部材のがたつきを抑えるために、できるだけ微小な隙間幅に設定され、この軸受隙間に保持される潤滑油の量は極少量である。このため、潤滑油が飛散、蒸発などにより減少すると、潤滑油不足による潤滑不良を招き、異音の発生や、軸受と軸部材との接触摺動による部材の摩耗などの不具合が生じていた。   In a bearing device having the above-described bearing and a shaft member inserted in the inner periphery of the bearing, in order to maintain lubricity between the bearing and the shaft member, the inner peripheral surface of the bearing and the outer peripheral surface of the shaft member are A lubricating fluid (for example, lubricating oil) may be interposed therebetween. However, the bearing gap between the inner circumferential surface of the bearing and the outer circumferential surface of the shaft member is set to a gap width as small as possible in order to suppress the shakiness of the shaft member. The amount of is very small. For this reason, if the lubricating oil is reduced due to scattering, evaporation, etc., it causes a lubrication failure due to insufficient lubricating oil, and causes problems such as generation of abnormal noise and wear of the member due to contact sliding between the bearing and the shaft member.

本発明の課題は、軸部材との潤滑が良好で、異音の発生や部材の摩耗を防ぎ、製品寿命の長い軸受を提供することである。   An object of the present invention is to provide a bearing that has good lubrication with a shaft member, prevents abnormal noise and wear of the member, and has a long product life.

前記課題を解決するため、本発明の軸受は、マスター軸の外周面に析出形成され、内周に軸受面を有する電鋳部、及び、該電鋳部を内周にインサートして成形された樹脂部を有する滑り軸受と、前記滑り軸受の内周に挿入された軸部材と、前記軸受面と前記軸部材の外周面との間に形成され、潤滑油で満たされた軸受隙間とを備え、前記軸受面がマスター軸の表面に析出し始めた面からなる軸受装置であって、前記樹脂部が含油樹脂で形成され、前記樹脂部からにじみ出た油を前記軸受隙間に供給することを特徴とする。
In order to solve the above-mentioned problems, the bearing of the present invention is formed by deposition on the outer peripheral surface of the master shaft, the electroformed part having the bearing surface on the inner periphery, and the electroformed part inserted in the inner periphery. A sliding bearing having a resin portion ; a shaft member inserted in an inner periphery of the sliding bearing ; and a bearing gap formed between the bearing surface and the outer peripheral surface of the shaft member and filled with lubricating oil. A bearing device comprising a surface where the bearing surface starts to precipitate on the surface of the master shaft, wherein the resin portion is formed of an oil-containing resin, and oil oozed from the resin portion is supplied to the bearing gap. And

このように本発明では、軸受の樹脂部を含油樹脂により成形した。これにより、潤滑油が軸受隙間だけでなく樹脂部内にも保持されることで、潤滑油の保持量が増える。よって、潤滑油が飛散、蒸発により減少しても、樹脂部からにじみ出た油が軸受隙間に供給されるため、軸受隙間に形成された油膜によって軸受装置がスムーズに作動し、潤滑不良による異音の発生や軸部材との接触摺動による摩耗を回避できる。   Thus, in this invention, the resin part of the bearing was shape | molded with the oil-containing resin. As a result, the lubricating oil is retained not only in the bearing gap but also in the resin portion, so that the amount of lubricating oil retained increases. Therefore, even if the lubricating oil is reduced due to scattering and evaporation, the oil that oozes from the resin part is supplied to the bearing gap, so the bearing device operates smoothly due to the oil film formed in the bearing gap, and abnormal noise due to poor lubrication And wear due to sliding contact with the shaft member can be avoided.

電鋳加工で形成された軸受面は、電鋳加工の特性上、マスター軸の表面が精度よく転写され、マスター軸の表面精度に倣った面精度となる。従って、マスター軸の表面精度を高めておけば、高い軸受面精度が得られ、軸受の回転精度や摺動精度を高めることができる。   The bearing surface formed by electroforming has a surface accuracy that follows the surface accuracy of the master shaft by accurately transferring the surface of the master shaft due to the characteristics of electroforming. Therefore, if the surface accuracy of the master shaft is increased, high bearing surface accuracy can be obtained, and the rotation accuracy and sliding accuracy of the bearing can be increased.

上記の軸受装置と、ステータコイルと、ロータマグネットとを備えたモータは円滑に作動するため、異音の発生がなく、製品寿命も長い。 Since the motor including the bearing device , the stator coil, and the rotor magnet operates smoothly, no abnormal noise is generated and the product life is long.

以上のように、本発明の軸受は、軸部材との潤滑が良好なため、異音の発生や部材の摩耗を防止できる。よって、潤滑油不足による潤滑不良を起こしやすい従来品に比べ、製品寿命の延長を図ることができる。   As described above, since the bearing of the present invention is well lubricated with the shaft member, it is possible to prevent the generation of abnormal noise and the wear of the member. Therefore, the product life can be extended as compared with conventional products that are prone to lubrication failure due to lack of lubricating oil.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施形態を示す軸受5(図3参照)は、マスター軸2の所要個所をマスキングする工程、非マスク部に電鋳加工を行って電鋳軸1を形成する工程(図1参照)、電鋳軸1をインサートして樹脂部5を樹脂で射出成形する工程(図2参照)、及び電鋳部4とマスター軸2とを分離する工程を経て製作される。 A bearing 5 (see FIG. 3) showing an embodiment of the present invention is a process of masking a required portion of the master shaft 2, and a process of forming an electroformed shaft 1 by electroforming a non-mask portion (see FIG. 1). The electroformed shaft 1 is inserted and the resin portion 5 is injection molded with resin (see FIG. 2), and the electroformed portion 4 and the master shaft 2 are separated from each other.

なお、以下の説明において、「回転用の軸受」とは、軸部材との間の相対回転を支持する軸受を意味し、軸受が回転側となるか固定側となるかを問わない。「摺動用の軸受」とは、軸との間の相対的な直線運動を支持する軸受を意味し、同様に軸受が移動側となるか固定側となるかを問わない。「回転摺動用の軸受」とは、前記二つの軸受の機能を併せ持つもので、軸との間の回転運動及び直線運動の双方を支持する軸受を意味する。また、「揺動用の軸受」とは、例えばボールジョイントのように、軸の三次元方向の運動が許容される軸受を意味する。   In the following description, the “rotating bearing” means a bearing that supports relative rotation with the shaft member, and it does not matter whether the bearing is on the rotating side or the fixed side. “Sliding bearing” means a bearing that supports relative linear motion with respect to the shaft, and it does not matter whether the bearing is on the moving side or the stationary side. The “rotating and sliding bearing” has both functions of the two bearings, and means a bearing that supports both rotational motion and linear motion between the shafts. Further, the “oscillating bearing” means a bearing that allows movement in the three-dimensional direction of the shaft, such as a ball joint.

マスター軸2は、導電性材料、例えば焼入処理をしたステンレス鋼で、ストレートな横断面円形の軸として製作される。もちろんステンレス鋼に限定されるものでなく、剛性などの機械的強度、摺動性、耐熱性、耐薬品性、電鋳部4の加工性及び分離性など、軸受の機能上あるいは軸受製作の都合上求められる特性に適合した材料、さらには熱処理方法が選択される。セラミック等の非金属材料でも、導電処理を施すことにより(例えば表面に導電性の金属皮膜を形成することにより)使用可能となる。なお、マスター軸2の表面には、電鋳部4との間の摩擦力を減じるための表面処理、例えばフッ素系の樹脂コーティングを施すのが望ましい。 The master shaft 2 is made of a conductive material, for example, hardened stainless steel, and is manufactured as a straight shaft having a circular cross section. Of course, the material is not limited to stainless steel, but it has a mechanical function such as rigidity, slidability, heat resistance, chemical resistance, workability and separability of the electroformed part 4, and so on. A material and a heat treatment method suitable for the characteristics required above are selected. Even non-metallic materials such as ceramics can be used by conducting a conductive treatment (for example, by forming a conductive metal film on the surface). The surface of the master shaft 2 is preferably subjected to a surface treatment for reducing the frictional force with the electroformed part 4, for example, a fluorine-based resin coating.

マスター軸2は、中実軸の他、中空軸や中空部に樹脂を充填した中実軸であっても良い。また、回転用の軸受では、マスター軸の横断面は基本的に円形に形成されるが、摺動用の軸受の場合は横断面を任意形状にすることができ、円形のほかに多角形状や非真円形状とすることもできる。また、摺動用の軸受では、基本的にマスター軸2の横断面形状は軸方向で一定であるが、回転用の軸受や回転摺動用の軸受では、軸の全長にわたって一定の横断面形状ではない形態をとることもある。   In addition to the solid shaft, the master shaft 2 may be a solid shaft in which a hollow shaft or a hollow portion is filled with resin. In addition, in the bearing for rotation, the cross section of the master shaft is basically formed in a circular shape, but in the case of a sliding bearing, the cross section can be made into an arbitrary shape. It can also be a perfect circle shape. In a sliding bearing, the cross-sectional shape of the master shaft 2 is basically constant in the axial direction. However, a rotating bearing or a rotating / sliding bearing does not have a constant cross-sectional shape over the entire length of the shaft. May take the form.

マスター軸2の外周面精度は、後述する軸受隙間の精度を直接左右するので、真円度、円筒度、表面粗さ等の軸受機能上重要となる表面精度を、予め高精度に仕上げておく必要がある。例えば回転用の軸受では、軸受面との接触回避の観点から真円度が重視されるので、マスター軸2の外周面はできるだけ真円度を高める必要がある。例えば、後述する軸受隙間の平均幅(半径寸法)の8割以下にまで仕上げておくのが望ましい。従って、例えば軸受隙間の平均幅を2μmに設定する場合、マスター軸外周面は1.6μm以下の真円度に仕上げるのが望ましい。   Since the accuracy of the outer peripheral surface of the master shaft 2 directly affects the accuracy of the bearing gap described later, surface accuracy that is important for bearing functions such as roundness, cylindricity, and surface roughness is finished in advance with high accuracy. There is a need. For example, in a bearing for rotation, roundness is important from the viewpoint of avoiding contact with the bearing surface, and therefore the outer peripheral surface of the master shaft 2 needs to have as high a roundness as possible. For example, it is desirable to finish to 80% or less of an average width (radial dimension) of a bearing gap described later. Therefore, for example, when the average width of the bearing gap is set to 2 μm, it is desirable that the outer peripheral surface of the master shaft is finished to a roundness of 1.6 μm or less.

マスター軸2の外周面には、図1の散点で示すように、電鋳部4の形成予定部を除き、マスキングが施される。マスキング用の被覆材3としては、非導電性、及び電解質溶液に対する耐食性を有する既存品が選択使用される。 Masking is applied to the outer peripheral surface of the master shaft 2 except for the portion where the electroformed portion 4 is to be formed, as indicated by the dotted points in FIG. As the masking covering material 3, an existing product having non-conductivity and corrosion resistance against the electrolyte solution is selectively used.

電鋳加工は、NiやCu等の金属イオンを含んだ電解質溶液にマスター軸2を浸漬し、電解質溶液に通電して目的の金属をマスター軸2の表面に析出させることにより行われる。電解質溶液には、カーボンなどの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させてもよい。電着金属の種類は、軸受の軸受面に求められる硬度、疲れ強さ等の物理的性質、化学的性質に応じて適宜選択される。電鋳部4の厚みは、これが厚すぎるとマスター軸2からの剥離性が低下し、薄すぎると軸受面の耐久性低下等につながるので、求められる軸受性能や軸受サイズ、さらには用途等に応じて最適な厚みに設定される。例えば軸径1mm〜6mmの回転用の軸受では、10μm〜200μmの厚さとするのが好ましい。 The electroforming process is performed by immersing the master shaft 2 in an electrolyte solution containing metal ions such as Ni and Cu, and energizing the electrolyte solution to deposit a target metal on the surface of the master shaft 2. If necessary, the electrolyte solution may contain a sliding material such as carbon or a stress relaxation material such as saccharin. The type of electrodeposited metal is appropriately selected according to physical properties and chemical properties such as hardness and fatigue strength required for the bearing surface of the bearing. If the thickness of the electroformed part 4 is too thick, the peelability from the master shaft 2 is reduced, and if it is too thin, the durability of the bearing surface is reduced. The optimum thickness is set accordingly. For example, in a rotating bearing having a shaft diameter of 1 mm to 6 mm, the thickness is preferably 10 μm to 200 μm.

以上の工程を経ることにより、図1に示すように、マスター軸2外周に円筒状の電鋳部4を被着した電鋳軸1が製作される。なお、マスキング用の被覆材3が薄い場合、電鋳部4の両端は被覆材3側に迫り出し、内周面にテーパ状の面取り部が形成される場合がある。この面取り部を利用して、電鋳部の樹脂部からの抜け落ちを防止するフランジ部を形成することもできる。本実施形態では、面取り部が形成されない場合を例示する。 By passing through the above process, as shown in FIG. 1, the electroformed shaft 1 which manufactured the cylindrical electroformed part 4 on the outer periphery of the master shaft 2 is manufactured. When the masking covering material 3 is thin, both ends of the electroformed portion 4 may protrude toward the covering material 3 and a tapered chamfered portion may be formed on the inner peripheral surface. Using this chamfered portion, a flange portion that prevents the electroformed portion from falling off from the resin portion can be formed. In this embodiment, the case where a chamfer part is not formed is illustrated.

電鋳軸1は、図2に示す射出成形工程に移送され、電鋳部4及びマスター軸2をインサート部品とするインサート成形が行われる。 The electroformed shaft 1 is transferred to the injection molding process shown in FIG. 2, and insert molding is performed using the electroformed portion 4 and the master shaft 2 as insert parts.

この射出成形工程では、電鋳軸1は、図2に示すようにその軸方向を型締め方向(図面上下方向)と平行にして、上型6、および下型7からなる金型内部に供給される。下型7には、マスター軸2の外径寸法に適合した位置決め穴9が形成され、この位置決め穴9に前工程から移送した電鋳軸1の下端を挿入して電鋳軸1の位置決めがなされる。上型6には、位置決め穴9と同軸にガイド穴10が形成されており、型締め時に可動型(本実施形態でいえば上型6)を固定型(本実施形態では下型7)に接近させて型締めすると、先ず電鋳軸1の上端がガイド穴10に挿入されて電鋳軸1の芯出しが行われる。さらに接近させ、上型6と下型7とが当接し、型締めが完了する。   In this injection molding process, the electroformed shaft 1 is supplied into the mold composed of the upper mold 6 and the lower mold 7 with its axial direction parallel to the mold clamping direction (the vertical direction in the drawing) as shown in FIG. Is done. The lower die 7 is formed with a positioning hole 9 adapted to the outer diameter of the master shaft 2, and the lower end of the electroformed shaft 1 transferred from the previous process is inserted into the positioning hole 9 to position the electroformed shaft 1. Made. A guide hole 10 is formed coaxially with the positioning hole 9 in the upper die 6, and the movable die (upper die 6 in this embodiment) is changed to a fixed die (lower die 7 in this embodiment) at the time of clamping. When the mold is close and clamped, the upper end of the electroformed shaft 1 is first inserted into the guide hole 10 and the electroformed shaft 1 is centered. Further, the upper mold 6 and the lower mold 7 come into contact with each other, and the mold clamping is completed.

本実施形態では、図2に示す型締め完了時において、電鋳軸1の下端は位置決め穴9の下端に突き当たり、電鋳部4の上端は成形面の上端面より下に位置し、電鋳部4の下端は成形面の下端面より上に位置する。すなわち、電鋳部4の軸方向寸法は、成形面の軸方向寸法より小さく設定される。この状態で、スプール12、ランナー13、およびゲート14を介してキャビティ8に樹脂材料を射出し、インサート成形を行う。 In the present embodiment, at the time of mold clamping completion shown in FIG. 2, the lower end of the electroformed shaft 1 abuts the lower end of the positioning holes 9, the upper end of the electroformed part 4 is located below the upper end surface of the molding surface, electroforming The lower end of the part 4 is located above the lower end surface of the molding surface. That is, the axial dimension of the electroformed part 4 is set smaller than the axial dimension of the molding surface. In this state, a resin material is injected into the cavity 8 through the spool 12, the runner 13, and the gate 14, and insert molding is performed.

射出成形工程で使用する樹脂材料は、含油樹脂が用いられる。含油樹脂として、例えば、潤滑成分(潤滑油または潤滑グリース)を樹脂中に分散保持した状態で固化(硬化)したものが使用可能であり、その成分となる樹脂や潤滑油、潤滑グリースの種類は特に限定しないで採用できる。このような含油樹脂の樹脂成分の具体例としては、超高分子量ポリオレフィン、ポリフェニレンサルファイド、液晶ポリマーなどの熱可塑性樹脂が、また、潤滑成分の具体例としては、鉱油、合成炭化水素油、エステル油などの潤滑油が挙げられる。また、樹脂として熱可塑性樹脂を使用し、かつ潤滑成分として潤滑グリースを使用する場合には、熱可塑性樹脂の融点より高い滴点を有する潤滑グリースを採用することが好ましい。これらの樹脂材料には、必要に応じて強化材(繊維状、粉末状等の形態は問わない)や応力緩和材等の各種充填材を加えても良い。   An oil-containing resin is used as the resin material used in the injection molding process. As the oil-impregnated resin, for example, a solidified (cured) lubricant component (lubricating oil or lubricating grease) dispersed and held in the resin can be used. The types of resin, lubricating oil, and lubricating grease used as the component are as follows. It can employ without limitation. Specific examples of the resin component of such an oil-containing resin include thermoplastic resins such as ultrahigh molecular weight polyolefin, polyphenylene sulfide, and liquid crystal polymer, and specific examples of the lubricating component include mineral oil, synthetic hydrocarbon oil, ester oil. And the like. Further, when a thermoplastic resin is used as the resin and a lubricating grease is used as the lubricating component, it is preferable to employ a lubricating grease having a dropping point higher than the melting point of the thermoplastic resin. Various fillers such as a reinforcing material (regardless of the form of fiber, powder, etc.) and a stress relaxation material may be added to these resin materials as necessary.

本発明に使用できる含油樹脂は上記に限らず、例えば、樹脂材料に塩化ナトリウムや硫酸ナトリウムなどの水溶性添加剤を配合し、成形後に水に浸漬して添加剤を溶融することによって得られる多孔質樹脂に潤滑油を含浸させて使用することもできる。この場合、内部に含浸した潤滑油が周囲へ漏れ出さないために、軸受隙間に潤滑油を供給する部分を除く表面は、封孔処理しておくことが望ましい。封孔処理の手段としては、表面に露出した空孔内への樹脂等の含浸、あるいは、ニッケル等の金属メッキ被膜の形成等による表面コーティングなどが考えられる。この他、含油した多孔質粒子を配合した樹脂も使用可能である。   The oil-containing resin that can be used in the present invention is not limited to the above. For example, a porous material obtained by blending a resin material with a water-soluble additive such as sodium chloride or sodium sulfate and immersing in water after molding to melt the additive It is also possible to use a quality resin impregnated with a lubricating oil. In this case, in order to prevent the lubricating oil impregnated inside from leaking out to the surroundings, it is desirable that the surface excluding the portion supplying the lubricating oil to the bearing gap is subjected to a sealing treatment. As a means for the sealing treatment, impregnation with resin or the like in the voids exposed on the surface, surface coating by forming a metal plating film such as nickel, etc. can be considered. In addition, resins containing oil-containing porous particles can also be used.

型開き後、脱型した成形品は、図3で示すように、マスター軸2、電鋳部4、および樹脂部15が一体となった構造を有する。この成形品は、その後分離工程に移送され、電鋳部4および樹脂部15からなる軸受5と、マスター軸2とに分離される。 After the mold opening, the molded product removed from the mold has a structure in which the master shaft 2, the electroformed part 4, and the resin part 15 are integrated as shown in FIG. This molded product is then transferred to a separation step and separated into a bearing 5 composed of an electroformed part 4 and a resin part 15 and a master shaft 2.

この分離工程では、電鋳部4に蓄積された内部応力を解放することにより、電鋳部4の内周面を拡径させ、マスター軸2の外周面から剥離させる。内部応力の解放は、マスター軸2又は軸受5に衝撃を与えることにより、あるいは電鋳部4の内周面とマスター軸2の外周面との間に軸方向の加圧力を付与することにより行われる。内部応力の解放により、電鋳部4の内周面を半径方向に拡径させて、電鋳部4の内周面とマスター軸2の外周面との間に適当な大きさの隙間を形成することにより、電鋳部4の内周面からマスター軸2を軸方向にスムーズに引き抜くことができ、これにより成形品を、電鋳部4及び樹脂部15からなる軸受5と、マスター軸2とに分離される。なお、電鋳部4の拡径量は、例えば電鋳部4の肉厚を変えることによって制御できる。 In this separation step, the internal stress accumulated in the electroformed part 4 is released, so that the inner peripheral surface of the electroformed part 4 is expanded and peeled off from the outer peripheral surface of the master shaft 2. The internal stress is released by applying an impact to the master shaft 2 or the bearing 5 or by applying axial pressure between the inner peripheral surface of the electroformed part 4 and the outer peripheral surface of the master shaft 2. Is called. By releasing the internal stress, the inner peripheral surface of the electroformed part 4 is radially expanded to form an appropriate gap between the inner peripheral surface of the electroformed part 4 and the outer peripheral surface of the master shaft 2. By doing so, the master shaft 2 can be smoothly pulled out in the axial direction from the inner peripheral surface of the electroformed part 4, whereby the molded product can be obtained as a bearing 5 composed of the electroformed part 4 and the resin part 15, and the master shaft 2. And separated. Incidentally, the enlarged diameter of the electroformed part 4 can be controlled by varying e.g. the thickness of the electroformed part 4.

衝撃の付与だけでは電鋳部4の内周を十分に拡径さえることができない場合、電鋳部4とマスター軸2とを加熱又は冷却し、両者間に熱膨張量差を生じさせることによって、マスター軸2と軸受5とを分離することもできる。 If only grant impact can not be feel more alert sufficiently enlarged to the inner periphery of the electroformed part 4, heat or cool the electroformed portion 4 and the master shaft 2, by causing the thermal expansion amount difference therebetween The master shaft 2 and the bearing 5 can also be separated.

こうして形成された軸受5の内周に別途製作した軸部材を挿入し、軸受5の内周面と軸部材の外周面との間の軸受隙間に潤滑油を充填することで、軸受装置が完成する(図示省略)。   A bearing member is completed by inserting a separately manufactured shaft member into the inner periphery of the bearing 5 formed in this way, and filling the bearing gap between the inner peripheral surface of the bearing 5 and the outer peripheral surface of the shaft member with lubricating oil. (Not shown).

本実施形態では、図3のように、軸受5の内周面が、電鋳部4の内周面4aと樹脂部15の小径内周面15aとで形成され、電鋳部4の内周面4aが軸受面11として作用する。射出成形後の固化時に、樹脂部15の小径内周面15aが成形収縮により拡径するよう樹脂材料の組成や成形条件を配慮することにより、マスター軸2の外周面との間に微小隙間を形成することができる。これにより、樹脂部15とマスター軸2とを容易に分離することが可能となる。微小隙間の幅が適切であれば、軸受の内周に軸部材が挿入された軸受装置において、樹脂部15の小径内周面15aと軸部材の外周面との間の微小隙間を毛細管シールとして機能させることができ、軸受隙間からの潤滑油の流出防止に有効となる。この他、マスター軸2の分離後、機械加工等で小径内周面15aを形成しても良い。   In the present embodiment, as shown in FIG. 3, the inner peripheral surface of the bearing 5 is formed by the inner peripheral surface 4 a of the electroformed part 4 and the small diameter inner peripheral surface 15 a of the resin part 15. The surface 4 a acts as the bearing surface 11. Considering the composition of the resin material and molding conditions so that the small-diameter inner peripheral surface 15a of the resin portion 15 expands due to molding shrinkage when solidified after injection molding, a minute gap is formed between the outer peripheral surface of the master shaft 2 and the like. Can be formed. Thereby, the resin part 15 and the master shaft 2 can be easily separated. If the width of the minute gap is appropriate, in the bearing device in which the shaft member is inserted into the inner periphery of the bearing, the minute gap between the small-diameter inner peripheral surface 15a of the resin portion 15 and the outer peripheral surface of the shaft member is used as a capillary seal. It can function, and is effective in preventing the lubricating oil from flowing out from the bearing gap. In addition, after the master shaft 2 is separated, the small-diameter inner peripheral surface 15a may be formed by machining or the like.

このように毛細管シールは、樹脂部15の小径内周面15aを拡径させる他、小径内周面15aに対抗する軸部材の外周面に小径外周面(図示省略)を形成することで構成することもできる。また、毛細管シールを、軸受隙間側ほど隙間幅を徐々に縮径させたテーパシールとすれば、より有効な潤滑油の流出防止が可能となる。   In this way, the capillary seal is configured by expanding the small-diameter inner peripheral surface 15a of the resin portion 15 and forming a small-diameter outer peripheral surface (not shown) on the outer peripheral surface of the shaft member that opposes the small-diameter inner peripheral surface 15a. You can also. Further, if the capillary seal is a taper seal in which the gap width is gradually reduced toward the bearing gap side, it is possible to prevent the lubricating oil from flowing out more effectively.

軸部材として、マスター軸2を使用することもできる。この場合、電鋳部4とマスター軸2との分離工程でできた、電鋳部4の内周面とマスター軸2との間の微小隙間は軸受隙間として機能する。この軸受隙間は、電鋳加工の特性から、クリアランスが極めて小さく、かつ高精度であるという特徴を有するため、高い回転精度または摺動性を有する軸受の提供が可能となる。なお、上述のように、別途製作した軸部材と置き換えて軸受を構成する場合、一度マスター軸2を製作すれば、これを繰返し転用することができるので、マスター軸2の製作コストを抑え、軸受5のさらなる低コスト化を図ることが可能となる。 The master shaft 2 can also be used as the shaft member. In this case, the minute gap between the inner peripheral surface of the electroformed part 4 and the master shaft 2, which is formed in the separation process of the electroformed part 4 and the master shaft 2, functions as a bearing gap. Since this bearing gap has the characteristics that the clearance is extremely small and has high accuracy due to the characteristics of electroforming, it is possible to provide a bearing having high rotational accuracy or slidability. As described above, when a bearing is configured by replacing a separately manufactured shaft member, once the master shaft 2 is manufactured, it can be reused repeatedly. 5 can be further reduced in cost.

油が含浸された含油樹脂からなる樹脂部15は、一部が軸受隙間に臨んでいるため、軸受5の作動(回転、摺動、回転摺動、又は揺動)時に、樹脂部15からにじみ出た油が軸受面11と軸部材の外周面との間に油膜を形成する。よって、常に潤沢な潤滑油が軸受隙間に介在するので、油不足による潤滑不良による異音の発生や、軸部材と軸受5との接触摺動による摩耗が回避され、製品寿命が延長される。   Since the resin portion 15 made of oil-impregnated resin impregnated with oil partially faces the bearing gap, the resin portion 15 oozes out from the resin portion 15 when the bearing 5 is operated (rotation, sliding, rotational sliding, or swinging). The oil forms an oil film between the bearing surface 11 and the outer peripheral surface of the shaft member. Accordingly, since abundant lubricating oil is always present in the bearing gap, generation of noise due to poor lubrication due to lack of oil and wear due to contact sliding between the shaft member and the bearing 5 are avoided, and the product life is extended.

また、樹脂部15の小径内周面15aと大径内周面15bとの間に形成された段部16が、電鋳部4の上端及び下端と係合することにより、電鋳部の軸方向の抜け落ちを防止するアンカー効果も得られる。 Further, the step portion 16 formed between the small-diameter inner peripheral surface 15a and the large-diameter inner peripheral surface 15b of the resin portion 15 is engaged with the upper end and the lower end of the electroformed portion 4, so that the shaft of the electroformed portion is formed. An anchor effect that prevents the direction from falling off is also obtained.

本発明は、上記実施形態に限られない。例えば、マスター軸2に電鋳加工により形成される電鋳部4の軸方向寸法や、金型6、7の形状を調整して、軸受5の内周面を全て電鋳部4で形成することもできる(図4参照)。この場合、含油樹脂からなる樹脂部15は軸受隙間に臨まないが、にじみ出た油が電鋳部4の上端あるいは下端をまわりこんで軸受隙間に達するため、上記と同様の潤滑効果が得られる。 The present invention is not limited to the above embodiment. For example, by adjusting the axial dimension of the electroformed part 4 formed on the master shaft 2 by electroforming and the shapes of the molds 6 and 7, the entire inner peripheral surface of the bearing 5 is formed by the electroformed part 4. (See FIG. 4). In this case, the resin portion 15 made of oil-impregnated resin does not reach the bearing gap, but since the oil that has oozed out wraps around the upper end or the lower end of the electroformed portion 4 and reaches the bearing gap, the same lubricating effect as described above can be obtained.

また、別の実施形態として、軸方向に離間した複数箇所をマスキングして電鋳加工を行い、軸受5の内周面に軸方向に離間した複数の電鋳面を備えることもできる(図5参照)。この方法によると、必要な部分(例えば動圧溝形成部分)のみを電鋳面とすることができるため、コストが低減できる。また、含油樹脂製の樹脂部が軸受隙間に臨む面積を拡大すれば、油が供給されやすくなり、よりスムーズな潤滑効果が得られる。さらに、軸受面11が軸方向に離隔した複数箇所に形成されるため、モーメント荷重に対する軸受剛性も高まる。   Further, as another embodiment, electroforming can be performed by masking a plurality of locations separated in the axial direction, and a plurality of electroformed surfaces spaced in the axial direction can be provided on the inner peripheral surface of the bearing 5 (FIG. 5). reference). According to this method, since only a necessary portion (for example, a dynamic pressure groove forming portion) can be used as an electroformed surface, the cost can be reduced. Further, if the area where the resin portion made of the oil-containing resin faces the bearing gap, the oil is easily supplied, and a smoother lubricating effect can be obtained. Furthermore, since the bearing surface 11 is formed at a plurality of locations separated in the axial direction, the bearing rigidity against moment load is also increased.

以上で示した軸受は、電鋳部4の内周面4aと軸部材の外周面との間の軸受隙間に、流体の動圧作用で圧力を発生させる動圧軸受として使用することも可能である。この動圧軸受は、例えば軸部材の外周面に、ヘリングボーン形状等に形成した動圧溝、多円弧面、あるいはステップ面等の動圧発生部を形成し、この動圧発生部を電鋳部4の真円状内周面4aと対向させることで構成することができる。これとは逆に、電鋳部4の内周面4aに動圧発生部を形成することもでき、この場合、電鋳部の内周面4aの動圧発生部は、マスター軸2の外周面に動圧発生部の形状に対応した型を形成して電鋳加工を行うことで形成可能である。その後、同様の手順で軸受5とマスター軸2の分離を行い、さらに軸受5の内周に真円状の外周面を有する軸部材を挿入することで、動圧軸受が構成される。 The bearing shown above can also be used as a hydrodynamic bearing that generates pressure by the hydrodynamic action of fluid in the bearing gap between the inner peripheral surface 4a of the electroformed part 4 and the outer peripheral surface of the shaft member. is there. In this dynamic pressure bearing, for example, a dynamic pressure generating portion such as a herringbone shape, a multi-arc surface, or a step surface is formed on the outer peripheral surface of a shaft member, and this dynamic pressure generating portion is electroformed. It can be configured by facing the perfect circular inner peripheral surface 4a of the portion 4. On the contrary, a dynamic pressure generating part can be formed on the inner peripheral surface 4 a of the electroformed part 4. In this case, the dynamic pressure generating part of the inner peripheral surface 4 a of the electroformed part is the outer periphery of the master shaft 2. It can be formed by forming a die corresponding to the shape of the dynamic pressure generating portion on the surface and performing electroforming. Thereafter, the bearing 5 and the master shaft 2 are separated by the same procedure, and a shaft member having a perfectly circular outer peripheral surface is inserted into the inner periphery of the bearing 5 to constitute a hydrodynamic bearing.

次に、以上に説明した軸受を備えた軸受装置をモータ21の回転軸の支持に適用し、その一実施形態を図6に基いて説明する。   Next, the bearing device provided with the bearing described above is applied to support the rotating shaft of the motor 21, and one embodiment thereof will be described with reference to FIG.

図示例のモータ21は、HDD等のディスク駆動装置に用いられるスピンドルモータである。このモータ21の軸受装置は、軸部材22をラジアル方向に回転自在に支持するラジアル軸受部Rと、スラスト方向に回転自在に支持するスラスト軸受部Tとを有する。ラジアル軸受部Rは、軸部材22を軸受5の内周に挿入して構成され、スラスト軸受部Tは、軸部材22の凸球面状の軸端を、軸受5の端面に対向させたスラストプレート23で接触支持することによって構成される。軸受5は、以上の説明で述べたとおり、4をインサートした射出成形により形成される。そして、モータ21は、この軸受装置以外にも、軸部材を装着したロータ(ディスクハブ)24と、例えば半径方向のギャップを介して対向させたステータコイル25およびロータマグネット26とを備えている。ステータコイル25は、ブラケット27の外周に取付けられ、ロータマグネット26はディスクハブ24の内周に取付けられている。ディスクハブ24には、磁気ディスクDが一又は複数枚保持されている。   The motor 21 in the illustrated example is a spindle motor used in a disk drive device such as an HDD. The bearing device of the motor 21 includes a radial bearing portion R that supports the shaft member 22 rotatably in the radial direction, and a thrust bearing portion T that supports the shaft member 22 rotatably in the thrust direction. The radial bearing portion R is configured by inserting the shaft member 22 into the inner periphery of the bearing 5, and the thrust bearing portion T is a thrust plate in which the convex spherical shaft end of the shaft member 22 faces the end surface of the bearing 5. It is comprised by carrying out contact support by 23. The bearing 5 is formed by injection molding with 4 inserted as described in the above description. In addition to the bearing device, the motor 21 includes a rotor (disk hub) 24 on which a shaft member is mounted, and a stator coil 25 and a rotor magnet 26 that are opposed to each other with a gap in the radial direction, for example. The stator coil 25 is attached to the outer periphery of the bracket 27, and the rotor magnet 26 is attached to the inner periphery of the disk hub 24. The disk hub 24 holds one or more magnetic disks D.

ステータコイル25に通電すると、ステータコイル25とロータマグネット26との間の電磁力でロータマグネット26が回転し、それによって、ディスクハブ24及び軸部材22が一体となって回転する。   When the stator coil 25 is energized, the rotor magnet 26 is rotated by the electromagnetic force between the stator coil 25 and the rotor magnet 26, whereby the disk hub 24 and the shaft member 22 are rotated together.

このモータ21の軸部材22としては、マスター軸2のみならず、マスター軸2と置換した別部材の何れもが使用可能である。また、図6では、スラスト軸受部Tをピボット軸受で構成した場合を例示しているが、この他にも、動圧溝等の動圧発生手段で軸部材22をスラスト方向に非接触支持する動圧軸受も使用可能である。   As the shaft member 22 of the motor 21, not only the master shaft 2 but also another member replaced with the master shaft 2 can be used. Further, FIG. 6 illustrates the case where the thrust bearing portion T is constituted by a pivot bearing, but in addition, the shaft member 22 is supported in a non-contact manner in the thrust direction by a dynamic pressure generating means such as a dynamic pressure groove. A hydrodynamic bearing can also be used.

本発明の軸受装置は、以上の例示に限らず、モータの回転軸支持用として広く適用可能である。この軸受装置は、上記のとおりラジアル軸受部Rにおいて高精度の軸受隙間(ラジアル軸受隙間)を備えるので、上記HDD等の磁気ディスク駆動用のスピンドルモータを初めとして、高回転精度が要求される情報機器用の小型モータ、例えば光ディスクの光磁気ディスク駆動用のスピンドルモータ、あるいはレーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用として特に適合するものである。また、長寿命が要求されるファンモータなどにも適用できる。   The bearing device of the present invention is not limited to the above examples, and can be widely applied to support a rotating shaft of a motor. Since this bearing device has a high-precision bearing gap (radial bearing gap) in the radial bearing portion R as described above, information that requires high rotational accuracy, such as a spindle motor for driving a magnetic disk such as the HDD described above. It is particularly suitable for supporting a rotating shaft in a small motor for equipment, for example, a spindle motor for driving a magneto-optical disk of an optical disk or a polygon scanner motor of a laser beam printer. It can also be applied to fan motors that require a long service life.

以上の説明では、軸受5を回転用の軸受に使用する場合を例示しているが、この他にも軸受5は、摺動用の軸受や、回転摺動用の軸受、あるいは揺動用の軸受の何れにも適用することができる。   Although the case where the bearing 5 is used as a bearing for rotation is illustrated in the above description, the bearing 5 can be any one of a sliding bearing, a rotating / sliding bearing, and a swinging bearing. It can also be applied to.

本発明の電鋳軸1の斜視図である。1 is a perspective view of an electroformed shaft 1 of the present invention. 射出成形金型に電鋳軸1を取付けた状態(型締め時)を示す模式図である。It is a schematic diagram which shows the state (at the time of mold clamping) which attached the electroformed shaft 1 to the injection mold. 本発明のマスター軸2を備えた状態の含油樹脂軸受5の断面図である。It is sectional drawing of the oil-containing resin bearing 5 in the state provided with the master shaft 2 of this invention. 含油樹脂軸受5の別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the oil-impregnated resin bearing. 含油樹脂軸受5のさらに別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the oil-impregnated resin bearing. 本発明を適用したモータ21を示す模式図である。It is a schematic diagram which shows the motor 21 to which this invention is applied.

1 電鋳軸
2 マスター軸
3 被覆材
電鋳部
5 軸受
6 上型
7 下型
11 軸受面
15 樹脂部
16 段部
21 モータ
22 軸部材
23 スラストプレート
24 ロータ(ディスクハブ)
25 ステータコイル
26 ロータマグネット
27 ブラケット
R ラジアル軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Electroformed shaft 2 Master shaft 3 Coating material 4 Electroformed part 5 Bearing 6 Upper mold | type 7 Lower mold | type 11 Bearing surface 15 Resin part 16 Step part 21 Motor 22 Shaft member 23 Thrust plate 24 Rotor (disc hub)
25 Stator coil 26 Rotor magnet 27 Bracket R Radial bearing part T Thrust bearing part

Claims (3)

マスター軸の外周面に析出形成され、内周に軸受面を有する電鋳部、及び、該電鋳部を内周にインサートして成形された樹脂部を有する滑り軸受と、前記滑り軸受の内周に挿入された軸部材と、前記軸受面と前記軸部材の外周面との間に形成され、潤滑油で満たされた軸受隙間とを備え、前記軸受面がマスター軸の表面に析出し始めた面からなる軸受装置であって、
前記樹脂部が含油樹脂で形成され、前記樹脂部からにじみ出た油を前記軸受隙間に供給することを特徴とする軸受装置。
Is deposited formed on the outer peripheral surface of the master axis, electroformed portion having a bearing surface on the inner periphery, and a sliding bearing having a resin portion molded by insert to the inner peripheral of electric cast part, among the sliding bearing A shaft member inserted in the periphery, and a bearing gap formed between the bearing surface and the outer peripheral surface of the shaft member and filled with lubricating oil, and the bearing surface begins to precipitate on the surface of the master shaft. A bearing device comprising a flat surface,
A bearing device, wherein the resin portion is formed of an oil-containing resin, and oil that oozes from the resin portion is supplied to the bearing gap.
前記樹脂部に前記電鋳部の端部を越えて軸方向に延在する部分を設け、該部分の内周面を前記軸部材の外周面と径方向に対向させた請求項1記載の軸受装置。   The bearing according to claim 1, wherein the resin portion is provided with a portion extending in an axial direction beyond an end portion of the electroformed portion, and an inner peripheral surface of the portion is opposed to an outer peripheral surface of the shaft member in a radial direction. apparatus. 請求項1又は2に記載の軸受装置と、ステータコイルと、ロータマグネットとを備えたモータ。   A motor comprising the bearing device according to claim 1, a stator coil, and a rotor magnet.
JP2005287564A 2005-09-27 2005-09-30 Bearing device and motor equipped with the same Expired - Fee Related JP4901171B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005287564A JP4901171B2 (en) 2005-09-30 2005-09-30 Bearing device and motor equipped with the same
KR1020087009485A KR20080046746A (en) 2005-09-27 2006-09-21 Bearing arrangements with sliding bearings
CN2006800443696A CN101321963B (en) 2005-09-27 2006-09-21 Bearing device with sliding bearing
US11/992,313 US8052328B2 (en) 2005-09-27 2006-09-21 Bearing device with sliding bearing
PCT/JP2006/318749 WO2007037169A1 (en) 2005-09-27 2006-09-21 Bearing device with sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287564A JP4901171B2 (en) 2005-09-30 2005-09-30 Bearing device and motor equipped with the same

Publications (2)

Publication Number Publication Date
JP2007100720A JP2007100720A (en) 2007-04-19
JP4901171B2 true JP4901171B2 (en) 2012-03-21

Family

ID=38027882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287564A Expired - Fee Related JP4901171B2 (en) 2005-09-27 2005-09-30 Bearing device and motor equipped with the same

Country Status (1)

Country Link
JP (1) JP4901171B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820480B2 (en) * 2001-08-09 2006-09-13 株式会社ティ・アンド・ティホールディングス A pair of shafts and resin bearing parts and method of manufacturing the same

Also Published As

Publication number Publication date
JP2007100720A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US8419281B2 (en) Bearing member and method for manufacturing the same, and bearing unit having bearing member and method for manufacturing the same
KR101414110B1 (en) Bearing device
WO2007099790A1 (en) Fluid bearing device
US8052328B2 (en) Bearing device with sliding bearing
JP2007232140A (en) Fluid bearing device
JP4987248B2 (en) Bearing device and motor having the bearing device
JP4901171B2 (en) Bearing device and motor equipped with the same
CN101321963B (en) Bearing device with sliding bearing
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP4633591B2 (en) Plain bearing
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP2007092845A (en) Bearing device
JP2006322500A (en) Bearing device
JP4584093B2 (en) Plain bearing
JP2006322522A (en) Bearing device and manufacturing method for bearing member
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP4937618B2 (en) Hydrodynamic bearing device
JP2006322523A (en) Bearing device
JP4896430B2 (en) Bearing device and motor using the bearing device
JP4846470B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP4896428B2 (en) Hydrodynamic bearing device and motor having the same
JP4937675B2 (en) Hydrodynamic bearing device
JP2006342912A (en) Bearing device
JP2007162883A (en) Bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees