[go: up one dir, main page]

JP4897465B2 - Evaporative cooling device - Google Patents

Evaporative cooling device Download PDF

Info

Publication number
JP4897465B2
JP4897465B2 JP2006338472A JP2006338472A JP4897465B2 JP 4897465 B2 JP4897465 B2 JP 4897465B2 JP 2006338472 A JP2006338472 A JP 2006338472A JP 2006338472 A JP2006338472 A JP 2006338472A JP 4897465 B2 JP4897465 B2 JP 4897465B2
Authority
JP
Japan
Prior art keywords
cooling fluid
cooling
fluid
supply pipe
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006338472A
Other languages
Japanese (ja)
Other versions
JP2008151381A (en
Inventor
伸英 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2006338472A priority Critical patent/JP4897465B2/en
Publication of JP2008151381A publication Critical patent/JP2008151381A/en
Application granted granted Critical
Publication of JP4897465B2 publication Critical patent/JP4897465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、冷却流体の蒸発潜熱によって冷却室で被冷却物を冷却する気化冷却装置に関する。   The present invention relates to an evaporative cooling device that cools an object to be cooled in a cooling chamber by latent heat of vaporization of a cooling fluid.

気化冷却装置は、気化冷却室に冷却流体管路を接続すると共に、冷却室を吸引手段と接続したもので、冷却物を冷却流体の蒸発潜熱でもって気化冷却することができるものである。   The evaporative cooling device has a cooling fluid line connected to the evaporative cooling chamber and a cooling chamber connected to the suction means, and can evaporate and cool a cooling object with latent heat of vaporization of the cooling fluid.

この気化冷却装置においては、気化冷却室へ供給された冷却流体の一部が、気化冷却室の外表面に衝突した反動で飛び跳ねて外表面から離脱してしまい、効率良く気化冷却することができない問題があった。
実公平5−37181号公報
In this evaporative cooling device, a part of the cooling fluid supplied to the evaporative cooling chamber jumps off from the reaction surface that collides with the outer surface of the evaporative cooling chamber and separates from the outer surface, so that evaporative cooling cannot be performed efficiently. There was a problem.
Japanese Utility Model Publication No. 5-37181

解決しようとする課題は、気化冷却室の外表面での冷却流体の飛び跳ねを防止して、供給する冷却流体のより多くの量が被冷却物から熱を奪って気化することによって、効率良く気化冷却することのできる気化冷却装置を提供することである。   The problem to be solved is to prevent the cooling fluid from jumping on the outer surface of the evaporative cooling chamber, and a larger amount of the supplied cooling fluid removes heat from the object to be vaporized and efficiently evaporates. It is to provide a vaporization cooling device that can be cooled.

本発明は、被冷却物を冷却する冷却室を形成して、当該冷却室の外壁面の接線方向に冷却流体を供給する冷却流体供給管を接続すると共に、冷却室を吸引手段と接続したものにおいて、冷却流体供給管の冷却室側端部に冷却流体を噴射するノズルを取り付けて、当該ノズルを少なくとも2個の冷却流体噴射口で形成すると共に、一方の冷却流体噴射口を冷却室の外壁面に流体膜を形成する流体膜形成口とし、他方の冷却流体噴射口を冷却室の外壁面の接線方向で且つ上記流体膜上に冷却流体を噴霧する冷却流体噴霧口として、冷却流体の外壁面での飛び跳ねを防止するものである。 The present invention forms a cooling chamber for cooling an object to be cooled, connects a cooling fluid supply pipe for supplying a cooling fluid in a tangential direction of the outer wall surface of the cooling chamber, and connects the cooling chamber to suction means In which a nozzle for injecting a cooling fluid is attached to the cooling chamber side end of the cooling fluid supply pipe, the nozzle is formed by at least two cooling fluid injection ports, and one cooling fluid injection port is connected to the outside of the cooling chamber. a fluid film forming openings for forming a fluid film on the wall, and the other cooling fluid injection port for spraying a cooling fluid and on the fluid film in a tangential direction of the outer wall surface of the cooling chamber the cooling fluid spray nozzle, the cooling fluid This prevents jumping on the outer wall surface .

本発明の気化冷却装置は、冷却流体噴射ノズルに流体膜形成口と冷却流体噴霧口を形成したことによって、流体膜形成口から供給した冷却流体で冷却室の外表面に流体膜を形成し、その流体膜上に冷却流体噴霧口から冷却流体を供給することにより、冷却流体の飛び跳ねを防止して、効率良く気化冷却することができる。   The vaporization cooling apparatus of the present invention forms a fluid film on the outer surface of the cooling chamber with the cooling fluid supplied from the fluid film formation port by forming the fluid film formation port and the cooling fluid spray port in the cooling fluid injection nozzle, By supplying the cooling fluid from the cooling fluid spray port onto the fluid film, it is possible to prevent the cooling fluid from jumping and efficiently evaporate and cool.

本発明は、冷却流体噴射ノズルに流体膜形成口と冷却流体噴霧口を形成するものであるが、1個のノズルに流体膜形成口と冷却流体噴霧口を一体に形成することも、あるいは、別体の流体膜形成口と冷却流体噴霧口を組み合わせて1個のノズルとすることもできる。   The present invention forms the fluid film forming port and the cooling fluid spray port in the cooling fluid jet nozzle, but the fluid film forming port and the cooling fluid spray port may be integrally formed in one nozzle, or A separate fluid film forming port and a cooling fluid spray port may be combined to form a single nozzle.

本実施例においては、冷却室として反応釜1のジャケット部2を用いた例を示す。反応釜1の内部に入れた図示しない被冷却物を、ジャケット部2に供給する冷却源としての冷却流体によって冷却するものである。 In the present embodiment, an example in which the jacket portion 2 of the reaction kettle 1 is used as a cooling chamber is shown. An object to be cooled (not shown) placed inside the reaction kettle 1 is cooled by a cooling fluid as a cooling source supplied to the jacket portion 2.

反応釜1のほぼ全周にわたりジャケット部2を形成して、このジャケット部2に吸引手段としての組み合わせ真空ポンプ4と、冷却流体供給管5を接続する。冷却流体供給管5には、熱交換部としてのエゼクタ18を介在して、ジャケット部2内に配置した冷却流体管路6と接続する。   A jacket portion 2 is formed over substantially the entire circumference of the reaction kettle 1, and a combined vacuum pump 4 as a suction means and a cooling fluid supply pipe 5 are connected to the jacket portion 2. The cooling fluid supply pipe 5 is connected to a cooling fluid pipe 6 disposed in the jacket portion 2 via an ejector 18 serving as a heat exchange portion.

エゼクタ18は、ジャケット部2に極力接近した位置に配置すると共に、エゼクタ18の吸引口には加熱用の蒸気供給管19を接続する。冷却流体供給管5から供給される冷却流体と、蒸気供給管19から供給される加熱用の蒸気とが、エゼクタ18内で混合され所定温度に制御されて、冷却流体管路6へと供給される。 The ejector 18 is disposed at a position as close as possible to the jacket portion 2, and a heating steam supply pipe 19 is connected to the suction port of the ejector 18. The cooling fluid supplied from the cooling fluid supply pipe 5 and the heating steam supplied from the steam supply pipe 19 are mixed in the ejector 18, controlled to a predetermined temperature, and supplied to the cooling fluid pipe 6. The

エゼクタ18をジャケット部2の近傍に配置したことによって、エゼクタ18で所定温度に制御された冷却流体の温度が変化するまでに、冷却流体を冷却流体管路6へ供給することができ、ジャケット部2内へ温度精度良くコントロールされた冷却流体を供給することができる。 By disposing the ejector 18 in the vicinity of the jacket portion 2, the cooling fluid can be supplied to the cooling fluid conduit 6 until the temperature of the cooling fluid controlled to a predetermined temperature by the ejector 18 changes. 2 can be supplied with a cooling fluid controlled with high temperature accuracy.

ジャケット部2内に配置した冷却流体管路6の端部は図2に示すようにノズル25として、当該ノズル25を2個の冷却流体噴射口27,28で形成し、一方の冷却流体噴射口を反応釜1の外壁面に流体膜を形成する流体膜形成口27とし、他方の冷却流体噴射口を反応釜1の外壁面の接線方向で且つ上記流体膜上に冷却流体を噴霧する冷却流体噴霧口28とする。 As shown in FIG. 2, the end portion of the cooling fluid pipe 6 disposed in the jacket portion 2 is a nozzle 25, and the nozzle 25 is formed by two cooling fluid injection ports 27 and 28, and one cooling fluid injection port is formed. Is a fluid film forming port 27 for forming a fluid film on the outer wall surface of the reaction kettle 1, and the other cooling fluid injection port is a cooling fluid for spraying the cooling fluid in the tangential direction of the outer wall surface of the reaction kettle 1 and on the fluid film. The spray port 28 is used.

流体膜形成口27と冷却流体噴霧口28からは、図2において直線29,30で示すように冷却流体が噴射され、冷却流体29が反応釜1の外表面に薄膜状の流体膜を形成すると共に、冷却流体30がその流体膜上に噴霧されることによって冷却流体30の反応釜1外表面での飛び跳ねを防止することができる。 Cooling fluid is ejected from the fluid film forming port 27 and the cooling fluid spraying port 28 as shown by straight lines 29 and 30 in FIG. 2, and the cooling fluid 29 forms a thin film fluid film on the outer surface of the reaction vessel 1. At the same time, the cooling fluid 30 is sprayed onto the fluid film, so that the cooling fluid 30 can be prevented from jumping on the outer surface of the reaction vessel 1.

冷却流体供給管5の下方部は、組み合わせ真空ポンプ4の循環路15の一部と接続すると共に、上方部を冷却流体管路6の一端部と接続する。冷却流体管路6は、ジャケット部2内に螺旋状に配置して、図2に示すとおりに冷却流体管路6の反応釜1側に複数の冷却流体噴射ノズル25を設ける。   The lower part of the cooling fluid supply pipe 5 is connected to a part of the circulation path 15 of the combination vacuum pump 4 and the upper part is connected to one end part of the cooling fluid pipe 6. The cooling fluid pipe 6 is arranged in a spiral shape in the jacket portion 2, and a plurality of cooling fluid injection nozzles 25 are provided on the reaction kettle 1 side of the cooling fluid pipe 6 as shown in FIG. 2.

本実施例においては、ジャケット部2の左側上部に流量調節弁7を介在した蒸気供給管8を接続する。この蒸気供給管8から、所定圧力すなわち所定温度の加熱用蒸気を、ジャケット部2へ供給することによって、反応釜1内の被加熱物を加熱することもできるものである。   In this embodiment, a steam supply pipe 8 with a flow rate adjusting valve 7 interposed is connected to the upper left portion of the jacket portion 2. By supplying the steam for heating at a predetermined pressure, that is, a predetermined temperature from the steam supply pipe 8 to the jacket part 2, the object to be heated in the reaction kettle 1 can be heated.

ジャケット部2の右側下方に排出管9を接続して、組み合わせ真空ポンプ4のエゼクタ10と接続する。排出管9には、開閉弁11と気液分離器12をそれぞれ取り付ける。気液分離器12は、排出管9から流下してくる蒸気と液体をそれぞれ分離することができるものであり、分離された蒸気は蒸気エゼクタ3へ吸引され、一方、分離された液体は管路20を通って下方のエゼクタ10へ吸引される。   A discharge pipe 9 is connected to the lower right side of the jacket portion 2 and connected to the ejector 10 of the combination vacuum pump 4. An open / close valve 11 and a gas-liquid separator 12 are attached to the discharge pipe 9. The gas-liquid separator 12 can separate the vapor and the liquid flowing down from the discharge pipe 9, respectively, and the separated vapor is sucked into the vapor ejector 3, while the separated liquid is a pipe line. 20 is sucked through the lower ejector 10.

蒸気エゼクタ3は、蒸気供給管8を分岐した分岐管21に入口側を接続し、出口側を管路22によって再度、蒸気供給管8の流量調節弁7の手前側に接続したもので、排出管9から流下してくるジャケット部2内の一部の蒸気を、蒸気エゼクタ3で吸引して再度、蒸気供給管8からジャケット部2へ供給することによって、ジャケット部2内の加熱用蒸気を強制的に循環させることができるものである。   The steam ejector 3 has an inlet side connected to a branch pipe 21 branched from the steam supply pipe 8, and the outlet side is again connected to the front side of the flow rate control valve 7 of the steam supply pipe 8 by a conduit 22. A part of the steam in the jacket part 2 flowing down from the pipe 9 is sucked by the steam ejector 3 and supplied again from the steam supply pipe 8 to the jacket part 2, thereby heating steam in the jacket part 2. It can be forced to circulate.

組み合わせ真空ポンプ4を、エゼクタ10とタンク13と循環ポンプ14を順次に循環路15で連通して形成する。タンク13の上部には、冷却流体としての冷却水を補給する冷却水補給管16を接続する。循環路15の一部を分岐して余剰水排出管17と、上述した冷却流体供給管5をそれぞれ接続する。冷却流体供給管5は、組み合わせ真空ポンプ4を循環する循環流体の一部を、ジャケット部2の冷却流体管路6へ供給することによって、反応釜1を気化冷却することができるものである。   The combination vacuum pump 4 is formed by sequentially communicating the ejector 10, the tank 13, and the circulation pump 14 through the circulation path 15. A cooling water supply pipe 16 for supplying cooling water as a cooling fluid is connected to the upper portion of the tank 13. A part of the circulation path 15 is branched to connect the excess water discharge pipe 17 and the above-described cooling fluid supply pipe 5. The cooling fluid supply pipe 5 can evaporate and cool the reaction kettle 1 by supplying a part of the circulating fluid circulating through the combination vacuum pump 4 to the cooling fluid pipe 6 of the jacket portion 2.

ジャケット部2の左側面に、管路23と開閉弁24を介在して組み合わせ真空ポンプ4のエゼクタ10と接続する。この管路23は、ジャケット部2内で発生した冷却流体の気化蒸気をエゼクタ10へ吸引するためのものである。 The left side surface of the jacket portion 2 is connected to the ejector 10 of the combination vacuum pump 4 via a pipe line 23 and an on-off valve 24. The conduit 23 is for sucking vaporized vapor of the cooling fluid generated in the jacket portion 2 to the ejector 10.

反応釜1内の被冷却物を冷却する場合は、冷却流体供給管5及びエゼクタ18から所定温度に制御された冷却流体を冷却流体管路6内へ供給して、冷却流体管路6内を冷却流体で満たすと同時に、冷却流体管路6の反応釜1側に設けた複数の冷却流体噴射ノズル25から反応釜1の外表面の接線方向へ冷却流体を噴霧する。噴霧された冷却流体は、流体膜形成口27から供給された図2における直線29で示す冷却水による流体膜によって飛び跳ねることがない。   When the object to be cooled in the reaction kettle 1 is cooled, the cooling fluid controlled to a predetermined temperature is supplied from the cooling fluid supply pipe 5 and the ejector 18 into the cooling fluid pipe 6, and the inside of the cooling fluid pipe 6 is supplied. At the same time as filling with the cooling fluid, the cooling fluid is sprayed in the tangential direction of the outer surface of the reaction vessel 1 from a plurality of cooling fluid injection nozzles 25 provided on the reaction vessel 1 side of the cooling fluid conduit 6. The sprayed cooling fluid does not jump by the fluid film by the cooling water shown by the straight line 29 in FIG. 2 supplied from the fluid film forming port 27.

一方、組み合わせ真空ポンプ4の循環ポンプ14を駆動して、エゼクタ10の発生する吸引力で排出管9または管路23を介してジャケット部2内を所定の圧力状態、例えば、大気圧以下の真空状態、とすることにより、反応釜1の外表面へ噴霧される冷却流体が反応釜1内の被冷却物の熱を奪って蒸発気化することにより、その蒸発潜熱によって被冷却物を気化冷却することができる。 On the other hand, the circulation pump 14 of the combination vacuum pump 4 is driven, and the inside of the jacket portion 2 is evacuated to a predetermined pressure state, for example, a vacuum below atmospheric pressure, through the discharge pipe 9 or the pipe line 23 by the suction force generated by the ejector 10. As a result, the cooling fluid sprayed onto the outer surface of the reaction kettle 1 takes the heat of the object to be cooled in the reaction kettle 1 and evaporates and vaporizes and cools the object to be cooled by the latent heat of vaporization. be able to.

このように反応釜1を冷却する場合に、冷却流体管路6の冷却流体噴射ノズル25から接線方向へ噴霧される冷却流体30が、反応釜1の外表面で飛び跳ねることがないために、効率良く気化冷却を実施することができる。 When the reaction kettle 1 is cooled in this way, the cooling fluid 30 sprayed in the tangential direction from the cooling fluid jet nozzle 25 of the cooling fluid conduit 6 does not jump on the outer surface of the reaction kettle 1. Evaporative cooling can be performed well.

ジャケット部2で被冷却物を冷却した冷却流体の気化蒸気及び気化しきれなかった冷却流体の一部は、排出管9または管路23を通ってエゼクタ10に吸引されタンク13に至る。   The vaporized vapor of the cooling fluid that has cooled the object to be cooled by the jacket portion 2 and part of the cooling fluid that could not be vaporized are sucked into the ejector 10 through the discharge pipe 9 or the pipe line 23 and reach the tank 13.

エゼクタ10で発生することのできる吸引力は、エゼクタ10を流下する流体の温度によって決まるために、冷却水補給管16から適宜所定温度の冷却水をタンク13へ補給することによって、エゼクタ10を流下する流体温度を調節して、エゼクタ10の吸引力をコントロールすることができる。   Since the suction force that can be generated in the ejector 10 is determined by the temperature of the fluid flowing down the ejector 10, the cooling water having a predetermined temperature is appropriately supplied from the cooling water supply pipe 16 to the tank 13, thereby causing the ejector 10 to flow down. The suction force of the ejector 10 can be controlled by adjusting the fluid temperature.

本発明の気化冷却装置の実施例を示す構成図。The block diagram which shows the Example of the vaporization cooling device of this invention. 図1におけるA−A線断面の拡大図。The enlarged view of the AA line cross section in FIG.

符号の説明Explanation of symbols

1 反応釜
2 ジャケット部
4 吸引手段
5 冷却流体供給管
6 冷却流体管路
9 排出管
10 エゼクタ
13 タンク
14 循環ポンプ
15 循環路
18 熱交換部
19 蒸気供給管
25 ノズル
27 流体膜形成口
28 冷却流体噴霧口
DESCRIPTION OF SYMBOLS 1 Reaction kettle 2 Jacket part 4 Suction means 5 Cooling fluid supply pipe 6 Cooling fluid pipe 9 Discharge pipe 10 Ejector 13 Tank 14 Circulation pump 15 Circulation path 18 Heat exchange part 19 Steam supply pipe 25 Nozzle 27 Fluid film formation port 28 Cooling fluid Spray port

Claims (1)

被冷却物を冷却する冷却室を形成して、当該冷却室の外壁面の接線方向に冷却流体を供給する冷却流体供給管を接続すると共に、冷却室を吸引手段と接続したものにおいて、冷却流体供給管の冷却室側端部に冷却流体を噴射するノズルを取り付けて、当該ノズルを少なくとも2個の冷却流体噴射口で形成すると共に、一方の冷却流体噴射口を冷却室の外壁面に流体膜を形成する流体膜形成口とし、他方の冷却流体噴射口を冷却室の外壁面の接線方向で且つ上記流体膜上に冷却流体を噴霧する冷却流体噴霧口として、冷却流体の外壁面での飛び跳ねを防止することを特徴とする気化冷却装置。 A cooling chamber that cools an object to be cooled is connected to a cooling fluid supply pipe that supplies a cooling fluid in a tangential direction of the outer wall surface of the cooling chamber, and the cooling chamber is connected to a suction means. A nozzle for injecting a cooling fluid is attached to the end of the supply pipe on the cooling chamber side, the nozzle is formed by at least two cooling fluid injection ports, and one of the cooling fluid injection ports is formed on the outer wall surface of the cooling chamber. a fluid film forming orifice to form a, and the other cooling fluid injection port for spraying a cooling fluid and on the fluid film in a tangential direction of the outer wall surface of the cooling chamber the cooling fluid spray port at an outer wall surface of the cooling fluid An evaporative cooling device characterized by preventing jumping .
JP2006338472A 2006-12-15 2006-12-15 Evaporative cooling device Active JP4897465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338472A JP4897465B2 (en) 2006-12-15 2006-12-15 Evaporative cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338472A JP4897465B2 (en) 2006-12-15 2006-12-15 Evaporative cooling device

Publications (2)

Publication Number Publication Date
JP2008151381A JP2008151381A (en) 2008-07-03
JP4897465B2 true JP4897465B2 (en) 2012-03-14

Family

ID=39653738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338472A Active JP4897465B2 (en) 2006-12-15 2006-12-15 Evaporative cooling device

Country Status (1)

Country Link
JP (1) JP4897465B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964655B2 (en) * 2007-04-13 2012-07-04 株式会社テイエルブイ Evaporative cooling device
US8721982B2 (en) 2009-08-04 2014-05-13 Taiyo Nippon Sanso Corporation Reaction device
JP7372083B2 (en) * 2019-08-30 2023-10-31 株式会社カネカ Expanded particle manufacturing device and manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537181Y2 (en) * 1989-09-14 1993-09-20
JPH08196948A (en) * 1995-01-30 1996-08-06 Mitsubishi Heavy Ind Ltd Composite liquid sprayer
JP2006258316A (en) * 2005-03-15 2006-09-28 Tlv Co Ltd Heating/cooling device

Also Published As

Publication number Publication date
JP2008151381A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4897465B2 (en) Evaporative cooling device
JP2006258316A (en) Heating/cooling device
JP4964655B2 (en) Evaporative cooling device
JP4897435B2 (en) Evaporative cooling device
JP2008096062A (en) Evaporative cooling device
JP2007330896A (en) Heating and cooling device
JP4964656B2 (en) Evaporative cooling device
JP2006258317A (en) Evaporative cooling device
JP2008261592A (en) Evaporative cooling device
JP2006258318A (en) Evaporative cooling device
JP2006308187A (en) Vaporization cooling device
JP4970962B2 (en) Evaporative cooling device
JP2006258315A (en) Evaporative cooling device
JP2006349248A (en) Heating/cooling apparatus
JP4805100B2 (en) Air compressor cooling system
JP2006308185A (en) Evaporative cooling device
JP2008121638A (en) Cooling system of air compressor
JP2008122040A (en) Evaporative cooling device
JP2007078276A (en) Evaporative cooling device
JP4805099B2 (en) Air compressor cooling system
JP2006329516A (en) Evaporative cooling device
JP2006329514A (en) Evaporative cooling device
JP2008196814A (en) Evaporative cooling device
JP2006349253A (en) Evaporative cooling device
JP5601800B2 (en) Evaporative cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250