JP4893100B2 - Pressure vessel seal structure - Google Patents
Pressure vessel seal structure Download PDFInfo
- Publication number
- JP4893100B2 JP4893100B2 JP2006135379A JP2006135379A JP4893100B2 JP 4893100 B2 JP4893100 B2 JP 4893100B2 JP 2006135379 A JP2006135379 A JP 2006135379A JP 2006135379 A JP2006135379 A JP 2006135379A JP 4893100 B2 JP4893100 B2 JP 4893100B2
- Authority
- JP
- Japan
- Prior art keywords
- sealing
- seal
- pressure vessel
- pressure
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0305—Bosses, e.g. boss collars
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Pressure Vessels And Lids Thereof (AREA)
Description
本発明は、高圧流体を封入・蓄積する圧力容器の配管接続部やドレーンといった開口部を密閉するためのシール構造に関する。
ここで、流体とは、空気;ヘリウム、アルゴン、窒素等の不活性ガス;水素、プロパンガス、天然ガスなどの可燃性ガスといった気体;ならびに液化プロパンガス、液体窒素などの液体;さらには気液混合流体を包含する。
The present invention relates to a seal structure for sealing an opening such as a pipe connection part or a drain of a pressure vessel that encloses and accumulates a high-pressure fluid.
Here, the fluid is air; an inert gas such as helium, argon or nitrogen; a gas such as flammable gas such as hydrogen, propane gas or natural gas; and a liquid such as liquefied propane gas or liquid nitrogen; Includes mixed fluids.
高圧の流体を封入・蓄積する圧力容器には現在さまざまな形状、大きさ、材質のものがあり、また封入できる限界内圧もさまざまである。封入圧力は高いもので500〜700気圧に及ぶものもある。 Pressure vessels that contain and store high-pressure fluids are currently available in a variety of shapes, sizes, and materials, and there are various internal pressures that can be sealed. The sealing pressure is high, and some of the pressure ranges from 500 to 700 atmospheres.
これら圧力容器は、通常、配管接続部やドレーンなどの開口部を有しており、これらの開口部は、内部の高圧流体が漏洩するのを防止するため、この開口部に取り付けられる配管接続部材(以下、単に配管部材ともいう)または封止部材といった他部材との間にシール構造を備えている。 These pressure vessels usually have openings such as pipe connections and drains, and these openings are pipe connection members attached to the openings to prevent leakage of the internal high-pressure fluid. (Hereinafter, also simply referred to as a piping member) or a sealing structure is provided between other members such as a sealing member.
最も一般的なシール構造は、軟質材料からなる環状のパッキン(Oリング、Vリング、Cリングなど)を、所定のパッキン溝またはシール面に挿入し、それを全周にわたって強く押し潰して、容器開口部とこれに取り付けられる他部材との間のすき間を埋めることにより、内部流体を封入する方式である。 The most common sealing structure is to insert an annular packing (O-ring, V-ring, C-ring, etc.) made of a soft material into a predetermined packing groove or sealing surface, and squeeze it tightly around the entire circumference. In this system, the internal fluid is sealed by filling a gap between the opening and another member attached to the opening.
ここで、軟質材料とは、圧力容器開口部の材質およびこれに取り付けられる他部材(配管部材、封止部材など)の材質よりも硬度が小さい材料を指す。圧力容器の開口部や他部材の材質が鋼である場合には、軟質材料の例として、銅や銅合金などの金属、ゴムや樹脂などの高分子材料、高分子材料にグラスファイバーや炭素繊維などの強化材が混合された複合材料などが挙げられる。 Here, the soft material refers to a material whose hardness is smaller than the material of the pressure vessel opening and the material of other members (piping members, sealing members, etc.) attached thereto. When the material of the opening of the pressure vessel and other members is steel, examples of soft materials include metals such as copper and copper alloys, polymer materials such as rubber and resin, and polymer materials such as glass fiber and carbon fiber. And composite materials in which reinforcing materials such as these are mixed.
圧力容器の環状パッキンによるシール構造は、実に様々なものがこれまで提案されている。例えば、下記特許文献1〜3に記載されたシール構造は、シール部分の密封性を高めるために構造上の工夫を凝らしているが、軟質材料からなる環状パッキンを使用する点では同じである。
Various types of seal structures using annular packings of pressure vessels have been proposed so far. For example, the seal structures described in the following
この方式は、パッキンの材質や締め付け力にもよるが、基本的には非常に高圧となる容器には不向きであって、非常に高い内圧に対しては密封性(シール性)を保証することができない。さらに、ゴムや樹脂製のパッキンの場合は、経年劣化するため、取替えなどの定期的なメンテナンスが必要となる。
本発明の目的は、従来のパッキンを使用する技術では密封が困難な非常に高い内圧に対しても漏れを発生させないシールが可能で、長期間使用しても密封性が殆ど低下しない、高い密封性能を有する圧力容器のシール構造を提供することにある。 The object of the present invention is to provide a seal that does not cause leakage even at a very high internal pressure, which is difficult to seal with conventional packing techniques. An object of the present invention is to provide a pressure vessel sealing structure having performance.
本発明の別の目的は、パッキン(あるいはガスケット)を使用せず、従ってパッキンの交換といったメンテナンスが不要となる、圧力容器のシール構造を提供することである。 Another object of the present invention is to provide a pressure vessel sealing structure that does not use a packing (or gasket), and thus eliminates maintenance such as replacement of the packing.
従来の環状パッキンを利用した圧力容器のシール構造の多くは、図8に示すように、圧力容器1の開口部2の内面に雌ねじ部4を、この開口部に取り付けられる配管接続部材または封止部材といった相手部材11の外周面(容器開口部の内面に相対する面)には、雄ねじ部14を設け、これらのねじの螺合締結による締め付け力(ねじ込み方向への圧縮力)によってパッキン21に高い接触面圧を発生させ、密封する方式である。図中、12は、相手部材が配管接続部材である場合の貫通孔を示す。相手部材が封止部材である場合には貫通孔は存在しない。
As shown in FIG. 8, many conventional pressure vessel seal structures using an annular packing have a female threaded
しかし、このパッキン方式では、内圧上昇による相手部材の変形、ねじのゆるみやへたり(経年劣化)、またはパッキン材料自体の劣化などの理由で、ねじによる締め付け力が低下してしまうと、直ちにパッキンの接触面圧も低下し、最悪は漏洩に至る、という問題がある。 However, with this packing method, if the tightening force by the screw decreases due to deformation of the mating member due to an increase in internal pressure, looseness or sag of the screw (aging over time), or deterioration of the packing material itself, the packing is immediately There is also a problem that the contact surface pressure is reduced, and the worst is leakage.
この問題は、たとえシール構造に軟質材料からなるパッキンを使用しなくても、シール面を押し付ける力として、ねじの締め付け力だけを利用する構造である限り、解消されない。 This problem is not solved even if the seal structure does not use a packing made of a soft material, as long as the structure uses only the tightening force of the screw as the force for pressing the seal surface.
逆に言えば、ねじの締め付け力、すなわちねじ込み方向(ねじの軸方向)への圧縮力、以外の力を利用できる構造にすれば、ねじにゆるみやへたりが生じても、密封性能への影響が少ないシール構造が得られる。 In other words, if a structure other than the tightening force of the screw, that is, the compressive force in the screwing direction (screw axial direction), can be used, even if the screw is loosened or sagged, the sealing performance will be improved. A seal structure with less influence can be obtained.
本発明者らは、この観点から、径方向の嵌め合い力を圧力容器のシール構造に導入することに着目した。具体的には、圧力容器の開口部の雌ねじを有する内面と、この開口部に取り付けられる他部材の、該内面に相対する、雄ねじを有する外周面に、それぞれシール面を設け、内側に入る他部材の外周面に設けたシール面の径を、その外側で相対する圧力容器開口部の内面シール面の径よりわずかに大きくし、2つのシール面を径方向に嵌め合わせると、全周にわたってシール面が高い接触面圧で均一に密着する。 From this point of view, the present inventors have focused on introducing a radial fitting force into the pressure vessel seal structure. Specifically, a sealing surface is provided on the inner surface of the opening of the pressure vessel that has the female screw and the outer surface of the other member that is attached to the opening that has the male screw, facing the inner surface. When the diameter of the seal surface provided on the outer peripheral surface of the member is slightly larger than the diameter of the inner surface seal surface of the pressure vessel opening opposite to the outer surface and the two seal surfaces are fitted together in the radial direction, the seal is sealed over the entire circumference. The surface adheres uniformly with high contact surface pressure.
この場合のシール面同士の密着は、内側部材である雄ねじつき他部材(以下、単に雄ねじ部材または他部材ともいう)のシール面の径が外側部材である圧力容器のシール面の径より大きいという、嵌め合いしろ(締めしろ)によるものである。すなわち、この嵌め合いしろにより縮径した雄ねじ部材のシール面が、元の径に戻ろうとするエネルギによって、シール面の接触面圧が発生する。この面圧は、シール面に垂直な方向、従って略半径方向、に作用する。この時に、雄ねじ部材の縮径が弾性変形の範囲内であれば、その弾性変形エネルギ(弾性回復力)が面圧発生に用いられることになり、接触面圧は長期間にわたり減衰することがない。そのため、ねじの締め付け力の影響を受けにくいシール構造が得られる。特に、雄ねじ部材および容器開口部が、鋼のような金属であれば、その弾性変形エネルギは非常に大きく、発生する接触面圧も非常に大きくなるので、優れた密封性が得られる。 The close contact between the seal surfaces in this case is that the diameter of the seal surface of the other member with male thread (hereinafter also simply referred to as the male screw member or other member) as the inner member is larger than the diameter of the seal surface of the pressure vessel as the outer member. This is due to the fit (tightening). That is, the contact surface pressure of the sealing surface is generated by the energy of the sealing surface of the male screw member whose diameter is reduced by the fitting margin to return to the original diameter. This surface pressure acts in a direction perpendicular to the seal surface, and thus in a substantially radial direction. At this time, if the diameter of the male screw member is within the range of elastic deformation, the elastic deformation energy (elastic recovery force) is used for generating the surface pressure, and the contact surface pressure is not attenuated over a long period of time. . Therefore, a seal structure that is not easily affected by the tightening force of the screw can be obtained. In particular, if the male screw member and the container opening are made of a metal such as steel, the elastic deformation energy is very large and the generated contact surface pressure is also very large, so that excellent sealing performance can be obtained.
以上の知見に基づく本発明は、圧力容器の配管接続部およびドレインの開口部内面とこの開口部に取り付ける他部材の外周面との間のシール構造であって、圧力容器の開口部内面が少なくとも1つの雌ねじ部および少なくとも1つのシール面Aを有し、他部材の外周面が前記雌ねじ部に螺合する少なくとも1つの雄ねじ部および少なくとも1つのシール面Bを有し、シール面Bはねじ込み軸を回転軸とし、ねじ込み方向に径が小さくなる円錐体面もしくは曲率回転体面、または円筒面であり、シール面Aはシール面Bと相対する形状であり、前記した雄ねじと雌ねじ部が螺合締結され、シール面AおよびBが嵌め合いにより互いに全周にわたって密着するように構成されること、圧力容器の開口部内面がねじ込みストッパとして作用する少なくとも1つのトルクショルダを備え、他部材の外周面も対応する少なくとも1つのトルクショルダを備えること、および、シール面AおよびBがいずれも鋼または軟質めっきした鋼である金属であり、シール面Bの中央部における締結前の両シール面の直径差である嵌め合いしろが、シール面Bのその位置の螺合締結前の直径の0.1〜2%であることを特徴とする、圧力容器のシール構造である。 The present invention based on the above knowledge is a seal structure between the pipe connection portion of the pressure vessel and the inner surface of the opening of the drain and the outer peripheral surface of the other member attached to the opening, and the inner surface of the opening of the pressure vessel is at least One female screw portion and at least one seal surface A, and the outer peripheral surface of the other member has at least one male screw portion and at least one seal surface B that are screwed into the female screw portion, and the seal surface B is a screw-in shaft. Is a conical surface, a curved rotating surface, or a cylindrical surface whose diameter decreases in the screwing direction, and the sealing surface A has a shape facing the sealing surface B, and the male screw and the female screw portion are screwed together. The seal surfaces A and B are configured so as to be in close contact with each other by fitting, and the inner surface of the opening of the pressure vessel acts as a screw stopper. Both with one torque shoulder, comprises at least one torque shoulder also corresponding outer peripheral surface of the other member, and, both sealing surfaces A and B are metal is steel or soft plated steel, sealing surface B The pressure container is characterized in that the fitting margin, which is the difference in diameter between the seal surfaces before fastening at the center of the seal, is 0.1 to 2% of the diameter of the seal surface B before screwing. This is a seal structure.
曲率回転体面とは、曲率を持つ曲線がある軸を中心に回転して形成される表面、すなわち、曲面を有する回転体面を意味する。シール面Bが曲率回転体面である場合、その曲面は凹面でも凸面でもよい。また、曲面は変曲点が2箇所以上ある曲面であってもよい。
本発明の圧力容器のシール構造は、圧力容器のシール面Aおよび他部材のシール面Bが、ねじ込みによる嵌め合わせ以外に、焼き嵌めによる嵌め合わせの場合にも適用することができる。焼き嵌めとは、外側部材である圧力容器を高温にして膨張させ、その開口部の径を広げたところに、中に入る他部材を挿入し、冷却して容器を収縮させ嵌め合わせる方式である。この方式で締結する場合にも、他部材の抜け落ち防止のためねじによる締め付けは必要である。
The curvature rotator surface means a surface formed by rotating around an axis having a curvature curve, that is, a rotator surface having a curved surface. When the sealing surface B is a curvature rotator surface, the curved surface may be concave or convex. The curved surface may be a curved surface having two or more inflection points.
The pressure vessel sealing structure of the present invention can also be applied to the case where the sealing surface A of the pressure vessel and the sealing surface B of the other member are fitted by shrink fitting, in addition to fitting by screwing. Shrink fitting is a method in which a pressure vessel, which is an outer member, is expanded at a high temperature and the diameter of the opening is expanded, and another member is inserted therein, cooled, and the vessel is contracted and fitted. . Even when fastening by this method, tightening with screws is necessary to prevent other members from falling off .
本発明では、圧力容器を他部材にねじ込みまたは焼き嵌めにより締結した時に、シール面AおよびBが嵌め合いしろ(締めしろ)によって互いに全周にわたって密着するように構成されている。すなわち、内側に入る他部材の外周面に設けたシール面Bの径が、その外側に位置する圧力容器開口部のシール面Aの径より若干大きく、締結状態では、他部材のシール面部分は縮径による弾性変形を受けている。この弾性変形が元に戻ろうとする弾性回復力により、シール面AとBの全周にわたる密着が得られる。 In the present invention, when the pressure vessel is fastened to the other member by screwing or shrink fitting, the sealing surfaces A and B are configured to be in close contact with each other by fitting (tightening). That is, the diameter of the seal surface B provided on the outer peripheral surface of the other member that enters the inside is slightly larger than the diameter of the seal surface A of the pressure vessel opening located on the outer side. Has undergone elastic deformation due to reduced diameter. Due to the elastic recovery force that the elastic deformation tries to return to, the close contact over the entire circumference of the seal surfaces A and B is obtained.
また、他部材の少なくとも1つのシール面Bの中央部の位置における該他部材の肉厚が、締結前の同じ位置での該他部材の直径の1/22以上、1/6以下であることが好ましい。 Further, the thickness of the other member at the central position of at least one sealing surface B of the other member is not less than 1/22 and not more than 1/6 of the diameter of the other member at the same position before fastening. Is preferred.
シール面Bが、ねじ込み方向に先細の円錐体面(より正確には円錐台面)または曲率回転体面である場合、そのテーパ角度または最大の接線角度は、該円錐体または曲率回転体の中心軸に対して1〜25°の範囲内であることが好ましい。この中心軸は、回転体形状である容器開口部の回転中心軸に等しく、開口部内面がねじ部を有している場合には、ねじ込み方向に等しい。シール面Aおよびシール面Bはいずれも金属である。 When the sealing surface B is a conical surface tapered in the screwing direction (more precisely, a truncated cone surface) or a curvature rotator surface, the taper angle or the maximum tangent angle is relative to the central axis of the cone or curvature rotator. Is preferably in the range of 1 to 25 °. This central axis is equal to the rotational central axis of the container opening having a rotating body shape, and is equal to the screwing direction when the inner surface of the opening has a threaded portion . Both the seal surface A and the seal surface B are metal.
本発明により、圧力容器を他部材とねじ螺合により締結する場合であっても、雄ねじ部材の締め付け力の低下(ゆるみやへたり)の影響を受けにくく、安定して非常に高い密封性能を発揮できるシール構造が得られる。この効果は、特にシール面が緩やかな傾斜を有するテーパ面などである場合に、より確実に得られる。 According to the present invention, even when the pressure vessel is fastened to the other member by screwing, the male screw member is hardly affected by a decrease in tightening force (slack or sag), and stably has a very high sealing performance. A seal structure that can be exhibited is obtained. This effect is more surely obtained particularly when the sealing surface is a tapered surface having a gentle slope.
また、本発明のシール構造は、圧力容器の加熱が可能であれば、シール面を焼き嵌めにより嵌め合わせることもでき、その場合はシール面に円筒面も適用することができ、優れた密封性能を確保できる。 In addition, if the pressure vessel can be heated, the seal structure of the present invention can be fitted with a seal surface by shrink fitting, in which case a cylindrical surface can also be applied to the seal surface, and excellent sealing performance Can be secured.
さらに、軟質材料からなるパッキンを使用しないことから、ゴム製パッキンなどでよく見られる経年劣化による面圧低下の心配がなく、長期間にわたって密封性能が発揮され、かつパッキン交換などのメンテナンスが不要となる。 In addition, since packing made of soft material is not used, there is no concern about surface pressure drop due to aging deterioration often seen in rubber packing, etc., sealing performance is demonstrated over a long period of time, and maintenance such as replacement of packing is unnecessary. Become.
以下、本発明の各種態様について、添付図面を参照しながら、より詳しく説明する。
本発明に係る圧力容器のシール構造は、大型から小型まで各種の圧力容器の開口部に適用できる。本発明は、圧力容器のシール構造、すなわち、その開口部のシール構造に関するものであるので、容器それ自体の構造、形状、使用目的などは特に制限されない。
Hereinafter, various aspects of the present invention will be described in more detail with reference to the accompanying drawings.
The seal structure of the pressure vessel according to the present invention can be applied to openings of various pressure vessels from large to small. Since the present invention relates to a pressure vessel seal structure, that is, a seal structure of the opening thereof, the structure, shape, purpose of use, etc. of the vessel itself are not particularly limited.
容器の材質も、容器に封入される流体の圧力に耐え、耐食性などの他の要求特性を満たす限り、特に制限されない。代表的には金属、中でも鋼であるが、ガラス、セラミック、プラスチック、あるいはこれらの材料を組み合わせた複合材料とすることもできる。但し、シール面については、前述したように、本発明では弾性変形エネルギとその回復力を利用してシール面の密封性能を確保するので、高い弾性変形エネルギを発揮できる金属から容器側のシール面Aを構成する。同様の理由で、他部材のシール面Bについても金属から構成する。 The material of the container is not particularly limited as long as it can withstand the pressure of the fluid sealed in the container and satisfies other required characteristics such as corrosion resistance. Typically, it is a metal, especially steel, but glass, ceramic, plastic, or a composite material combining these materials can also be used. However, as described above, since the sealing surface of the sealing surface is secured by utilizing the elastic deformation energy and its recovery force in the present invention as described above, the sealing surface on the container side from the metal that can exhibit high elastic deformation energy. that make up the a. For the same reason, that make up the metal also sealing surface B of another member.
図1、図2および図3は本発明に係るシール構造を示す模式図である。図1は、他部材11のシール面B(13)が、ねじ込み軸(図中の一点鎖線)を回転軸とし、ねじ込み方向(図の下側方向)に径が小さくなる円錐体面(すなわちテーパ面)である態様を示すものである。この円錐体面のねじ込み軸に対する角度がθで示されている。図2は、シール面B(13)が円筒面(すなわち、θ=0°)である態様を示すものである。図3は、他部材11のシール面B(13)が、図1と同様に、ねじ込み方向に径が小さくなる円錐体面であり、トルクショルダの位置を、他部材12の先端端面とそれに当接する圧力容器の開口部内面とした態様を示すものである。
1, 2 and 3 are schematic views showing a sealing structure according to the present invention. In FIG. 1, the sealing surface B (13) of the
図1、図2および図3に示すように、本発明に係るシール構造を有する圧力容器1の開口部2は、その内面に雌ねじ部4を有し、この開口部2に取り付けられる他部材11(配管接続部材、封止部材など)は、容器開口部の雌ねじ部4に対向するその外周面に雄ねじ部14を有する。このねじ部については、図8に示すパッキン21を利用した従来のシール構造と同様である。図8と同様に、相手部材が配管接続部材である場合は貫通孔12を有し、相手部材が封止部材である場合には貫通孔は存在しない。
As shown in FIGS. 1, 2, and 3, the
本発明では、密封性を確保する手段として、パッキンの代わりに、容器開口部2の内面は、雌ねじ部4に加えて、3で示されるシール面Aを有し、他部材11の外周面は、13で示されるシール面Bを有する。他部材のシール面B(13)は、ねじ込み軸に対してねじ込み方向に径が小さくなる円錐体面もしくは曲率回転体面、または円筒面である。容器側のシール面A(3)は、シール面Bと相対する形状であり、シール面AおよびBは、圧力容器に他部材を螺合締結すると互いに全周にわたって密着するように構成されている。つまり、シール面AおよびBは、締結後に相対する位置にあり、かつ適当な嵌め合いしろを生ずるような寸法のものである。
In the present invention, as means for ensuring the sealing performance, the inner surface of the
嵌め合いしろは、圧力容器1の開口部2のシール面Aと、この開口部2に取り付けられる、シール面Aより径が大きい他部材11のシール面Bとの直径の差である。他部材11を圧力容器1の開口部2に取り付けると、縮径した他部材11のシール面Bが元の径に戻ろうとする弾性変形エネルギによってシール面Bに接触面圧が発生する。この面圧は、シール面に垂直な方向、すなわち、ほぼ半径方向に作用し、他部材11のシール面Bの縮径が弾性変形の範囲内である限り、接触面圧は長期間にわたり減衰しない。さらに、圧力容器内部の圧力が他部材11のシール面Bを外側に向かって押圧するので、容器内部の圧力が高くなっても、シール面に加わる面圧が保持され、高い密封性能が発揮される。
The fitting margin is a difference in diameter between the seal surface A of the
嵌め合いしろを有するシール面Bを有する他部材11を、圧力容器1の開口部2のシール面Aに嵌め合わせて締結するには、図1や図3の例のようにシール面にテーパが付いている場合、開口部2に雌ねじ部4、この雌ねじ部に対向する部位の他部材11の外周面に雄ねじ部14を設けて、ねじ込むことにより他部材11のシール面Bを開口部2のシール面Aに嵌め合わせることができる。別の方式として、圧力容器1を高温にして膨張させ、こうして広がった開口部2のシール面Aの中に他部材11のシール面Bを螺合締結した後、容器を冷却して、開口部2を収縮させ、嵌め合わせる焼き嵌めも利用できる。この場合、圧力容器1が大型である場合には、容器全体を加熱する必要はなく、少なくとも開口部2の付近だけを高温にして膨張させればよい。このように焼き嵌め方式で締結する場合にも、他部材11の抜け落ち防止のためねじ部を設けることが必要である。
In order to fit and fasten the
図2の例のように、シール面B(13)が円筒面(すなわち、θ=0°)であって、ねじ込むことが難しい形状の場合、焼き嵌め方式で締結すればよい。シール面3、13の形状は、圧力容器と他部材との締結を焼き嵌めによる行う場合には、円筒面、円錐体面、曲率回転体面いずれでも構わない。 As in the example of FIG. 2, when the sealing surface B (13) is a cylindrical surface (that is, θ = 0 °) and has a shape that is difficult to be screwed in, the shrink-fitting method may be used. The shape of the sealing surfaces 3 and 13 may be any of a cylindrical surface, a conical surface, and a rotating surface of curvature when the pressure vessel and other members are fastened by shrink fitting.
シール面が円錐体面または曲率回転体面である場合の、ねじ込み方向(円錐体面または曲率回転体面の中心軸)に対するテーパ角度または平均の接線角度は、例えば、図4(θ=60°)に示すように、あまりに大きすぎると、ねじの締め付け力の変動のシール面の面圧に及ぼす影響が大きくなり、また内圧が負荷された時の接触面圧の低下も著しくなる。そのため、この角度θは30°以下とすることが好ましく、より好ましくは1〜25°の範囲内である。 When the sealing surface is a conical surface or a curved rotator surface, the taper angle or average tangential angle with respect to the screwing direction (the central axis of the conical surface or the curved rotator surface) is, for example, as shown in FIG. 4 (θ = 60 °). On the other hand, if the pressure is too large, the influence of fluctuations in the tightening force of the screw on the surface pressure of the seal surface increases, and the contact surface pressure is significantly reduced when an internal pressure is applied. Therefore, this angle θ is preferably 30 ° or less, and more preferably in the range of 1 to 25 °.
他部材11のシール面Bと圧力容器1の開口部2のシール面Aとの直径差である嵌め合いしろについては、永久変形が生じるほど大きくすると、かえってシール面の接触面圧を損なうことになるので、締結後の他部材11と容器開口部2の変形がいずれも弾性変形領域内に留まるように設定すべきである。
If the fitting margin, which is the difference in diameter between the sealing surface B of the
その望ましい範囲は材質や寸法などにもよるが、他部材11および容器開口部2がいずれも鋼である場合には、他部材11のシール面B(13)の直径の0.1〜2%の範囲内とするのがよい。基準となるシール面Bの直径は、圧力容器1に他部材11を螺合締結した時のシール面Bの中央部での直径とする。
The desirable range depends on the material and dimensions, but when the
シール面形状が円錐体面または曲率回転体面である場合、シール面の嵌め合いしろは、ねじ込みストッパの役割を果たすトルクショルダによりコントロールすることができる。他部材11の外周面に設けたトルクショルダ15が容器1の開口部2内面に設けたトルクショルダ5に当接した状態でのシール面の直径の差が嵌め合いしろになり、製造ならびに組み立ての管理が容易となる。なお、シール面形状が円筒体である場合でも、トルクショルダを設けると、位置決めが容易になるので、トルクショルダを設けることが好ましい。
When the sealing surface shape is a conical surface or a curved rotating body surface, the fitting margin of the sealing surface can be controlled by a torque shoulder that serves as a screw stopper. When the
例えば、図1および図2に示す例では、図8と同様に、圧力容器1の開口部2の端面にトルクショルダ5が配置され、これに当接するように、他部材11にもそのねじ込み方向後方のネジ頭部に相当するフランジ部分の内側端面にトルクショルダ15が設けられている。図3に示した態様では、他部材11の先端端面がトルクショルダ15となり、これに当接するように、圧力容器1の開口部2の内面に、トルクショルダ5が形成されている。
For example, in the example shown in FIG. 1 and FIG. 2, the
トルクショルダ5および15は、いずれもねじ込み軸に対し略垂直な面とすることが好ましい。図1、図2および図3の例のトルクショルダはいずれもねじ込み軸に対し略垂直な面であるが、ねじ込みストッパの役割を果たす限り、ねじ込み軸に対し略垂直な面から多少傾斜していてもよい。トルクショルダの当接面積は、ストッパとしての役割を果たせば十分であり、比較的小さな面積であってもよい。
Both the
トルクショルダの位置は上述した位置に限られるものではない。すなわち、トルクショルダは、他部材11の先端位置(図3の位置)、ねじ部とシール面との間、ねじの中(言い換えると、2段ねじの間)、ねじ部の後方(図1の位置)のどこに設けてもよい。 The position of the torque shoulder is not limited to the position described above. That is, the torque shoulder includes the tip position of the other member 11 (position in FIG. 3), between the screw portion and the seal surface, in the screw (in other words, between two-stage screws), and behind the screw portion (in FIG. 1). (Position) may be provided anywhere.
シール面に対しても同じことが言え、他部材11に設けられるシール面Bについて述べると、ねじ部の最先端の外周面、ねじ部の中間の外周面(言い換えると、2段ねじの間)、ねじ部の後方の外周面のどこに設けてもよい。これからわかるように、ねじ部も、2箇所以上に設けることができる。すなわち、ねじ部、シール面、およびトルクショルダのいずれも、2箇所以上設けることができる。
The same can be said for the seal surface, and the seal surface B provided on the
図7(a)〜(q)に、他部材11が配管接続部材(すなわち、貫通孔12を有する)である場合について、シール面13、ねじ部14およびトルクショルダ15の可能な組み合わせのいくつかを示す。補助的な第2のシール面や第2のショルダはどこに設けても構わないが、シール面が隣接するのは、それぞれの面圧が低下するため、あまり良い態様といえない。
7A to 7Q, some possible combinations of the
嵌め合いしろとシール面の肉厚は、シール面に発生する接触面圧の大きさに大きく関係する。また、シール面に発生する接触面圧の大きさは、密封性能と耐焼き付き性能に大きく影響する。すなわち、接触面圧が大きすぎると、ねじ込み時に焼き付きが発生し易くなるが、逆に小さすぎると密封性能が不十分になってしまう。焼き嵌め方式では焼き付きの心配はないので、弾性変形範囲内の嵌め合いしろであればよい。 The fitting margin and the thickness of the seal surface are greatly related to the magnitude of the contact surface pressure generated on the seal surface. In addition, the magnitude of the contact surface pressure generated on the sealing surface greatly affects the sealing performance and seizure resistance. That is, if the contact surface pressure is too large, seizure is likely to occur during screwing, but if the contact surface pressure is too small, the sealing performance is insufficient. In the shrink-fitting method, there is no fear of seizure, and it is sufficient if the fit is within the elastic deformation range.
焼き付きを発生させず、かつ十分な密封性能が得られるようなシール面の面圧に、ねじの螺合による締め付けの段階でコントロールするのは相当困難である。つまり、このような条件を満たす嵌め合いしろの範囲は相当狭くなるため、製造が困難になったり、歩留まりが極端に低下する恐れがある。 It is quite difficult to control the surface pressure of the sealing surface that does not cause seizure and can provide sufficient sealing performance at the stage of tightening by screwing. That is, since the range of the fitting margin satisfying such conditions is considerably narrow, there is a possibility that the manufacture becomes difficult and the yield is extremely lowered.
この製造過程に起こりうる問題点は、雄ねじを有する他部材(すなわち、雄ねじ部材)側のシール面の肉厚を薄くすることにより解決することができる。従って、他部材は、その少なくとも1つのシール面Bの位置における厚みが、雄ねじ部の位置における厚みより小さいことが好ましい。 Problems that may occur in the manufacturing process can be solved by reducing the thickness of the seal surface on the side of the other member (that is, the male screw member) having the male screw. Therefore, it is preferable that the thickness of the other member at the position of at least one sealing surface B is smaller than the thickness at the position of the male screw portion.
雄ねじ部材のシール面を薄くすれば、嵌め合いしろが多少大きくなっても、発生する接触面圧は過度に大きくならないので、焼き付きの発生が回避できる。さらに、前述したように、容器内の加圧流体により負荷される内圧がシール面の内側に作用して、雄ねじ部材のシール面をより強く密着させる方向に働き、内圧を増加させても、接触面圧が極端に低下することはない。この作用は、雄ねじ部材のシール面が薄いほど、より顕著となって、非常に高い密封性能が得られる。 If the sealing surface of the male screw member is made thin, the contact surface pressure generated does not become excessively large even if the fitting margin is somewhat increased, so that the occurrence of seizure can be avoided. Further, as described above, the internal pressure applied by the pressurized fluid in the container acts on the inner side of the seal surface and works in a direction in which the seal surface of the male screw member is more closely attached. The contact pressure does not decrease extremely. This effect becomes more remarkable as the sealing surface of the male screw member is thinner, and a very high sealing performance is obtained.
雄ねじ部材のシール面の肉厚は、上記のように薄いほど効果的であるが、あまりに薄すぎると、減肉されたシール面の部分が嵌め合いしろにより座屈崩壊してしまって、シール面が全周にわたって均一に接触しなくなり、漏れが発生する。従って、雄ねじ部材11の少なくとも1つのシール面Bの肉厚は、嵌め合いしろの大きさにもよるが、塑性座屈崩壊の範囲内である、シール面直径の1/22より厚ければ、上記のような座屈崩壊は通常は生じない。もちろん、前記の内圧による接触面圧の増加効果を出来る限り引き出すには、前記1/22を超えない範囲で、できるだけ1/22に近いほうがよいことは明らかである。
As the thickness of the sealing surface of the male screw member is as thin as described above, it is more effective, but if it is too thin, the portion of the reduced sealing surface will buckle and collapse due to the fit, and the sealing surface Will not contact evenly over the entire circumference, causing leakage. Therefore, if the thickness of at least one seal surface B of the
このシール面Bのシール面直径とはシール面中央部での雄ねじ部材の直径である。この雄ねじ部材のシール面Bの肉厚は、上記シール面直径の1/6以下とすることが好ましい。シール面Bの肉厚がこれより厚くなると、ねじ込み時に嵌め合いしろによる焼き付きが発生しやすくなり、さらに容器内圧によるシール面接触面圧の増大効果も働きにくくなる。このように、他部材(雄ねじ部材)11のシール面Bの肉厚はその部分の直径の1/6〜1/22と、かなり薄くすることが好ましい。 The seal surface diameter of the seal surface B is the diameter of the male screw member at the center of the seal surface. The thickness of the sealing surface B of this male screw member is preferably 1/6 or less of the diameter of the sealing surface. If the thickness of the seal surface B is larger than this, seizure due to the fitting margin is likely to occur at the time of screwing, and the effect of increasing the seal surface contact surface pressure due to the internal pressure of the container becomes difficult to work. Thus, it is preferable that the thickness of the sealing surface B of the other member (male screw member) 11 is considerably reduced to 1/6 to 1/22 of the diameter of the portion.
開口部の直径の上下限の目安は特にないが、あまりに開口部が大きすぎたり小さすぎたりすると、非常に高い加工精度が必要になる。そのため、現実的には20mmから500mm程度の範囲と考える。もちろん、製造技術と製造コストが許せばこの範囲外の寸法にも適用は可能である。 There is no particular guideline for the upper and lower limits of the diameter of the opening, but if the opening is too large or too small, very high machining accuracy is required. Therefore, in reality, it is considered to be in the range of about 20 mm to 500 mm. Of course, it can be applied to dimensions outside this range if the manufacturing technology and manufacturing cost allow.
他部材が貫通孔12を有する配管接続部材である場合には、図7(a)〜(q)に示したどの例においても、基本的には、シール面を設けた部分の貫通孔の内径を大きくすれば、13で示されるシール面Bを適切な肉厚にすることはできる。但し、貫通孔の急激な径変化はエロージョンなどの発生原因となるため、内径はあまり変化させないほうが良い。従って、図7のa、b、c、e、m、n、o、p、qのように、他部材の先端またはその近傍にシール面を設け、そのシール面の肉厚を必要なら外周面を削って薄くすることにより所定のシール面肉厚を確保し、貫通孔の径は一様になるようにすることが望ましい。
When the other member is a pipe connecting member having the through-
一方、他部材11が貫通孔を持たない封止部材である場合には、図1〜図4に示すように(図中の貫通孔12がない場合)、他部材11のシール面B(13)をその先端または先端付近に設け、他部材11の先端側の端面に対して、周囲に必要な肉厚のリップ部が形成されるように中心部を削り取る中ぐりを行う。この中ぐりは、図1〜4に示すように、他部材が貫通鋼12を有する場合にも適用可能である。こうして、他部材の端面に、必要な肉厚を残して凹部が形成される。凹部の深さは、シール面Bの中央部でのシール面Bの肉厚が上記範囲となるようにすればよい。但し、あまりに深くして、雄ねじ部の部分の肉厚がシール面と同様に薄くなるのは、もちろん好ましくない。
On the other hand, when the
圧力容器1と他部材11のシール面A、Bは、密封性を確保するため、表面粗さの小さい滑らかな面であることが当然必要である。シール面材質が金属の場合、適用する表面処理、潤滑剤にもよるが、表面粗さは概ねRaで3.2μm以下の仕上げとするのが望ましい。また、密封性能をより高めるために、一方または両方のシール面表面に、銅やスズなどの軟質材料をめっきしたり、高分子系や油脂系の潤滑剤を使用してもよい。
Naturally, the sealing surfaces A and B of the
次に、本発明の効果をより具体的に検証する。
図2〜図4に示す本発明に係る圧力容器シール構造、ならびに図8に示すパッキン方式の従来技術の圧力容器シール構造について、有限要素解析により、他部材である雄ねじ部材を締め付け、次いで内圧を増加するシミュレーションを実施し、シール面の接触面圧をそれぞれ比較した。なお、前述したように、図4に示す態様は、シール面のテーパ角度が大きすぎる点で、あまり望ましくはない例である。
Next, the effect of the present invention will be verified more specifically.
The pressure vessel seal structure according to the present invention shown in FIGS. 2 to 4 and the conventional pressure vessel seal structure of the packing system shown in FIG. 8 are tightened with a male screw member, which is another member, and then the internal pressure is determined by finite element analysis. An increasing simulation was performed to compare the contact surface pressures of the seal surfaces. As described above, the embodiment shown in FIG. 4 is an example that is not very desirable in that the taper angle of the seal surface is too large.
本解析に供試したモデルの諸元を表1(解析条件)および表2(材料定数)に示す。表1において、シール面径、嵌め合いしろ、および雄ねじ部材のシール面肉厚は、いずれも雄ねじ部材のシール面の中央部での値である。 Table 1 (analysis conditions) and Table 2 (material constants) show the specifications of the models used in this analysis. In Table 1, the seal surface diameter, the margin for fitting, and the seal surface thickness of the male screw member are all values at the center of the seal surface of the male screw member.
締め付け条件はいずれも、ねじ込みストッパ(トルクショルダ)が接触するまでとした。従来技術(図8)については、パッキンの厚みが1mm減少した時点を締め付け完了とした。 The tightening conditions were all set until the screw stopper (torque shoulder) contacted. For the prior art (FIG. 8), tightening was completed when the packing thickness decreased by 1 mm.
締め付けを完了したそれぞれのモデルに、内圧を1000気圧(100MPa)まで徐々に負荷する有限要素解析を実施した。
締め付け過程のシール面の接触面圧を密封方向に積分した量(以後、単に接触面圧と呼ぶ)と締め付け軸力の関係を図5に示す。本発明のシール構造は、いずれも従来技術より高い接触面圧を有し、かつ線図の傾きも緩やかであることから、締め付け軸力の変動に対し従来技術より安定していることがわかる。
A finite element analysis in which the internal pressure was gradually applied to 1000 atmospheres (100 MPa) was performed on each model that had been tightened.
FIG. 5 shows the relationship between the amount obtained by integrating the contact surface pressure of the sealing surface in the tightening process in the sealing direction (hereinafter simply referred to as contact surface pressure) and the tightening axial force. All of the seal structures of the present invention have a higher contact surface pressure than the prior art and have a gentler slope of the diagram, so that it can be seen that the seal structure is more stable than the prior art against fluctuations in the tightening axial force.
内圧負荷過程の接触面圧と作用内圧の関係を図6に示す。従来技術のシール構造では、内圧=60MPa付近で接触面圧がゼロになるのに対し、本発明のシール構造はいずれも、100MPaまで内圧を増加しても接触面圧が残っていることが判る。さらには、本発明の範囲内であるが望ましい範囲ではない図4の態様より、本発明の望ましい範囲内である図2および図3の態様のものが、より多く接触面圧が残っていることがわかる。 FIG. 6 shows the relationship between the contact surface pressure and the working internal pressure during the internal pressure loading process. In the seal structure of the prior art, the contact surface pressure becomes zero near the internal pressure = 60 MPa, whereas in any of the seal structures of the present invention, the contact surface pressure remains even if the internal pressure is increased to 100 MPa. . Furthermore, more contact surface pressure remains in the embodiment of FIGS. 2 and 3 which is within the desired scope of the present invention than the embodiment of FIG. 4 which is within the scope of the present invention but is not desirable. I understand.
これらの解析結果が示すように本発明のシール構造は、従来技術に比べて、シール面の接触面圧がはるかに大きく、かつ締め付け軸力の変動や大きな内圧が作用してもより安定している。 As shown by these analysis results, the seal structure of the present invention has a much larger contact surface pressure of the seal surface than the conventional technology, and is more stable even if the tightening axial force fluctuates or a large internal pressure is applied. Yes.
1:圧力容器、2:圧力容器の開口部、3:シール面A、4:雌ねじ部、5:容器のトルクショルダ、11:他部材(雄ねじ部材)、12:貫通孔、13:シール面B、14:雄ねじ部、15:他部材のトルクショルダ、21:パッキン(Oリング)、θ:ねじ込み方向に対するシール面のテーパ角度 1: pressure vessel, 2: opening of pressure vessel, 3: seal surface A, 4: female screw portion, 5: torque shoulder of vessel, 11: other member (male screw member), 12: through hole, 13: seal surface B , 14: male thread portion, 15: torque shoulder of another member, 21: packing (O-ring), θ: taper angle of the seal surface with respect to the screwing direction
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006135379A JP4893100B2 (en) | 2006-05-15 | 2006-05-15 | Pressure vessel seal structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006135379A JP4893100B2 (en) | 2006-05-15 | 2006-05-15 | Pressure vessel seal structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007303648A JP2007303648A (en) | 2007-11-22 |
JP4893100B2 true JP4893100B2 (en) | 2012-03-07 |
Family
ID=38837743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006135379A Active JP4893100B2 (en) | 2006-05-15 | 2006-05-15 | Pressure vessel seal structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4893100B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5370908B2 (en) * | 2008-01-16 | 2013-12-18 | トヨタ自動車株式会社 | tank |
JP5493977B2 (en) * | 2010-02-19 | 2014-05-14 | 東亜ディーケーケー株式会社 | Explosion-proof container |
JP6830601B2 (en) * | 2017-04-13 | 2021-02-17 | サムテック株式会社 | Seal structure of high pressure container |
JP2022112549A (en) * | 2021-01-22 | 2022-08-03 | 富士電機機器制御株式会社 | Gas-filled structure, sealed magnetic contactor, gas-filled method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3726302B2 (en) * | 1995-03-15 | 2005-12-14 | 住友金属工業株式会社 | Threaded joint for oil well pipe |
JPH10332084A (en) * | 1997-05-28 | 1998-12-15 | Mitsubishi Chem Corp | Pressure-resisting container |
DE69736232T2 (en) * | 1997-05-30 | 2007-05-24 | Vallourec Mannesmann Oil & Gas France | SCREW CONNECTION FOR OIL PIPES |
JPH1113995A (en) * | 1997-06-23 | 1999-01-22 | Kobe Steel Ltd | Socket structure of pressure container of plastic liner frp(fiber reinforced plastics) |
DE19751411C1 (en) * | 1997-11-14 | 1999-01-14 | Mannesmann Ag | Composite fibre-reinforced pressurised gas tank including liner with end neck sections |
JP2000291887A (en) * | 1999-04-07 | 2000-10-20 | Toyoda Gosei Co Ltd | Pressure vessel |
JP2002349796A (en) * | 2001-05-29 | 2002-12-04 | Asahi Seisakusho Co Ltd | Valve installation structure for mouthpiece of pressure vessel |
JP3612040B2 (en) * | 2001-07-31 | 2005-01-19 | 本宮 泰雄 | dice |
DE10314948B4 (en) * | 2002-06-18 | 2005-11-17 | Hommel, Günter | screw |
JP2004124989A (en) * | 2002-09-30 | 2004-04-22 | Babcock Hitachi Kk | Structure of closing flange for inspecting pressure vessel or joint part of piping, and method for manufacturing the same |
JP4303022B2 (en) * | 2003-04-07 | 2009-07-29 | 株式会社旭製作所 | High-pressure gas container and its valve mounting structure |
JP2007278472A (en) * | 2006-04-11 | 2007-10-25 | Toyota Motor Corp | Fastening structure for tank parts |
-
2006
- 2006-05-15 JP JP2006135379A patent/JP4893100B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007303648A (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5178176B2 (en) | Connecting head structure of high-pressure fuel injection pipe | |
CN100380042C (en) | Tube fitting with separable tube gripping device | |
US20170184227A1 (en) | Pull-up by torque fitting with female threaded nut and integral dynamic wedge | |
EP2231996B1 (en) | Sealed threaded tubular connection which is resistant to successive pressure loads | |
CN103732962B (en) | Safety check | |
CN105899864A (en) | Threaded joint for steel pipe | |
CA2678604C (en) | A tight threaded joint of oil field pipes | |
JP4893100B2 (en) | Pressure vessel seal structure | |
KR102208902B1 (en) | Pipe joint | |
CN103775761A (en) | Pipeline connecting pipe fitting | |
US20110127771A1 (en) | Fittings for high pressure hydraulic couplings | |
JP2014015983A (en) | Seal structure of high-pressure gas container | |
CN112601908A (en) | Threaded joint for steel pipe | |
CN110130839A (en) | A kind of ring seal structure of coupling | |
AU2009335284B2 (en) | Sealed tubular connection used in the oil industry | |
CN103759082A (en) | Pipe connecting pipe fitting | |
US7597307B2 (en) | Two-part back cap for a plug valve and plug valves incorporating same | |
JP2008180373A (en) | Branch joint | |
RU2386888C1 (en) | Pipeline joint | |
JP2011149282A (en) | Seal pin of fuel injection pipe for high pressure | |
JP2010007786A (en) | Seal packing and sealing structure using this | |
JP2005308201A (en) | Joint for oil well steel pipe | |
JP2005036942A (en) | Press type pipe joint and its joint method and press tool | |
EP3633255B1 (en) | Threaded connection for steel pipes | |
CN100351561C (en) | Ceramic sluice valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101102 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110629 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111011 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4893100 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |