[go: up one dir, main page]

JP4884589B2 - Operation method of polymer electrolyte fuel cell - Google Patents

Operation method of polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4884589B2
JP4884589B2 JP2001031682A JP2001031682A JP4884589B2 JP 4884589 B2 JP4884589 B2 JP 4884589B2 JP 2001031682 A JP2001031682 A JP 2001031682A JP 2001031682 A JP2001031682 A JP 2001031682A JP 4884589 B2 JP4884589 B2 JP 4884589B2
Authority
JP
Japan
Prior art keywords
cell
pefc
temperature
humidity
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001031682A
Other languages
Japanese (ja)
Other versions
JP2002237320A (en
Inventor
栄基 伊藤
敏郎 小林
卓也 森賀
昭男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001031682A priority Critical patent/JP4884589B2/en
Publication of JP2002237320A publication Critical patent/JP2002237320A/en
Application granted granted Critical
Publication of JP4884589B2 publication Critical patent/JP4884589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池(以下PEFCともいう)の運転方法に関する。
【0002】
【従来の技術】
燃料電池は、水素と酸素から水を得る電池反応によって起電力を得ている。原料の水素は、メタノールなどの原燃料と水を改質触媒の存在下に反応させて得られる。このような燃料電池のうち、PEFCが優れた性能を発揮できるものとして注目されている。
かかるPEFCでは、PEFCセルの高分子中の含水量を適切に保つために加湿されている。ところが、供給された加湿水がPEFCセル内で凝縮・滞留することにより、ガスの供給が阻害されてセルの劣化の原因となっており、加湿水の供給を適切に行うにあたって問題を含んでいた。
すなわち、加湿水を過剰に供給すると、水の凝縮量が多くなり、滞留しやすくなる。逆に加湿水が不足すると、PEFCセルの高分子中の含水量が少なくなり、プロトンの移動抵抗が大きくなってPEFCセルの性能低下につながってしまうという不都合があった。
したがって、このような水の凝集・滞留を適切に制御し、PEFCセルを良好に維持し、PEFCを安定に運転するようにした改善が望まれていた。
【0003】
【発明が解決しようとする課題】
本発明は、上記事情に対してなされたものであり、水の凝集・滞留を適切に制御し、PEFCセルを安定に運転することができるようにした固体高分子型燃料電池の運転方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記目的を達成するべく鋭意検討した結果、PEFCセルに使用されているイオン交換膜の厚さ、PEFCセルの運転温度、燃料ガスの湿度(含水率)、空気の湿度(含水率)、溝長さ方向の温度分布の5つのパラメータを相互の関係において最適化した範囲に設定することで、水の凝集・滞留を起こさず、かつ、加湿水不足によるPEFCセルの高分子中の含水量を減らすことなく、高い性能を保ったまま燃料電池を運転できることを見出した。
【0005】
すなわち、上記目的を達成するために、本発明は、固体高分子型燃料電池の運転方法において、高分子膜の膜厚を30μm以上100μm未満、セル温度をセル全体で一定に制御し、運転セル温度での湿度を100%とし、燃料ガスのセル温度に対する相対湿度をY%、空気のセル温度に対する相対湿度をX%としたとき、Y≦−3/10X+140、Y≧−11/10X+130、Y≦20X−270、Y≧20X−1600で囲まれる範囲を画定し、これらの範囲となるように湿度を制御することとした。
【0006】
本発明に係る固体高分子型燃料電池の運転方法は、別の実施の形態で、高分子膜の膜厚を10μm以上30μm未満、セル温度をセル全体で一定に制御し、運転セル温度での湿度を100%とし、燃料ガスのセル温度に対する相対湿度をY%、空気のセル温度に対する相対湿度をX%としたとき、Y≦−3/10X+140、Y≧−9/10X+100、Y≦20X−270、Y≧20X−1600で囲まれる範囲を画定し、これらの範囲となるように湿度を制御することとしている。
【0009】
【発明の実施の形態】
以下に、本発明に係るPEFCの運転方法について、添付図面を参照しながらさらに詳細に説明する。
図1〜図3に、本発明に係るPEFCの運転方法によって運転されるPEFCの一実施の形態を示す。
このPEFC1は、セル2と、このセル2の両端側に配置されてセル2を挟持するセパレータ3a,3bと、前記セル2とセパレータ3a,3b間に配置された拡散層4とから構成されている。
【0010】
前記セル2は、固体高分子膜5と、該膜5の両側に配置された反応層6a,6bとから構成されている。前記拡散層4は、カーボンペーパー7と、この一方の主面に形成されたスラリー層8とから構成されている。前記セパレータ3aのセルには水素ガスを流すための溝9が形成され、他方のセパレータ3bには、空気を流すための溝10が形成されている。
【0011】
前記セル2を更に具体的に説明すると、図2に示すように、反応層6aは、燃料極11と固体高分子膜5側に形成された例えば白金触媒層12とから構成されている。反応層6bは、空気極13と固体高分子膜5側に形成された例えば白金触媒層12とから構成されている。ここで、燃料極11、空気極13では、下記のような反応が行われる。
【0012】
燃料極11において白金触媒層12により、以下の反応を起こさせる。
2 → 2H++2e-
この反応によって生じるH+が拡散する。
一方、空気極13において白金触媒層12により、以下の反応を起こさせる。
2H++2e―+1/2O2 → H2
これらの反応を合わせて電池反応が構成され、起電力を得ることができる。
【0013】
この反応を図1、図2の構成に即してさらに説明する。
まず、燃料ガス(水素含有ガス、水素ガス)が、拡散層4を通過する。そして、反応層6aの燃料極11で水素イオン(陽イオン)を生成する。この水素イオンは、固体高分子膜5を通って、反応層6bの空気極13に移動する。空気極13では、水素イオンが空気(酸素含有ガス、酸化剤)中の酸素と反応して水を生成する。
【0014】
このPEFCでは、セパレータ3a(又は3b)の平面形状は、図3に示すように溝を蛇行状に形成している。すなわち、本実施の形態では、例えば、水素ガスをセパレータ3aのコーナー部の導入孔14から対角線上の排出用孔15へ送る際に、複数回ガスの向きを変えている。なお、図3では3回であるが、変える回数は、特に限定されるものではない。
【0015】
上記のような実施の形態のPEFCでは、前記したように電力を得ると同時に水を生じるので、これが滞留せず、かつ、セル内の含水量を適切に維持してプロトンの移動抵抗を適切に保つ必要がある。
以下に、本発明者らが鋭意検討した結果得られた、PEFCを適切に運転するための運転方法の実施の形態を説明する。以下の実施の形態によれば、セル内の含水量が適切に保たれ、起電力を良好に維持することができる。
【0016】
第1の実施の形態
本発明者らは、固体高分子型燃料電池の運転方法において、固体高分子膜の膜厚を30μm以上100μm未満、セル温度をセル全体で一定に制御し、運転セル温度での湿度を100%とし、燃料ガスのセル温度に対する相対湿度をY%、空気のセル温度に対する相対湿度をX%としたとき、Y≦−3/10X+140、Y≧−11/10X+130、Y≦20X−270、Y≧20X−1600で囲まれる範囲となるように湿度を制御することを、適切な制御方法として見出した。
【0017】
ここで、燃料ガスとは、水素含有ガス、水素ガスを含む概念である。また、空気という表現は、酸素、酸素含有ガスと置き換えることもできる。このことは、本明細書中の他の各記載においても同様である。
湿度を上記範囲に制御するためには、加湿ポットもしくは水蒸気製造装置とインジェクタといった機器を用いてガス温度に応じて加湿ポットの温度もしくはインジェクタによる水蒸気の添加量を調節するようにして行うことができる。
【0018】
第1の実施の形態を実施して、セル内の含水量を適切に制御した結果と、第1の実施の形態の範囲外でセル内の含水量を適切に制御した結果とを、図4に対比して示す。
図示のように、以下のことが確かめられた。
(1)Y≦−3/10X+140(図中点線▲1▼)を外れる範囲では、電圧低下は、4%以内であったが、水溜り現象を起こし電極への均一なガス供給が妨げられてセルの破損につながる。
(2)Y≧−11/10X+130(図中一点鎖線▲2▼)を外れる範囲では、水溜り現象がなかったものの、電極中の固体高分子成分及び固体高分子膜の含水率が低下してイオン導電性が低くなるため電圧低下が4%を超えた。
(3)Y≦20X−270(図中一点鎖線▲3▼)を外れるでは、水溜り現象がなかったものの、電極中の固体高分子成分及び固体高分子膜の含水率が低下してイオン導電性が低くなるため電圧低下が4%を超えた。
(4)Y≧20X−1600(図中点線▲4▼)電圧低下は、4%以内であったが、水溜り現象を起こし電極への均一なガス供給が妨げられてセルの破損につながる。
(5)本実施の形態に係る上記線▲1▼から▲4▼で囲まれた領域は、良好な発電特性を示した。
以上のことから、本実施の形態に係る運転方法では、パラメータが相互の関係において最適化した範囲であることが了解される。
【0019】
第2の実施の形態
本発明者らは、固体高分子型燃料電池の運転方法において、高分子膜の膜厚を10μm以上30μm未満、セル温度をセル全体で一定に制御し、運転セル温度での湿度を100%とし、燃料ガスのセル温度に対する相対湿度をY%、空気のセル温度に対する相対湿度をX%としたとき、Y≦−3/10X+140、Y≧−9/10X+100、Y≦20X−270、Y≧20X−1600で囲まれる範囲となるように湿度を制御することを、適切な制御方法として見出した。
【0020】
湿度を上記範囲に制御するためには、加湿ポットもしくは水蒸気製造装置とインジェクタといった機器を用いてガス温度に応じて加湿ポットの温度もしくはインジェクタによる水蒸気の添加量を調節するようにして行うことができる。
【0021】
第2の実施の形態を実施して、セル内の含水量を適切に制御した結果と、第2の実施の形態の範囲外でセル内の含水量を適切に制御した結果とを、図5に対比して示す。
図示のように、以下のことが確かめられた。
(1)Y≦−3/10X+140(図中点線▲1▼)を外れる範囲では、電圧低下は、4%以内であったが、水溜り現象を起こし電極への均一なガス供給が妨げられてセルの破損につながる。
(2)Y≧−9/10X+100(図中一点鎖線▲2▼)を外れる範囲では、水溜り現象がなかったものの、電極中の固体高分子成分及び固体高分子膜の含水率が低下してイオン導電性が低くなるため電圧低下が4%を超えた。
(3)Y≦20X−270(図中一点鎖線▲3▼)を外れるでは、水溜り現象がなかったものの、電極中の固体高分子成分及び固体高分子膜の含水率が低下してイオン導電性が低くなるため電圧低下が4%を超えた。
(4)Y≧20X−1600(図中点線▲4▼)電圧低下は、4%以内であったが、水溜り現象を起こし電極への均一なガス供給が妨げられてセルの破損につながる。
(5)本実施の形態に係る上記線▲1▼から▲4▼で囲まれた領域は、良好な発電特性を示した。
以上のことから、本実施の形態に係る運転方法では、パラメータが相互の関係において最適化した範囲であることが了解される。
【0028】
【発明の効果】
上記したところから明かなように、本発明によれば、水の凝集・滞留を適切に制御し、PEFCセルを安定に運転することができるようにした固体高分子型燃料電池の運転方法が提供される。
【図面の簡単な説明】
【図1】本発明に係るPEFCの運転方法を実施するPEFCの一実施の形態を概念的に示す断面図である。
【図2】本発明に係るPEFCの運転方法を実施するPEFCの発電原理を説明する概念図である。
【図3】本発明に係るPEFCの運転方法を実施するPEFCの一実施の形態について、セル構造を説明する平面図である。
【図4】本発明に係るPEFCの運転方法について、第1の実施の形態の最適制御範囲を示すグラフである。
【図5】本発明に係るPEFCの運転方法について、第2の実施の形態の最適制御範囲を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a polymer electrolyte fuel cell (hereinafter also referred to as PEFC).
[0002]
[Prior art]
A fuel cell obtains an electromotive force by a cell reaction that obtains water from hydrogen and oxygen. The raw material hydrogen is obtained by reacting raw fuel such as methanol and water in the presence of a reforming catalyst. Among such fuel cells, PEFC is attracting attention as being able to exhibit excellent performance.
Such PEFC is humidified in order to keep the water content in the polymer of the PEFC cell appropriate. However, the supplied humidified water condenses and stays in the PEFC cell, which inhibits the gas supply and causes deterioration of the cell, and there is a problem in properly supplying the humidified water. .
That is, if humidified water is supplied excessively, the amount of water condensation increases and the water tends to stay. On the other hand, when the humidified water is insufficient, the water content in the polymer of the PEFC cell is reduced, and the proton transfer resistance is increased, leading to a decrease in performance of the PEFC cell.
Therefore, there has been a demand for an improvement that appropriately controls such agglomeration and retention of water, maintains a PEFC cell well, and operates the PEFC stably.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a method for operating a polymer electrolyte fuel cell in which the aggregation and retention of water is appropriately controlled and the PEFC cell can be stably operated. The purpose is to do.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that the thickness of the ion exchange membrane used in the PEFC cell, the operating temperature of the PEFC cell, the humidity of the fuel gas (water content), the humidity of the air ( By setting the five parameters of moisture content) and temperature distribution in the groove length direction to the optimized ranges in relation to each other, water does not coagulate and stay in the polymer in the PEFC cell due to lack of humidified water. It has been found that the fuel cell can be operated while maintaining high performance without reducing the water content.
[0005]
That is, in order to achieve the above object, the present invention provides a method for operating a polymer electrolyte fuel cell, wherein the film thickness of the polymer membrane is controlled to be 30 μm or more and less than 100 μm, the cell temperature is controlled to be constant throughout the cell, When the humidity at the temperature is 100%, the relative humidity with respect to the cell temperature of the fuel gas is Y%, and the relative humidity with respect to the cell temperature of the air is X%, Y ≦ −3 / 10X + 140, Y ≧ −11 / 10X + 130, Y A range surrounded by ≦ 20X-270 and Y ≧ 20X-1600 was defined, and the humidity was controlled to be within these ranges .
[0006]
In another embodiment, the solid polymer fuel cell operation method according to the present invention is such that the film thickness of the polymer membrane is 10 μm or more and less than 30 μm, the cell temperature is controlled to be constant throughout the cell, and the operation cell temperature is When the humidity is 100%, the relative humidity with respect to the cell temperature of the fuel gas is Y%, and the relative humidity with respect to the cell temperature of the air is X%, Y ≦ −3 / 10X + 140, Y ≧ −9 / 10X + 100, Y ≦ 20X− 270, a range surrounded by Y ≧ 20X-1600 is defined, and the humidity is controlled to be within these ranges .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the operation method of the PEFC according to the present invention will be described in more detail with reference to the accompanying drawings.
1 to 3 show an embodiment of PEFC operated by the PEFC operating method according to the present invention.
The PEFC 1 is composed of a cell 2, separators 3a and 3b disposed on both ends of the cell 2 to sandwich the cell 2, and a diffusion layer 4 disposed between the cell 2 and the separators 3a and 3b. Yes.
[0010]
The cell 2 includes a solid polymer film 5 and reaction layers 6 a and 6 b disposed on both sides of the film 5. The diffusion layer 4 includes a carbon paper 7 and a slurry layer 8 formed on one main surface. A groove 9 for flowing hydrogen gas is formed in the cell of the separator 3a, and a groove 10 for flowing air is formed in the other separator 3b.
[0011]
The cell 2 will be described more specifically. As shown in FIG. 2, the reaction layer 6a includes a fuel electrode 11 and, for example, a platinum catalyst layer 12 formed on the solid polymer film 5 side. The reaction layer 6b includes an air electrode 13 and, for example, a platinum catalyst layer 12 formed on the solid polymer film 5 side. Here, the following reaction is performed in the fuel electrode 11 and the air electrode 13.
[0012]
The following reaction is caused to occur in the fuel electrode 11 by the platinum catalyst layer 12.
H 2 → 2H + + 2e
H + produced by this reaction diffuses.
On the other hand, the platinum catalyst layer 12 causes the following reaction in the air electrode 13.
2H + + 2e- + 1 / 2O 2 → H 2 O
A battery reaction is constituted by combining these reactions, and an electromotive force can be obtained.
[0013]
This reaction will be further described with reference to the configuration of FIGS.
First, fuel gas (hydrogen-containing gas, hydrogen gas) passes through the diffusion layer 4. Then, hydrogen ions (cations) are generated at the fuel electrode 11 of the reaction layer 6a. The hydrogen ions move through the solid polymer film 5 to the air electrode 13 of the reaction layer 6b. At the air electrode 13, hydrogen ions react with oxygen in the air (oxygen-containing gas, oxidant) to generate water.
[0014]
In this PEFC, the planar shape of the separator 3a (or 3b) is such that grooves are formed in a meandering shape as shown in FIG. That is, in the present embodiment, for example, when hydrogen gas is sent from the introduction hole 14 at the corner of the separator 3a to the discharge hole 15 on the diagonal line, the direction of the gas is changed a plurality of times. In addition, although it is 3 times in FIG. 3, the frequency | count of changing is not specifically limited.
[0015]
In the PEFC of the embodiment as described above, water is generated at the same time as power is obtained as described above, so that this does not stay, and the moisture content in the cell is appropriately maintained to appropriately control the proton migration resistance. Need to keep.
Hereinafter, an embodiment of an operation method for appropriately operating a PEFC obtained as a result of intensive studies by the present inventors will be described. According to the following embodiments, the water content in the cell is appropriately maintained, and the electromotive force can be maintained well.
[0016]
First Embodiment In the method of operating a solid polymer fuel cell, the present inventors controlled the film thickness of the solid polymer film to be 30 μm or more and less than 100 μm and the cell temperature to be constant throughout the cell. When the humidity at the operating cell temperature is 100%, the relative humidity with respect to the cell temperature of the fuel gas is Y%, and the relative humidity with respect to the cell temperature of the air is X%, Y ≦ −3 / 10X + 140, Y ≧ −11 / It has been found as an appropriate control method to control the humidity so that it is in a range surrounded by 10X + 130, Y ≦ 20X-270, and Y ≧ 20X-1600.
[0017]
Here, the fuel gas is a concept including a hydrogen-containing gas and a hydrogen gas. In addition, the expression “air” can be replaced with oxygen or an oxygen-containing gas. The same applies to other descriptions in the present specification.
In order to control the humidity within the above range, it is possible to adjust the temperature of the humidifying pot or the amount of steam added by the injector according to the gas temperature using a humidifying pot or a steam producing device and an injector. .
[0018]
FIG. 4 shows the result of appropriately controlling the water content in the cell by implementing the first embodiment and the result of appropriately controlling the water content in the cell outside the range of the first embodiment. In comparison with
As shown in the figure, the following was confirmed.
(1) In the range where Y ≦ −3 / 10X + 140 (dotted line (1) in the figure) is deviated, the voltage drop was within 4%. It will lead to cell damage.
(2) In the range where Y ≧ −11 / 10X + 130 (one-dot chain line (2) in the figure), the water retention phenomenon did not occur, but the water content of the solid polymer component and the solid polymer film in the electrode decreased. The voltage drop exceeded 4% due to the lower ionic conductivity.
(3) If Y ≦ 20X-270 (dot-dash line (3) in the figure) is deviated, there is no water pool phenomenon, but the water content of the solid polymer component and the solid polymer film in the electrode is reduced, and the ionic conductivity The voltage drop exceeded 4% due to the low nature.
(4) Y ≧ 20X-1600 (dotted line (4) in the figure) The voltage drop was within 4%. However, the phenomenon of water retention occurred and the uniform gas supply to the electrode was hindered, leading to cell damage.
(5) The region surrounded by the lines {circle around (1)} to {circle around (4)} according to the present embodiment showed good power generation characteristics.
From the above, in the operation method according to the present embodiment, it is understood that the parameters are in a range optimized in relation to each other.
[0019]
Second embodiment In the operation method of the polymer electrolyte fuel cell, the present inventors controlled the film thickness of the polymer film to 10 μm or more and less than 30 μm, the cell temperature to be constant throughout the cell, When the humidity at the operating cell temperature is 100%, the relative humidity with respect to the fuel gas cell temperature is Y%, and the relative humidity with respect to the air cell temperature is X%, Y ≦ −3 / 10X + 140, Y ≧ −9 / 10X + 100 , Y ≦ 20X-270, Y ≧ 20X-1600, it was found as an appropriate control method to control the humidity so that it is in the range surrounded.
[0020]
In order to control the humidity within the above range, it is possible to adjust the temperature of the humidifying pot or the amount of steam added by the injector according to the gas temperature using a humidifying pot or a steam producing device and an injector. .
[0021]
FIG. 5 shows the result of appropriately controlling the water content in the cell by implementing the second embodiment and the result of appropriately controlling the water content in the cell outside the range of the second embodiment. In comparison with
As shown in the figure, the following was confirmed.
(1) In the range where Y ≦ −3 / 10X + 140 (dotted line (1) in the figure) is deviated, the voltage drop was within 4%. It will lead to cell damage.
(2) In the range where Y ≧ −9 / 10X + 100 (one-dot chain line (2) in the figure), there was no water retention phenomenon, but the water content of the solid polymer component and the solid polymer film in the electrode decreased. The voltage drop exceeded 4% due to the lower ionic conductivity.
(3) If Y ≦ 20X-270 (dot-dash line (3) in the figure) is deviated, there is no water pool phenomenon, but the water content of the solid polymer component and the solid polymer film in the electrode is reduced, and the ionic conductivity The voltage drop exceeded 4% due to the low nature.
(4) Y ≧ 20X-1600 (dotted line (4) in the figure) The voltage drop was within 4%. However, the phenomenon of water retention occurred and the uniform gas supply to the electrode was hindered, leading to cell damage.
(5) The region surrounded by the lines {circle around (1)} to {circle around (4)} according to the present embodiment showed good power generation characteristics.
From the above, in the operation method according to the present embodiment, it is understood that the parameters are in a range optimized in relation to each other.
[0028]
【Effect of the invention】
As is clear from the above, according to the present invention, there is provided a method for operating a polymer electrolyte fuel cell that appropriately controls the aggregation and retention of water and enables the PEFC cell to operate stably. Is done.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view conceptually showing an embodiment of a PEFC that implements a PEFC operating method according to the present invention.
FIG. 2 is a conceptual diagram for explaining the power generation principle of a PEFC that implements the PEFC operation method according to the present invention.
FIG. 3 is a plan view for explaining a cell structure in one embodiment of PEFC for carrying out the PEFC operation method according to the present invention.
FIG. 4 is a graph showing the optimum control range of the first embodiment for the PEFC operation method according to the present invention.
FIG. 5 is a graph showing the optimum control range of the second embodiment for the PEFC operation method according to the present invention.

Claims (2)

高分子膜の膜厚を30μm以上100μm未満とし、セル温度をセル全体で一定に制御し、運転セル温度での湿度を100%とし、燃料ガスのセル温度に対する相対湿度をY%、空気のセル温度に対する相対湿度をX%としたとき、Y≦−3/10X+140、Y≧−11/10X+130、Y≦20X−270、Y≧20X−1600で囲まれる範囲を画定し、これらの範囲となるように湿度を制御することを特徴とする固体高分子型燃料電池の運転方法。The film thickness of the polymer film is 30 μm or more and less than 100 μm, the cell temperature is controlled to be constant throughout the cell, the humidity at the operating cell temperature is 100%, the relative humidity of the fuel gas to the cell temperature is Y%, and the air cell When the relative humidity with respect to the temperature is X%, a range surrounded by Y ≦ −3 / 10X + 140, Y ≧ −11 / 10X + 130, Y ≦ 20X−270, Y ≧ 20X-1600 is defined, and these ranges are set. A method for operating a polymer electrolyte fuel cell, characterized by controlling humidity. 高分子膜の膜厚を10μm以上30μm未満とし、セル温度をセル全体で一定に制御し、運転セル温度での湿度を100%とし、燃料ガスのセル温度に対する相対湿度をY%、空気のセル温度に対する相対湿度をX%としたとき、Y≦−3/10X+140、Y≧−9/10X+100、Y≦20X−270、Y≧20X−1600で囲まれる範囲を画定し、これらの範囲となるように湿度を制御することを特徴とする固体高分子型燃料電池の運転方法。The film thickness of the polymer film is 10 μm or more and less than 30 μm, the cell temperature is controlled to be constant throughout the cell, the humidity at the operating cell temperature is 100%, the relative humidity of the fuel gas to the cell temperature is Y%, and the air cell When the relative humidity with respect to the temperature is X%, a range surrounded by Y ≦ −3 / 10X + 140, Y ≧ −9 / 10X + 100, Y ≦ 20X-270, Y ≧ 20X-1600 is defined, and these ranges are set. A method for operating a polymer electrolyte fuel cell, characterized by controlling humidity.
JP2001031682A 2001-02-08 2001-02-08 Operation method of polymer electrolyte fuel cell Expired - Fee Related JP4884589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031682A JP4884589B2 (en) 2001-02-08 2001-02-08 Operation method of polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031682A JP4884589B2 (en) 2001-02-08 2001-02-08 Operation method of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002237320A JP2002237320A (en) 2002-08-23
JP4884589B2 true JP4884589B2 (en) 2012-02-29

Family

ID=18895732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031682A Expired - Fee Related JP4884589B2 (en) 2001-02-08 2001-02-08 Operation method of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4884589B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157122B2 (en) * 2006-10-25 2013-03-06 株式会社日立製作所 Polymer electrolyte fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332864A (en) * 1986-07-26 1988-02-12 Hitachi Ltd Fuel cell stack
JPH06333590A (en) * 1993-05-21 1994-12-02 Fuji Electric Co Ltd Solid polyelectrolyte fuel cell
JP3923627B2 (en) * 1997-11-25 2007-06-06 株式会社東芝 Solid polymer electrolyte fuel cell system
JP2000182636A (en) * 1998-12-14 2000-06-30 Aisin Seiki Co Ltd Fuel cell separator and fuel cell

Also Published As

Publication number Publication date
JP2002237320A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP4923319B2 (en) Fuel cell
CA2490877C (en) Humidity controlled solid polymer electrolyte fuel cell assembly
US20020192530A1 (en) Fuel cell that can stably generate electricity with excellent characteristics
JPH1131520A (en) Solid high molecular type fuel cell
JPH10172587A (en) Solid highpolymer type fuel cell
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
JP6745920B2 (en) Bipolar plate with variable width in the reaction gas channel in the inlet region of the active region, fuel cell stack, fuel cell system with such bipolar plate, and vehicle
JP4559539B2 (en) Fuel cell
JP5124900B2 (en) Fuel cell having a stack structure
JPWO2002047190A1 (en) Polymer electrolyte fuel cell and method of operating the same
US6830840B1 (en) Operation method for polymer electrolytic fuel cell
US20040096709A1 (en) Fuel cell system with a dry cathode feed
JP2002334708A (en) Fuel cell
JP2004087457A (en) Fuel cell and fuel cell system
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
JP3738956B2 (en) Fuel cell
JP2002164057A (en) Polymer electrolyte fuel cell and method of manufacturing the same
JP2006147425A (en) Electrolyte membrane for polymer electrolyte fuel cell, its manufacturing method and the polymer electrolyte fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP4884589B2 (en) Operation method of polymer electrolyte fuel cell
JP2001135326A (en) Solid polymer electrolyte fuel cell and stack
JP2003197203A (en) Fuel cell
JP3500086B2 (en) Fuel cell and fuel cell using the same
JP2005235522A (en) Polymer electrolyte fuel cell and operation method of the same
JP3685039B2 (en) Polymer electrolyte fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4884589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees