JP4877134B2 - Exhaust gas purification device - Google Patents
Exhaust gas purification device Download PDFInfo
- Publication number
- JP4877134B2 JP4877134B2 JP2007198544A JP2007198544A JP4877134B2 JP 4877134 B2 JP4877134 B2 JP 4877134B2 JP 2007198544 A JP2007198544 A JP 2007198544A JP 2007198544 A JP2007198544 A JP 2007198544A JP 4877134 B2 JP4877134 B2 JP 4877134B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- fuel ratio
- air
- active oxygen
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
本発明は、排気ガス浄化装置、特に、エンジンの排気通路に配設された排気ガス浄化触媒の上流に活性酸素成分を供給するように構成された排気ガス浄化装置に関し、排気エミッションの向上を図る技術分野に属する。 The present invention relates to an exhaust gas purification device, and more particularly, to an exhaust gas purification device configured to supply an active oxygen component upstream of an exhaust gas purification catalyst disposed in an exhaust passage of an engine, and to improve exhaust emission. It belongs to the technical field.
一般に、ガソリン等の化石燃料をエネルギ源とする自動車等の車両においては、エンジン始動直後の数10秒間は、排気ガス温度が比較的低く、エンジンの排気通路に配設された排気ガス浄化触媒における白金(Pt)やパラジウム(Pd)等の触媒金属が活性化していないために、未燃排気ガス成分である炭化水素(HC)及び一酸化炭素(CO)の浄化が困難であることが知られている。これを改善する方法の1つとして、従来、触媒をエキゾーストマニホルドの直下に配設した「直キャタ」と称されるマニホルド触媒が広く採用されている。しかし、この方法は、触媒温度が活性化温度に上昇するまでの時間の短縮化を図るものであり、問題の根本的な解決策とはなっていない。 In general, in a vehicle such as an automobile using fossil fuel such as gasoline as an energy source, the exhaust gas temperature is relatively low for several tens of seconds immediately after the engine is started, and the exhaust gas purification catalyst disposed in the exhaust passage of the engine It is known that hydrocarbon (HC) and carbon monoxide (CO), which are unburned exhaust gas components, are difficult to purify because catalytic metals such as platinum (Pt) and palladium (Pd) are not activated. ing. As one method for improving this, conventionally, a manifold catalyst called “straight catalyzer” in which the catalyst is disposed directly under the exhaust manifold has been widely adopted. However, this method shortens the time until the catalyst temperature rises to the activation temperature, and is not a fundamental solution to the problem.
そこで、ゼオライトをはじめとする炭化水素吸着材をマニホルド触媒の材料として用いることが行われている。すなわち、エンジン始動後、排気ガス温度が比較的低いときは、エンジンから排出された未燃炭化水素を炭化水素吸着材の細孔内に吸着し、排気ガス温度が約200℃まで上昇したときには、炭化水素吸着材に吸着していた未燃炭化水素を放出して、約200℃である程度活性化した触媒金属と反応させるのである。しかし、ゼオライトをはじめとするアルミノシリケート系の多孔質材は、高温化で結晶構造が崩れ易いという性質があるので、この方法は、時間の経過と共に触媒の浄化性能が次第に低下するという問題がある。 Therefore, hydrocarbon adsorbents such as zeolite are used as the material for the manifold catalyst. That is, after the engine is started, when the exhaust gas temperature is relatively low, unburned hydrocarbons discharged from the engine are adsorbed in the pores of the hydrocarbon adsorbent, and when the exhaust gas temperature rises to about 200 ° C, Unburned hydrocarbons adsorbed on the hydrocarbon adsorbent are released and reacted with a catalytic metal activated to some extent at about 200 ° C. However, since aluminosilicate porous materials such as zeolite have the property that the crystal structure tends to collapse at high temperatures, this method has a problem that the purification performance of the catalyst gradually decreases with time. .
この問題に対処するために、ゼオライト等の炭化水素吸着材を用いずに、オゾン(O3)等の活性酸素成分を用いて、未燃排気ガス成分を酸化浄化する方法が提案されている。例えば特許文献1には、空気に高電圧を作用させることにより、活性酸素成分であるオゾンを発生させ、このオゾンを排気通路の触媒よりも上流に供給して、排気ガス中に含まれるHCの一部をCOに転化し、このCOを後段の触媒でさらにCO2まで酸化する技術が開示されている。
In order to cope with this problem, there has been proposed a method for oxidizing and purifying unburned exhaust gas components using an active oxygen component such as ozone (O 3 ) without using a hydrocarbon adsorbent such as zeolite. For example, in
また、特許文献2にも、活性酸素成分の発生供給手段が開示されている。すなわち、特許文献2には、エンジンの排気管に配設したNOx吸蔵還元触媒の上流側に放電手段と水素供給手段とを設け、放電手段で発生させた酸素ラジカルやオゾンによりNOを吸蔵し易いNO2に酸化してNOx吸蔵還元触媒に吸蔵させ、このNOx吸蔵還元触媒から放出されるNO2を水素供給手段で排気管に供給された水素により還元浄化するように構成された排気浄化装置が開示されている。
ここで、一般に、オゾン等の活性酸素成分は酸化力が強く、かつ室温程度の比較的低い温度では生成してから分解するまでの寿命が比較的長いので、エンジンの始動後に、排気ガス温度が触媒活性化温度に到達するまでの間、活性酸素成分を触媒よりも上流の排気通路に供給することは、HCやCOの未燃排気ガス成分を酸化浄化する有効な方法であると考えられる。 Here, in general, active oxygen components such as ozone have a strong oxidizing power and have a relatively long life from generation to decomposition at a relatively low temperature of about room temperature. Supplying the active oxygen component to the exhaust passage upstream of the catalyst until reaching the catalyst activation temperature is considered to be an effective method for oxidizing and purifying unburned exhaust gas components of HC and CO.
ところで、炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOx)を同時に浄化することが可能な三元触媒は、その浄化ウインドウが理論空燃比(A/F=14.7)近傍の狭い範囲に限られているから、エンジンの排気通路に三元触媒が配設されている場合は、この三元触媒よりも上流の排気通路に、排気通路を流れる排気ガス中の残存酸素濃度から空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出する空燃比センサを配設して、エンジン始動後は、この空燃比センサからの信号に基き燃料噴射量を増減する空燃比制御を行うことが通例である。そして、この空燃比制御の結果、空燃比は、理論空燃比を挟んでリッチ側とリーン側とに周期的に振れることとなる。 By the way, the three-way catalyst capable of simultaneously purifying hydrocarbon (HC), carbon monoxide (CO) and nitrogen oxide (NOx) has a purification window with a theoretical air-fuel ratio (A / F = 14.7). When the three-way catalyst is provided in the engine exhaust passage, the remaining oxygen in the exhaust gas flowing through the exhaust passage is located upstream of the three-way catalyst. An air-fuel ratio sensor that detects whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio is provided from the concentration.After the engine is started, the fuel injection amount is determined based on the signal from the air-fuel ratio sensor. It is customary to perform an increasing / decreasing air-fuel ratio control. As a result of the air-fuel ratio control, the air-fuel ratio periodically fluctuates between the rich side and the lean side across the theoretical air-fuel ratio.
このような状況下で、前述したように、エンジン始動後に、排気ガス温度が触媒活性化温度よりも低い間、オゾン等の活性酸素成分を三元触媒よりも上流の排気通路に供給していると、次のような不具合が発生する。すなわち、現状用いられている活性酸素成分供給手段は、空気中の酸素を原料にして活性酸素成分を生成するので、どうしても活性酸素成分を排気通路に供給するときに酸素も一緒に供給することとなり、また酸素と活性酸素とを厳密に分離することが困難なので、活性酸素成分の供給に伴い排気ガス中の酸素濃度が増加するのである。 Under such circumstances, as described above, after the engine is started, while the exhaust gas temperature is lower than the catalyst activation temperature, active oxygen components such as ozone are supplied to the exhaust passage upstream of the three-way catalyst. The following problems occur. In other words, the currently used active oxygen component supply means generates active oxygen components from oxygen in the air as a raw material, so that when supplying the active oxygen components to the exhaust passage, oxygen is also supplied together. Also, since it is difficult to strictly separate oxygen and active oxygen, the oxygen concentration in the exhaust gas increases with the supply of the active oxygen component.
そして、活性酸素成分の寿命を考慮して活性酸素成分の供給ポイントが触媒の直上流に配置されているから、空燃比制御用の空燃比センサの配設位置が活性酸素成分の供給ポイントよりも上流になり、その結果、空燃比センサの信号に基いて空燃比制御を正常に行っていても、三元触媒に流れ込む排気ガスの空燃比が全体にリーン側に偏ることとなる。したがって、特に、空燃比制御によって空燃比が理論空燃比よりもリーン側に制御されているときに、三元触媒の周辺では排気ガス中の酸素濃度が過剰となって、これにより、HCやCOの未燃排気ガス成分は有効に酸化浄化されるが、NOxの浄化性能が低下するという不具合が発生するのである。 In consideration of the life of the active oxygen component, the supply point of the active oxygen component is arranged immediately upstream of the catalyst. Therefore, the position of the air-fuel ratio sensor for controlling the air-fuel ratio is more than the supply point of the active oxygen component. As a result, even if the air-fuel ratio control is normally performed based on the signal of the air-fuel ratio sensor, the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is biased to the lean side as a whole. Therefore, particularly when the air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio by the air-fuel ratio control, the oxygen concentration in the exhaust gas becomes excessive around the three-way catalyst. Although the unburned exhaust gas component is effectively oxidized and purified, a problem arises in that the NOx purification performance deteriorates.
本発明は、エンジンの始動後に、排気ガス温度が触媒活性化温度以下のとき、活性酸素成分を触媒の上流の排気通路に供給するように構成された排気ガス浄化装置における前記のような不具合に対処するもので、前記活性酸素成分の供給と空燃比制御とが同時並行したときに発生するNOxの浄化性能低下の問題を抑制することを課題とする。 The present invention solves the above-described problem in the exhaust gas purification apparatus configured to supply the active oxygen component to the exhaust passage upstream of the catalyst when the exhaust gas temperature is equal to or lower than the catalyst activation temperature after the engine is started. In order to cope with this, it is an object to suppress the problem of NOx purification performance deterioration that occurs when the supply of the active oxygen component and the air-fuel ratio control are performed in parallel.
前記課題を解決するため、本発明では次のような手段を用いる。 In order to solve the above problems, the present invention uses the following means.
すなわち、本願の請求項1に記載の発明は、エンジンの排気通路に配設された排気ガス浄化触媒と、この排気ガス浄化触媒の上流の排気通路に活性酸素成分を供給可能な活性酸素成分供給手段とを有する排気ガス浄化装置であって、排気ガスの温度を検出する排気ガス温度検出手段と、エンジンの始動後に、前記排気ガス温度検出手段で検出される排気ガスの温度が前記排気ガス浄化触媒の活性化温度以下のとき、前記活性酸素成分供給手段を作動させる活性酸素成分供給制御手段と、エンジンの始動後に、空燃比が理論空燃比を挟んでリッチ側とリーン側とに振れるように制御する空燃比制御手段と、この空燃比制御手段による制御によって空燃比が理論空燃比よりもリーン側にあるときは、リッチ側にあるときに比べて、前記活性酸素成分供給制御手段による活性酸素成分の供給量を減量する活性酸素成分供給量調整手段とが備えられていることを特徴とする。
That is, the invention according to
次に、本願の請求項2に記載の発明は、エンジンの排気通路に配設された排気ガス浄化触媒と、この排気ガス浄化触媒の上流の排気通路に活性酸素成分を供給可能な活性酸素成分供給手段とを有する排気ガス浄化装置であって、排気ガスの温度を検出する排気ガス温度検出手段と、エンジンの始動後に、前記排気ガス温度検出手段で検出される排気ガスの温度が前記排気ガス浄化触媒の活性化温度以下のとき、前記活性酸素成分供給手段を作動させる活性酸素成分供給制御手段と、エンジンの始動後に、前記排気ガス温度検出手段で検出される排気ガスの温度が前記排気ガス浄化触媒の活性化温度よりも低い所定温度を超えるまでは、空燃比が理論空燃比を挟んでリッチ側とリーン側とに振れるように制御し、前記排気ガスの温度が前記所定温度を超えた後は、空燃比が理論空燃比よりも所定量リッチ側の空燃比を挟んでリッチ側とリーン側とに振れるように制御する空燃比制御手段と、この空燃比制御手段による制御によって空燃比が理論空燃比よりもリーン側にあるときは、リッチ側にあるときに比べて、前記活性酸素成分供給制御手段による活性酸素成分の供給量を減量する活性酸素成分供給量調整手段とが備えられ、前記活性酸素成分供給量調整手段は、前記排気ガスの温度が前記所定温度を超えた後は、超えるまでに比べて、空燃比がリーン側にあるときの活性酸素成分の供給量を増量することを特徴とする。
Next, an invention according to
なお、前記請求項1及び2に記載される「活性酸素成分の供給量を減量する」には、活性酸素成分の供給量をゼロとする、つまり活性酸素成分の供給を停止することも含まれる。
It should be noted that “reducing the supply amount of the active oxygen component” described in
同じく、前記請求項1及び2に記載される「排気ガス温度検出手段」は、例えば、排気通路に配設されて排気ガスの温度を直接検出するものでもよく、あるいは、負荷や回転数等のエンジンの運転状態から排気ガスの温度を間接的に検出するものでもよい。
Similarly, the “exhaust gas temperature detecting means” described in
次に、本願の請求項3に記載の発明は、請求項2に記載の排気ガス浄化装置であって、前記活性酸素成分供給量調整手段は、前記排気ガスの温度が前記所定温度を超えた後は、超えるまでに比べて、空燃比がリッチ側にあるときの活性酸素成分の供給量も増量することを特徴とする。
Next, the invention according to claim 3 of the present application is the exhaust gas purifying apparatus according to
なお、前記請求項2及び3に記載される「所定温度」は、例えば、エンジンの排気通路に配設された排気ガス浄化触媒の温度上昇曲線が急増に転じる温度(時間当たりの温度上昇率が急増に転じる温度)等である。
The “predetermined temperature” described in
まず、請求項1に記載の発明によれば、エンジンの排気通路に配設された排気ガス浄化触媒の上流に活性酸素成分を供給可能に構成された排気ガス浄化装置において、エンジンの始動後に、空燃比が理論空燃比を挟んでリッチ側とリーン側とに振れるように空燃比制御を行い、同じくエンジンの始動後に、排気ガス温度が触媒活性化温度以下のとき、前記活性酸素成分の供給を行うから、エンジン始動後で排気ガス温度が触媒活性化温度よりも低い間は、空燃比制御と活性酸素成分の供給とが同時に実行されることとなる。 First, according to the first aspect of the present invention, in the exhaust gas purification apparatus configured to be able to supply the active oxygen component upstream of the exhaust gas purification catalyst disposed in the exhaust passage of the engine, after the engine is started, Air-fuel ratio control is performed so that the air-fuel ratio fluctuates between the rich side and the lean side across the stoichiometric air-fuel ratio. Similarly, after the engine is started, when the exhaust gas temperature is lower than the catalyst activation temperature, supply of the active oxygen component is performed. Therefore, as long as the exhaust gas temperature is lower than the catalyst activation temperature after the engine is started, air-fuel ratio control and supply of active oxygen components are performed simultaneously.
そして、その場合に、空燃比制御によって空燃比が理論空燃比よりもリーン側に制御されているときは、リッチ側に制御されているときに比べて、活性酸素成分の供給量を減量する(前述したように、ゼロを含む)ようにしたから、特に、空燃比制御によって空燃比がリーン側にあるときに、活性酸素成分だけでなく酸素の供給量も減量され、これにより、排気ガス浄化触媒に流れ込む排気ガス中の酸素濃度がリーン時に過剰になることが防がれて、NOxの浄化性能低下の問題が有効に抑制されることとなる。 In this case, when the air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio by the air-fuel ratio control, the supply amount of the active oxygen component is reduced compared to when the air-fuel ratio is controlled to the rich side ( In particular, when the air-fuel ratio is on the lean side by the air-fuel ratio control, not only the active oxygen component but also the supply amount of oxygen is reduced, thereby purifying the exhaust gas. The oxygen concentration in the exhaust gas flowing into the catalyst is prevented from becoming excessive when lean, and the problem of NOx purification performance deterioration is effectively suppressed.
次に、請求項2に記載の発明によれば、前記請求項1と同様の構成の排気ガス浄化装置において、エンジンの始動後に、排気ガス温度が触媒活性化温度よりも低い所定温度(前述したように、排気通路上の触媒の温度上昇曲線が急増に転じる温度等)を超えるまでは、空燃比が理論空燃比を挟んでリッチ側とリーン側とに振れるように空燃比制御を行い、排気ガス温度が前記所定温度を超えた後は、空燃比が理論空燃比よりも所定量リッチ側の空燃比を挟んでリッチ側とリーン側とに振れるように空燃比制御を行うから、排気ガス温度が前記所定温度を超えた後は、排気ガス中の酸素濃度が総じて減少し、排気ガス中のHCやCOの未燃排気ガス成分の濃度が総じて増加することとなる。 Next, according to the second aspect of the present invention, in the exhaust gas purifying apparatus having the same configuration as that of the first aspect, the exhaust gas temperature is lower than the catalyst activation temperature after the engine is started (described above). Thus, the air-fuel ratio is controlled so that the air-fuel ratio fluctuates between the rich side and the lean side across the stoichiometric air-fuel ratio until the temperature rise curve of the catalyst on the exhaust passage exceeds the temperature at which it suddenly increases. After the gas temperature exceeds the predetermined temperature, the air-fuel ratio is controlled so that the air-fuel ratio fluctuates between the rich side and the lean side with the air-fuel ratio richer than the stoichiometric air-fuel ratio by a predetermined amount. However, after the temperature exceeds the predetermined temperature, the oxygen concentration in the exhaust gas generally decreases, and the concentration of the unburned exhaust gas components of HC and CO in the exhaust gas generally increases.
そして、その場合に、排気ガス温度が前記所定温度を超えた後は、超えるまでに比べて、空燃比がリーン側にあるときの活性酸素成分の供給量を増量するようにしたから、総じて増加したHCやCOに対応して酸化剤としての活性酸素成分がリーン時に増加し、その結果、HCやCOの未燃排気ガス成分の酸化反応がリーン時に触媒内で大量に起こって、触媒の昇温性が高まることとなる。これにより、触媒温度が活性化温度に上昇するまでの時間が短縮化し、浄化性能の改善が図られることとなる。 In that case, after the exhaust gas temperature exceeds the predetermined temperature, the supply amount of the active oxygen component when the air-fuel ratio is on the lean side is increased as compared to before the exhaust gas temperature exceeds the predetermined temperature. Corresponding to HC and CO, the active oxygen component as an oxidant increases during lean, and as a result, a large amount of oxidation reaction of unburned exhaust gas components of HC and CO occurs in the catalyst during lean and the catalyst rises. The temperature will increase. Thereby, the time until the catalyst temperature rises to the activation temperature is shortened, and the purification performance is improved.
しかも、もともと活性酸素成分の供給量が減量されているリーン時に活性酸素成分の供給量を増量するようにしたから、活性酸素成分供給手段に過度の負担を強いることなく活性酸素成分の供給量を容易に増量することが可能となる。 Moreover, since the supply amount of the active oxygen component is increased during the lean period when the supply amount of the active oxygen component is originally reduced, the supply amount of the active oxygen component can be reduced without imposing an excessive burden on the active oxygen component supply means. It is possible to increase the amount easily.
そして、請求項3に記載の発明によれば、排気ガス温度が前記所定温度を超えた後は、超えるまでに比べて、空燃比がリッチ側にあるときの活性酸素成分の供給量も増量するようにしたから、総じて増加したHCやCOに対応して酸化剤としての活性酸素成分がリーン時だけでなくリッチ時にも増加し、その結果、HCやCOの未燃排気ガス成分の酸化反応がリーン時及びリッチ時に触媒内でより大量に起こって、触媒の昇温性がさらに高まることとなる。これにより、触媒温度が活性化温度に上昇するまでの時間がさらに短縮化し、浄化性能のさらなる改善が図られることとなる。以下、発明の最良の実施形態を通して本発明をさらに詳しく説明する。 According to the third aspect of the present invention, after the exhaust gas temperature exceeds the predetermined temperature, the supply amount of the active oxygen component when the air-fuel ratio is on the rich side is also increased compared to the exhaust gas temperature exceeding the predetermined temperature. As a result, the active oxygen component as an oxidizer increases not only when lean, but also when rich, corresponding to the increased HC and CO as a whole. As a result, the oxidation reaction of unburned exhaust gas components of HC and CO It occurs in a larger amount in the catalyst at the time of lean and rich, and the temperature rise property of the catalyst is further increased. Thereby, the time until the catalyst temperature rises to the activation temperature is further shortened, and the purification performance is further improved. Hereinafter, the present invention will be described in more detail through the best mode for carrying out the invention.
図1は、本発明の最良の実施形態に係る排気ガス浄化装置10の制御システムを含んだ全体構成図である。エンジン1は吸気通路2及び排気通路3を有し、吸気通路2に、吸入空気量を制御するスロットル弁4が配設され、排気通路3に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒金属を含んだ三元触媒11が排気ガス浄化触媒として配設されている。
FIG. 1 is an overall configuration diagram including a control system of an exhaust
三元触媒11よりも上流の排気通路2に、活性酸素成分供給手段が配設されている。すなわち、三元触媒11の直上流に活性酸素供給通路12が合流し、この活性酸素供給通路12上に、空気供給ポンプ13と、オゾン(O3)等の活性酸素成分を生成するための活性酸素生成装置14とが配設されている。この活性酸素生成装置14は、例えば、空気供給ポンプ13で導入された空気を無声放電させることによりオゾンを発生させるものである。
Active oxygen component supply means is disposed in the
さらに、排気通路3には、活性酸素供給通路12の合流点(活性酸素成分の供給ポイント)よりも上流に、排気通路3を流れる排気ガス中の残存酸素濃度から空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出する空燃比センサ(O2センサ)15と、排気通路3を流れる排気ガスの温度を検出する排気ガス温度センサ16とが配設されている。なお、三元触媒11の温度は、この排気ガス温度センサ16で検出される排気ガス温度に略呼応している。
Further, in the exhaust passage 3, the air-fuel ratio is higher than the stoichiometric air-fuel ratio from the residual oxygen concentration in the exhaust gas flowing through the exhaust passage 3 upstream from the confluence (active oxygen component supply point) of the active
この排気ガス浄化装置10のコントロールユニット20は、前記スロットル弁4からの開度信号と、前記空燃比センサ15からの空燃比信号と、前記排気ガス温度センサ16からの温度信号とを入力し、その入力結果に基いて、エンジン1に対する空燃比制御と、空気供給ポンプ13及び活性酸素生成装置14に対する活性酸素供給制御とを実行する。
The
本実施形態において、空燃比制御は、およそ図2に示すフローチャートに従って行われる。すなわち、コントロールユニット20は、各種信号を読み込んだうえで、ステップS1で、排気ガス温度Tが所定温度TC以下か否かを判定する。この所定温度TCは、エンジン1の排気通路3に配設された三元触媒11の温度上昇曲線が急増に転じる温度(時間当たりの温度上昇率が急増に転じる温度:例えば100℃)である(図4の時刻t1参照)。
In the present embodiment, the air-fuel ratio control is performed according to the flowchart shown in FIG. That is, the
その結果、YESのときは、ステップS2で、空燃比が理論空燃比Aを挟んでリッチ側とリーン側とに振れるように空燃比制御を行う。より具体的には、空燃比センサ15からの出力信号に基き、フィードバック制御や学習制御を介して、エンジン1での燃料噴射量を増減し、空燃比が理論空燃比Aを挟んでリッチ側とリーン側とに振れるように空燃比制御を行う。
As a result, if YES, air-fuel ratio control is performed in step S2 so that the air-fuel ratio fluctuates between the rich side and the lean side with the theoretical air-fuel ratio A interposed therebetween. More specifically, based on the output signal from the air-
一方、ステップS1でNOのときは、ステップS3で、排気ガス温度Tが触媒活性化温度TH以下か否かを判定する。この触媒活性化温度THは、三元触媒11が活性化して排気ガス浄化率が50%となるときの温度(ライトオフ温度:例えば200℃)である(図4の時刻t2参照)。
On the other hand, if NO in step S1, it is determined in step S3 whether or not the exhaust gas temperature T is equal to or lower than the catalyst activation temperature TH. The catalyst activation temperature TH is a temperature (light-off temperature: for example, 200 ° C.) when the three-
その結果、YESのときは、ステップS4で、空燃比が所定空燃比Bを挟んでリッチ側とリーン側とに振れるように空燃比制御を行う。この所定空燃比Bは、理論空燃比Aよりも所定量リッチ側の空燃比である(図4参照)。より具体的には、空燃比センサ15からの出力信号に基き、フィードバック制御や学習制御を介して、エンジン1での燃料噴射量を増減し、かつその場合に、総じて燃料噴射量を増加させることにより(空燃比をリッチ側にずらすことにより)、空燃比が所定空燃比Bを挟んでリッチ側とリーン側とに振れるように空燃比制御を行う。
If the result is YES, air-fuel ratio control is performed in step S4 so that the air-fuel ratio fluctuates between the rich side and the lean side with the predetermined air-fuel ratio B interposed therebetween. The predetermined air-fuel ratio B is an air-fuel ratio richer than the theoretical air-fuel ratio A by a predetermined amount (see FIG. 4). More specifically, based on the output signal from the air-
一方、ステップS3でNOのときは、ステップS5で、前記ステップS2と同様、空燃比が理論空燃比Aを挟んでリッチ側とリーン側とに振れるように空燃比制御を行う。 On the other hand, if NO in step S3, air-fuel ratio control is performed in step S5 so that the air-fuel ratio fluctuates between the rich side and the lean side across the theoretical air-fuel ratio A as in step S2.
本実施形態において、活性酸素供給制御は、およそ図3に示すフローチャートに従って行われる。すなわち、コントロールユニット20は、各種信号を読み込んだうえで、ステップS11で、冷間始動であることを確認した後、ステップS12で、排気ガス温度Tが前記所定温度TC以下か否かを判定する(図4の時刻t1参照)。
In the present embodiment, the active oxygen supply control is performed according to the flowchart shown in FIG. That is, the
その結果、YESのときは、ステップS13で、空燃比が14.7以下か否か、つまり空燃比が理論空燃比Aよりもリッチ側か否かを判定する。その結果、YESのときは、ステップS14で、排気通路3へのオゾン供給量を第1供給量OS1に設定してオゾンの生成及び供給を実行し、NOのときは、ステップS15で、排気通路3へのオゾン供給量を第2供給量OS2に設定してオゾンの生成及び供給を実行する。ここで、第2供給量OS2は、第1供給量OS1よりも少ない量である。 If the result is YES, it is determined in step S13 whether or not the air-fuel ratio is 14.7 or less, that is, whether or not the air-fuel ratio is richer than the theoretical air-fuel ratio A. As a result, when YES, in step S14, the ozone supply amount to the exhaust passage 3 is set to the first supply amount OS1 to generate and supply ozone, and when NO, in step S15, the exhaust passage The ozone supply amount to 3 is set to the second supply amount OS2 to generate and supply ozone. Here, the second supply amount OS2 is smaller than the first supply amount OS1.
一方、ステップS12でNOのときは、ステップS16で、排気ガス温度Tが触媒活性化温度TH以下か否かを判定する(図4の時刻t2参照)。 On the other hand, if NO in step S12, it is determined in step S16 whether or not the exhaust gas temperature T is equal to or lower than the catalyst activation temperature TH (see time t2 in FIG. 4).
その結果、YESのときは、ステップS17で、空燃比が14.7以下か否か、つまり空燃比が理論空燃比Aよりもリッチ側か否かを判定する。その結果、YESのときは、ステップS18で、排気通路3へのオゾン供給量を第3供給量OS3に設定してオゾンの生成及び供給を実行し、NOのときは、ステップS19で、排気通路3へのオゾン供給量を第4供給量OS4に設定してオゾンの生成及び供給を実行する。ここで、第4供給量OS4は、第3供給量OS3よりも少ない量である。また、第3供給量OS3は、第1供給量OS1よりも多い量であり、第4供給量OS4は、第2供給量OS2よりも多い量である。さらに、第4供給量OS4は、第1供給量OS1よりも少ない量である。 If the result is YES, in step S17, it is determined whether or not the air-fuel ratio is 14.7 or less, that is, whether or not the air-fuel ratio is richer than the theoretical air-fuel ratio A. As a result, when YES, in step S18, the ozone supply amount to the exhaust passage 3 is set to the third supply amount OS3 to generate and supply ozone, and when NO, in step S19, the exhaust passage The ozone supply amount to 3 is set to the fourth supply amount OS4 to generate and supply ozone. Here, the fourth supply amount OS4 is smaller than the third supply amount OS3. The third supply amount OS3 is larger than the first supply amount OS1, and the fourth supply amount OS4 is larger than the second supply amount OS2. Furthermore, the fourth supply amount OS4 is smaller than the first supply amount OS1.
一方、ステップS16でNOのときは、エンドとなる。すなわち、排気通路3への活性酸素の供給が終了する(図4の時刻t2)。 On the other hand, if NO in step S16, the end is reached. That is, the supply of active oxygen to the exhaust passage 3 is completed (time t2 in FIG. 4).
以上のような制御の結果、図4に示すように、排気ガス温度、活性酸素供給量及び空燃比が時間の経過に連れて変化することとなる。なお、三元触媒11の温度は、図4の排気ガス温度に略呼応して変化する。
As a result of the control as described above, as shown in FIG. 4, the exhaust gas temperature, the active oxygen supply amount, and the air-fuel ratio change over time. Note that the temperature of the three-
図4において、符号アで示した排気ガス温度の変化(実線)は、前記図2の空燃比制御及び図3の活性酸素供給制御を行ったときのものである。これに対し、符号イで示した排気ガス温度の変化(鎖線)は、空燃比が理論空燃比Aを挟んでリッチ側とリーン側とに振れるようにする空燃比制御のみ行い(つまり空燃比が所定空燃比Bを挟んでリッチ側とリーン側とに振れるようにする空燃比制御を行わず)、かつ、活性酸素供給量を固定した活性酸素供給制御を行ったときのものである。 In FIG. 4, the change (solid line) in the exhaust gas temperature indicated by the symbol “a” is obtained when the air-fuel ratio control in FIG. 2 and the active oxygen supply control in FIG. 3 are performed. On the other hand, the change (chain line) in the exhaust gas temperature indicated by symbol a is performed only in the air-fuel ratio control so that the air-fuel ratio fluctuates between the rich side and the lean side across the theoretical air-fuel ratio A (that is, the air-fuel ratio is reduced). This is the case when the active oxygen supply control is performed with the active oxygen supply amount fixed, without performing the air / fuel ratio control so as to swing between the rich side and the lean side across the predetermined air / fuel ratio B.
実線アは、鎖線イに比べて、触媒温度Tが活性化温度THに上昇するまでの時間が短縮化している。つまり、実線アと鎖線イとでは、時刻t1までの排気ガスの温度(三元触媒11の温度)の変化は同じであるが、実線アでは、相対的に早い時刻t2に温度が活性化温度THまで上昇しているのに対し、鎖線イでは、それよりも遅い時刻に温度が活性化温度THまで上昇しているのである。 The solid line a has a shorter time until the catalyst temperature T rises to the activation temperature TH than the chain line a. That is, the change in the exhaust gas temperature (temperature of the three-way catalyst 11) up to time t1 is the same in the solid line A and the chain line A, but in the solid line A, the temperature is the activation temperature at a relatively early time t2. In contrast to the temperature rising to TH, in the chain line a, the temperature rises to the activation temperature TH at a later time.
また、符号ウで示した活性酸素供給量の変化(実線)は、前記図3の活性酸素供給制御を行ったときのものである。この場合、活性酸素の供給は、前記時刻t2に終了する。これに対し、符号エで示した活性酸素供給量の変化(鎖線)は、活性酸素供給量を固定(第1供給量OS1に固定)したときのものである。この場合、活性酸素の供給は、前記時刻t2よりも遅い時刻に終了する。 Further, the change (solid line) in the active oxygen supply amount indicated by the symbol C is obtained when the active oxygen supply control in FIG. 3 is performed. In this case, the supply of active oxygen ends at the time t2. On the other hand, the change (dashed line) in the active oxygen supply amount indicated by reference sign D is obtained when the active oxygen supply amount is fixed (fixed to the first supply amount OS1). In this case, the supply of active oxygen ends at a time later than the time t2.
そして、符号オで示した空燃比の変化(点線)は、前記図2の空燃比制御を行ったときのエンジン1におけるものである。つまり、時刻t1までは、空燃比が理論空燃比Aを挟んでリッチ側とリーン側とに振れるように空燃比制御が行われ、時刻t1から時刻t2までは、空燃比が所定空燃比Bを挟んでリッチ側とリーン側とに振れるように空燃比制御が行われ、そして、時刻t2以降は、再び空燃比が理論空燃比Aを挟んでリッチ側とリーン側とに振れるように空燃比制御が行われるのである。
The change (dotted line) in the air-fuel ratio indicated by reference character O is in the
これに対し、符号カで示した空燃比の変化(実線)は、前記図3の活性酸素供給制御を行ったときの三元触媒11におけるものである。また、符号キで示した空燃比の変化(鎖線)は、活性酸素供給量を固定(第1供給量OS1に固定)したときの三元触媒11におけるものである。実線カは、鎖線キに比べて、触媒11における空燃比が全体にリッチ側に移動している。つまり、鎖線キでは、活性酸素供給量を第1供給量OS1に固定しているのに対し、実線カでは、活性酸素供給量をリーン時に第2供給量OS2や第4供給量OS4に減量することによって、三元触媒11に流れ込む排気ガス中の酸素濃度が過剰になることが防がれているのである。
On the other hand, the change (solid line) in the air-fuel ratio indicated by reference numeral is in the three-
このように、本実施形態に係る排気ガス浄化装置10は、エンジン1の排気通路3に配設された三元触媒11の上流に、空気供給ポンプ13及び活性酸素生成装置14により活性酸素成分を供給可能に構成されものである。そして、エンジン1の始動後に、空燃比が理論空燃比Aを挟んでリッチ側とリーン側とに振れるように空燃比制御を行い(S2)、同じくエンジン1の始動後に、排気ガス温度Tが触媒活性化温度TH以下のとき(S12でYES、S16でYES)、活性酸素成分の供給を行うから(S14,S15,S18,S19)、エンジン1の始動後で排気ガス温度Tが触媒活性化温度THよりも低い間は(時刻t2までは)、空燃比制御と活性酸素成分の供給とが同時に実行されることとなる。
As described above, the exhaust
そして、その場合に、空燃比制御によって空燃比が理論空燃比Aよりもリーン側に制御されているときは(S13でNO、S17でNO)、リッチ側に制御されているときに比べて(S13でYES、S17でYES)、活性酸素成分の供給量を減量する(OS2<OS1、OS4<OS3)ようにしたから、特に、空燃比制御によって空燃比がリーン側にあるときに、活性酸素成分だけでなく酸素の供給量も減量され、これにより、三元触媒11に流れ込む排気ガス中の酸素濃度がリーン時に過剰になることが防がれて、NOxの浄化性能低下の問題が有効に抑制されることとなる。
In this case, when the air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio A by air-fuel ratio control (NO in S13, NO in S17), compared to when the air-fuel ratio is controlled to be rich ( Since the supply amount of the active oxygen component is reduced (OS2 <OS1, OS4 <OS3), particularly when the air-fuel ratio is on the lean side by the air-fuel ratio control, the active oxygen component supply amount is decreased (YES in S13, YES in S17). Not only the components but also the supply amount of oxygen is reduced, which prevents the oxygen concentration in the exhaust gas flowing into the three-
また、エンジン1の始動後に、排気ガス温度Tが触媒活性化温度THよりも低い所定温度TCを超えるまでは(S1でYES)、空燃比が理論空燃比Aを挟んでリッチ側とリーン側とに振れるように空燃比制御を行い(S2)、排気ガス温度Tが前記所定温度TCを超えた後は(S1でNO)、空燃比が理論空燃比Aよりも所定量リッチ側の所定空燃比Bを挟んでリッチ側とリーン側とに振れるように空燃比制御を行うから(S4)、排気ガス温度Tが前記所定温度TCを超えた後は(時刻t1〜t2)、排気ガス中の酸素濃度が総じて減少し、排気ガス中のHCやCOの未燃排気ガス成分の濃度が総じて増加することとなる。
In addition, after the
そして、その場合に、排気ガス温度Tが前記所定温度TCを超えた後(S12でNO:時刻t1〜t2)は、超えるまで(S12でYES:時刻t1まで)に比べて、空燃比がリーン側にあるときの活性酸素成分の供給量を増量する(S19のOS4>S15のOS2)ようにしたから、総じて増加したHCやCOに対応して酸化剤としての活性酸素成分がリーン時に増加し、その結果、HCやCOの未燃排気ガス成分の酸化反応がリーン時に三元触媒11内で大量に起こって、三元触媒11の昇温性が高まることとなる。これにより、触媒温度Tが活性化温度THに上昇するまでの時間が短縮化し、浄化性能の改善が図られることとなる。
In that case, after the exhaust gas temperature T exceeds the predetermined temperature TC (NO in S12: time t1 to t2), the air-fuel ratio is leaner than that until it exceeds (YES in S12: time t1). Since the supply amount of the active oxygen component when it is on the side is increased (OS4 of S19> OS2 of S15), the active oxygen component as the oxidant increases in response to the increased HC and CO as a whole. As a result, the oxidation reaction of the unburned exhaust gas components of HC and CO occurs in a large amount in the three-
しかも、もともと活性酸素成分の供給量が減量(OS2<OS1)されているリーン時に活性酸素成分の供給量を増量するようにしたから、活性酸素成分供給手段である空気供給ポンプ13及び活性酸素生成装置14に過度の負担を強いることなく活性酸素成分の供給量を容易に増量することが可能となる。
Moreover, since the supply amount of the active oxygen component is increased when the supply amount of the active oxygen component is originally reduced (OS2 <OS1), the
併せて、排気ガス温度Tが前記所定温度TCを超えた後(S12でNO:時刻t1〜t2)は、超えるまで(S12でYES:時刻t1まで)に比べて、空燃比がリッチ側にあるときの活性酸素成分の供給量も増量する(S18のOS3>S14のOS1)ようにしたから、総じて増加したHCやCOに対応して酸化剤としての活性酸素成分がリーン時だけでなくリッチ時にも増加し、その結果、HCやCOの未燃排気ガス成分の酸化反応がリーン時及びリッチ時に三元触媒11内でより大量に起こって、三元触媒11の昇温性がさらに高まることとなる。これにより、触媒温度Tが活性化温度THに上昇するまでの時間がさらに短縮化し、浄化性能のさらなる改善が図られることとなる。
In addition, after the exhaust gas temperature T exceeds the predetermined temperature TC (NO in S12: time t1 to t2), the air-fuel ratio is on the rich side as compared to until it exceeds (YES in S12: until time t1). The amount of active oxygen component supplied is also increased (OS3 in S18> OS1 in S14), so that the active oxygen component as an oxidizer corresponding to the increased HC and CO as a whole is not only lean but rich. As a result, the oxidation reaction of the unburned exhaust gas components of HC and CO occurs in a large amount in the three-
なお、前記実施形態は、本発明の最良の実施形態ではあるが、特許請求の範囲を逸脱しない限り、さらに種々の修正や変更を施してよいことはいうまでもない。例えば、前記実施形態では、排気ガス温度は、排気通路3に配設した排気ガス温度センサ16で直接検出していたが、これに限らず、エンジン負荷(吸入空気量あるいはスロットル弁4の開度)やエンジン回転数等のエンジン1の運転状態に基いて間接的に検出することも可能である。
The above embodiment is the best embodiment of the present invention, but it goes without saying that various modifications and changes may be made without departing from the scope of the claims. For example, in the above-described embodiment, the exhaust gas temperature is directly detected by the exhaust
また、前記実施形態では、排気ガス温度Tが所定温度TC以下である場合に、空燃比が理論空燃比Aよりもリーン側にあるときの活性酸素成分の第2供給量OS2はゼロとしていなかったが、これに限らず、ゼロとする、つまり活性酸素成分の供給を停止することも可能である。 In the above embodiment, when the exhaust gas temperature T is equal to or lower than the predetermined temperature TC, the second supply amount OS2 of the active oxygen component when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio A is not zero. However, the present invention is not limited to this, and it is also possible to make it zero, that is, to stop the supply of the active oxygen component.
以上、具体例を挙げて詳しく説明したように、本発明は、活性酸素成分の供給と空燃比制御とが同時並行したときに発生するNOxの浄化性能低下の問題を抑制することが可能な技術であるから、排気ガス浄化装置、特に、エンジンの排気通路に配設された排気ガス浄化触媒の上流に活性酸素成分を供給するように構成された排気ガス浄化装置の技術分野において広範な産業上の利用可能性が期待される。 As described above in detail with reference to specific examples, the present invention is a technology capable of suppressing the problem of NOx purification performance degradation that occurs when the supply of active oxygen components and air-fuel ratio control are performed in parallel. Therefore, in the technical field of exhaust gas purification devices, particularly exhaust gas purification devices configured to supply an active oxygen component upstream of an exhaust gas purification catalyst disposed in an exhaust passage of an engine. Is expected to be available.
1 エンジン
3 排気通路
10 排気ガス浄化装置
11 排気ガス浄化触媒(三元触媒)
12 活性酸素供給通路
13 空気供給ポンプ(活性酸素成分供給手段)
14 活性酸素生成装置(活性酸素成分供給手段)
15 空燃比センサ
16 排気ガス温度センサ(排気ガス温度検出手段)
20 コントロールユニット(活性酸素成分供給制御手段、空燃比制御手段、活性酸素成分供給量調整手段)
1 Engine 3
12 Active
14 Active oxygen generator (active oxygen component supply means)
15 Air-
20 control unit (active oxygen component supply control means, air-fuel ratio control means, active oxygen component supply amount adjustment means)
Claims (3)
この排気ガス浄化触媒の上流の排気通路に活性酸素成分を供給可能な活性酸素成分供給手段とを有する排気ガス浄化装置であって、
排気ガスの温度を検出する排気ガス温度検出手段と、
エンジンの始動後に、前記排気ガス温度検出手段で検出される排気ガスの温度が前記排気ガス浄化触媒の活性化温度以下のとき、前記活性酸素成分供給手段を作動させる活性酸素成分供給制御手段と、
エンジンの始動後に、空燃比が理論空燃比を挟んでリッチ側とリーン側とに振れるように制御する空燃比制御手段と、
この空燃比制御手段による制御によって空燃比が理論空燃比よりもリーン側にあるときは、リッチ側にあるときに比べて、前記活性酸素成分供給制御手段による活性酸素成分の供給量を減量する活性酸素成分供給量調整手段とが備えられていることを特徴とする排気ガス浄化装置。 An exhaust gas purification catalyst disposed in the exhaust passage of the engine;
An exhaust gas purification device having active oxygen component supply means capable of supplying an active oxygen component to an exhaust passage upstream of the exhaust gas purification catalyst,
Exhaust gas temperature detecting means for detecting the temperature of the exhaust gas;
Active oxygen component supply control means for operating the active oxygen component supply means when the temperature of the exhaust gas detected by the exhaust gas temperature detection means is equal to or lower than the activation temperature of the exhaust gas purification catalyst after the engine is started;
Air-fuel ratio control means for controlling the air-fuel ratio to swing between the rich side and the lean side across the stoichiometric air-fuel ratio after engine startup;
When the air-fuel ratio is leaner than the stoichiometric air-fuel ratio by the control by the air-fuel ratio control means, the active oxygen component supply amount by the active oxygen component supply control means is reduced compared to when the air-fuel ratio is on the rich side. An exhaust gas purifying device comprising an oxygen component supply amount adjusting means.
この排気ガス浄化触媒の上流の排気通路に活性酸素成分を供給可能な活性酸素成分供給手段とを有する排気ガス浄化装置であって、
排気ガスの温度を検出する排気ガス温度検出手段と、
エンジンの始動後に、前記排気ガス温度検出手段で検出される排気ガスの温度が前記排気ガス浄化触媒の活性化温度以下のとき、前記活性酸素成分供給手段を作動させる活性酸素成分供給制御手段と、
エンジンの始動後に、前記排気ガス温度検出手段で検出される排気ガスの温度が前記排気ガス浄化触媒の活性化温度よりも低い所定温度を超えるまでは、空燃比が理論空燃比を挟んでリッチ側とリーン側とに振れるように制御し、前記排気ガスの温度が前記所定温度を超えた後は、空燃比が理論空燃比よりも所定量リッチ側の空燃比を挟んでリッチ側とリーン側とに振れるように制御する空燃比制御手段と、
この空燃比制御手段による制御によって空燃比が理論空燃比よりもリーン側にあるときは、リッチ側にあるときに比べて、前記活性酸素成分供給制御手段による活性酸素成分の供給量を減量する活性酸素成分供給量調整手段とが備えられ、 前記活性酸素成分供給量調整手段は、前記排気ガスの温度が前記所定温度を超えた後は、超えるまでに比べて、空燃比がリーン側にあるときの活性酸素成分の供給量を増量することを特徴とする排気ガス浄化装置。 An exhaust gas purification catalyst disposed in the exhaust passage of the engine;
An exhaust gas purification device having active oxygen component supply means capable of supplying an active oxygen component to an exhaust passage upstream of the exhaust gas purification catalyst,
Exhaust gas temperature detecting means for detecting the temperature of the exhaust gas;
Active oxygen component supply control means for operating the active oxygen component supply means when the temperature of the exhaust gas detected by the exhaust gas temperature detection means is equal to or lower than the activation temperature of the exhaust gas purification catalyst after the engine is started;
After the engine is started, the air-fuel ratio is on the rich side across the stoichiometric air-fuel ratio until the exhaust gas temperature detected by the exhaust gas temperature detecting means exceeds a predetermined temperature lower than the activation temperature of the exhaust gas purification catalyst. After the exhaust gas temperature exceeds the predetermined temperature, the air-fuel ratio is a predetermined amount richer than the stoichiometric air-fuel ratio. Air-fuel ratio control means for controlling to swing to
When the air-fuel ratio is leaner than the stoichiometric air-fuel ratio by the control by the air-fuel ratio control means, the active oxygen component supply amount by the active oxygen component supply control means is reduced compared to when the air-fuel ratio is on the rich side. An oxygen component supply amount adjusting means, wherein the active oxygen component supply amount adjusting means is when the air-fuel ratio is on the lean side after the temperature of the exhaust gas exceeds the predetermined temperature and before it exceeds. An exhaust gas purification device characterized by increasing the supply amount of the active oxygen component.
前記活性酸素成分供給量調整手段は、前記排気ガスの温度が前記所定温度を超えた後は、超えるまでに比べて、空燃比がリッチ側にあるときの活性酸素成分の供給量も増量することを特徴とする排気ガス浄化装置。 The exhaust gas purification device according to claim 2,
The active oxygen component supply amount adjusting means increases the supply amount of the active oxygen component when the air-fuel ratio is on the rich side, after the temperature of the exhaust gas exceeds the predetermined temperature, compared to before the temperature exceeds. An exhaust gas purification device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007198544A JP4877134B2 (en) | 2007-07-31 | 2007-07-31 | Exhaust gas purification device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007198544A JP4877134B2 (en) | 2007-07-31 | 2007-07-31 | Exhaust gas purification device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009036029A JP2009036029A (en) | 2009-02-19 |
JP4877134B2 true JP4877134B2 (en) | 2012-02-15 |
Family
ID=40438175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007198544A Expired - Fee Related JP4877134B2 (en) | 2007-07-31 | 2007-07-31 | Exhaust gas purification device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4877134B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7472454B2 (en) * | 2019-09-30 | 2024-04-23 | 株式会社豊田中央研究所 | Warm-up control method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4289574B2 (en) * | 1999-09-03 | 2009-07-01 | 日産ディーゼル工業株式会社 | Nitrogen oxide purification equipment |
JP2006329045A (en) * | 2005-05-25 | 2006-12-07 | Toyota Motor Corp | Exhaust gas purification device and exhaust gas purification method |
JP2007138848A (en) * | 2005-11-18 | 2007-06-07 | Toyota Motor Corp | Exhaust gas purification device |
-
2007
- 2007-07-31 JP JP2007198544A patent/JP4877134B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009036029A (en) | 2009-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006027903A1 (en) | Method of exhaust gas purification and exhaust gas purification system | |
JP2003146614A (en) | Fuel reforming system | |
US11125173B2 (en) | Exhaust gas purification system for vehicle and method of controlling the same | |
WO2013118252A1 (en) | Exhaust emission control device for internal combustion engine | |
JP2006183477A (en) | Exhaust emission control device for internal combustion engine | |
JP3642032B2 (en) | Exhaust gas purification device for internal combustion engine | |
WO2005103461A1 (en) | Exhaust purifying device for internal combustion engine | |
JP4877134B2 (en) | Exhaust gas purification device | |
JP4507018B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4946725B2 (en) | Exhaust gas purification method and exhaust gas purification device | |
KR20130064154A (en) | System for purifying exhaust gas and method thereof | |
JP4872637B2 (en) | Function recovery device and function recovery method for exhaust gas purification catalyst | |
JP4093302B2 (en) | NOx purification system catalyst deterioration judgment method and NOx purification system | |
JP4765991B2 (en) | Exhaust gas purification device | |
JP2008309043A (en) | Exhaust gas purification device for internal combustion engine | |
JP2010255487A (en) | Exhaust gas purification device for internal combustion engine | |
JP2010031737A (en) | Air-fuel ratio control device and hybrid vehicle | |
JP2004251188A (en) | Exhaust emission control system for internal combustion engine | |
JP4877142B2 (en) | Exhaust gas purification device | |
JP4103525B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2001327838A (en) | Exhaust cleaning device for diesel engine | |
JP2012255348A (en) | Exhaust emission control device for internal combustion engine | |
JP2009197640A (en) | Exhaust emission control device for internal combustion engine | |
JP5476771B2 (en) | Exhaust gas purification system and control method of exhaust gas purification system | |
JP4352842B2 (en) | Exhaust gas purification device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090618 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4877134 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |