[go: up one dir, main page]

JP4876097B2 - ヒートスプレッダとその製造方法および半導体装置 - Google Patents

ヒートスプレッダとその製造方法および半導体装置 Download PDF

Info

Publication number
JP4876097B2
JP4876097B2 JP2008121265A JP2008121265A JP4876097B2 JP 4876097 B2 JP4876097 B2 JP 4876097B2 JP 2008121265 A JP2008121265 A JP 2008121265A JP 2008121265 A JP2008121265 A JP 2008121265A JP 4876097 B2 JP4876097 B2 JP 4876097B2
Authority
JP
Japan
Prior art keywords
plating layer
mass
heat spreader
substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008121265A
Other languages
English (en)
Other versions
JP2009010340A (ja
Inventor
浩一 高島
伸一 山形
治 諏訪多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP2008121265A priority Critical patent/JP4876097B2/ja
Priority to US12/155,228 priority patent/US20080298024A1/en
Publication of JP2009010340A publication Critical patent/JP2009010340A/ja
Application granted granted Critical
Publication of JP4876097B2 publication Critical patent/JP4876097B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体素子からの熱除去用として好適に使用されるヒートスプレッダと、前記ヒートスプレッダの製造方法と、前記ヒートスプレッダを用いた半導体装置とに関する。
半導体素子の動作時に発生する熱を、前記素子外に直接に、あるいはヒートシンク、ステム、パッケージ等を介して間接的に除去するために、サブマウントやリッド、ベース基板等と呼ばれる半導体素子搭載部材としてヒートスプレッダが用いられる。ヒートスプレッダにフィン等を一体に形成したヒートシンク等も使用される。
従来のヒートスプレッダは、Si(ケイ素)やセラミック等によって形成されるのが一般的であった。しかし近時、W(タングステン)からなる多孔質体の細孔内にCu(銅)を溶浸させて形成されたCu−W複合材料や、Mo(モリブデン)からなる多孔質体の細孔内にCuを溶浸させて形成されたCu−Mo複合材料等からなるヒートスプレッダが提案されている(特許文献1参照)。
ヒートスプレッダは、例えば半導体素子、ヒートシンク、ステム、パッケージ等(以下、これらを「他部材」と総称する場合がある。また、半導体素子を除く他の部材を「熱除去部材」と総称する場合がある。)が接続される複数の接続面を備えた任意の立体形状に形成される。そして、前記複数の接続面のうち少なくとも1つの接続面に半導体素子、他の接続面にヒートシンク、ステム、パッケージ等の熱除去部材を接続して半導体装置が構成される。
前記半導体装置には、例えば温度+85℃、相対湿度85%の高温高湿環境下で1000時間、静置する高温高湿試験や、あるいは温度+150℃で30分間静置する工程と、温度−65℃で30分間静置する工程とを1サイクルとして、前記サイクルを1000サイクルに亘って繰り返すヒートサイクル試験等に合格しうる高い信頼性を有していることが求められる。
しかし、先に説明した複合材料からなるヒートスプレッダは、その表面に露出したCuが、前記高温高湿環境下等の様々な環境下で酸化したり腐食したりしやすいため、半導体装置に、前記の試験をクリアする高い信頼性を付与することは困難である。そこで特許文献1では、前記複合材料によって所定の立体形状に形成した、ヒートスプレッダのもとになる基体の少なくとも接続面にNi(ニッケル)めっきを施して、厚み約1μm程度のNiめっき層を形成した後、水素ガス等の還元性雰囲気中で800℃程度に加熱してヒートスプレッダを製造することが提案されている。
Niめっき層を加熱するのは、CuとNiが全率固溶することを利用して、基体中のCuをNiめっき層中に拡散させるためである。これによりNiめっき層が基体と強固に一体化されて、前記Niめっき層が、半導体装置の使用時の熱履歴(半導体素子の動作時の発熱等)によって脹れを生じたり基体から剥離したりするのを抑制できる。
しかし高温で熱処理した場合には、基体中のCuがNiめっき層の最表面まで拡散して、前記最表面に露出した状態で蓄積される傾向がある。そして露出したCuは酸化したり腐食したりしやすいため、その露出量が多いほど、Niめっき層の、前記高温高湿環境等に対する耐性が低下して、半導体装置に高い信頼性を付与できないおそれがある。
特に、近年に至って増加する傾向にある、ヒートスプレッダの接続面に、他部材を、樹脂接着剤を用いて接着して組み立てられる半導体装置において、Niめっき層の最表面に露出したCuが酸化したり腐食したりすると、前記他部材の、ヒートスプレッダに対する接続の強度が低下したり、他部材がヒートスプレッダから剥離したりするという重大な欠陥を生じるおそれがある。
かかる問題を解消するため、熱処理の温度を下げたり、Niめっき層の上にさらにAuめっき層を積層したりすることも検討されている。しかし前者の場合には、当然ながら、基体からNiめっき層中に拡散するCuの全体量が少なくなって、前記Niめっき層の、基体に対する密着性が低下するため、他部材の、ヒートスプレッダに対する接続の強度が却って低下したり、前記他部材がNiめっき層ごとヒートスプレッダから剥離したりするおそれがある。また後者の場合には、ヒートスプレッダの製造コストが著しく増加するという問題がある。
そこで、基体の少なくとも接続面に、Niめっき層に代えて、その最表面がAl(アルミニウム)の自然酸化による酸化膜で被覆されたAl被覆層を形成したり(特許文献2参照)、ダイヤモンドライクカーボン膜を形成したり(特許文献3参照)することが提案されている。しかし前者のAl被覆層は、特に塩素を含む雰囲気中で劣化して、基体に対する密着性が低下しやすいという問題がある。先に説明した樹脂接着剤には、その熱伝導性を高めるためにAg(銀)フィラーが配合されることがあるが、前記Agフィラーが配合される樹脂接着剤には、そのもとになる樹脂とAgフィラーとの親和性を高めるために塩素が配合されるのが一般的である。
そのためヒートスプレッダの接続面に、他部材を、樹脂接着剤を用いて接続して組み立てられる半導体装置に、前者のAl被覆層を有するヒートスプレッダを用いた場合には、前記Al被覆層が樹脂接着剤中の塩素によって劣化しやすいため、他部材の、ヒートスプレッダに対する接続の強度が却って低下したり、前記他部材がAl被覆層ごとヒートスプレッダから剥離したりしやすくなるおそれがある。また後者の場合には、ヒートスプレッダの製造コストが著しく増加するという問題がある。
特開平06−013494号公報 特開平10−284643号公報 特開2004−104074号公報
本発明の目的は、他部材の接続の強度が低下したり、前記他部材が剥離したりしにくいため、半導体装置に高い信頼性を付与できるヒートスプレッダと、前記ヒートスプレッダを用いた半導体装置とを提供することにある。本発明の他の目的は、前記本発明のヒートスプレッダを効率的に、しかも再現性よく製造するための製造方法を提供することにある。
前記課題を解決するため、発明者は、先に説明したCu−W複合材料等のCuを含む複合材料からなる基体と、前記基体の少なくとも接続面に形成されたNiめっき層とを備えたヒートスプレッダにおいて、前記基体から拡散されてNiめっき層中に含まれるCuの含有量に、前記Niめっき層の厚み方向において濃度差をつけることを検討した。
その結果、接続面にNiめっきを施して、厚み0.2μm以上、1.2μm以下の第1めっき層を形成し、式(I):
620℃≦≦850℃ (I)
を満足する温度T(℃)で熱処理して前記基体中から前記第1めっき層中にCuを拡散させたのち、前記第1めっき層の表面にNiめっきを施して、厚み0.6μm以上、2.5μm以下の第2めっき層を形成し、式(II):
300℃≦T580℃ (II)
を満足する温度T(℃)で熱処理して前記第2めっき層と前記第1めっき層とを一体化させてNiめっき層を形成することで、
Niめっき層の基体との界面側の、前記界面から厚み方向に0.2μm以上、1.9μm以下の範囲でのCuの含有量R(質量%)を式(III):
2.5質量%≦R (III)
を満足する高濃度とし、かつ
前記Niめっき層の最表面にCuを含有させないか、または前記最表面におけるCuの含有量R(質量%)を式(IV):
0質量%<R≦0.3質量% (IV)
を満足する低濃度として、Niめっき層の最表面にCuを露出させないか、あるいは露出されるCuの量を少なくすると、
Niめっき層の、基体に対する良好な密着性を確保しながら、前記Niめっき層の、高温高湿環境等に対する耐性を向上して、前記Cuが酸化したり腐食したりすることによる、他部材の、ヒートスプレッダに対する接続の強度が低下したり、前記他部材がヒートスプレッダから剥離したりする不具合が発生するのを、これまでよりも抑制できることを見出した。
また、前記Niめっき層を形成するNiや、Niめっき層に含まれるCuは、Alのように樹脂接着剤中の塩素によっては劣化しにくいため、前記劣化によって、他部材の、ヒートスプレッダに対する接続の強度が低下したり、前記他部材がNiめっき層ごとヒートスプレッダから剥離したりするおそれがないこと、Auめっきを施したりダイヤモンドライクカーボン膜を形成したりする場合のように、ヒートスプレッダの製造コストを増加させるおそれがないことも判明した。
したがって本発明は、W、Mo、またはダイヤモンドと、Cuとの複合材料からなり、他部材との接続のための接続面を有する基体を備え、前記基体の少なくとも前記接続面にNiめっき層が形成されたヒートスプレッダであって、前記Niめっき層が、前記接続面にNiめっきを施して、厚み0.2μm以上、1.2μm以下の第1めっき層を形成し、式(I):
620℃≦≦850℃ (I)
を満足する温度T(℃)で熱処理して前記基体中から前記第1めっき層中にCuを拡散させたのち、前記第1めっき層の表面にNiめっきを施して、厚み0.6μm以上、2.5μm以下の第2めっき層を形成し、式(II):
300℃≦T580℃ (II)
を満足する温度T(℃)で熱処理して前記第2めっき層と前記第1めっき層とを一体化させて形成され、
前記Niめっき層は、前記基体との界面から厚み方向に0.2μm以上、1.9μm以下の範囲にCuの含有量R(質量%)が式(III):
2.5質量%≦R (III)
を満足する高Cu領域を有すると共に、前記Niめっき層の最表面がCuを含まないか、または前記最表面におけるCuの含有量R(質量%)が式(IV):
0質量%<R≦0.3質量% (IV)
を満足し、かつ前記Niめっき層の、前記基体に対する密着強度S(N/mm)が90N/mm以上であることを特徴とする。
体は、特にCu−W複合材料からなり、前記Cu−W複合材料におけるWの含有量が75質量%以上、95質量%以下であるのが好ましい。前記Cu−W複合材料からなる基体は、接続面に接続される他部材、すなわち種々の半導体材料からなる半導体素子や、Si、セラミック等からなるヒートシンク、ステム、パッケージ等との熱膨張係数の整合性に優れると共に高い熱伝導率を有する上、コスト安価に製造できる。
本発明の半導体装置は、半導体素子と、前記半導体素子の動作時に発生する熱を除去するための、前記本発明のヒートスプレッダとを備えることを特徴とする。前記本発明によれば、前記ヒートスプレッダの機能によって、例えば高温高湿環境下等の様々な環境下で他部材の接続の強度が低下したり、前記他部材が剥離したりするのを防止して、半導体装置に高い信頼性を付与できる。
半導体装置の具体的な構成としては、ヒートスプレッダが複数の接続面を備え、前記複数の接続面のうち少なくとも1つの接続面に前記半導体素子、他の接続面に熱除去部材が、それぞれAgフィラーを配合した樹脂接着剤を介して接続されている半導体装置が挙げられる。また前記半導体装置においては、半導体素子や熱除去部材の、ヒートスプレッダの接続面に対する接続の強度を示す接着強度が、それぞれ15.7N/mm 以上であるのが好ましい。
また本発明は、前記本発明のヒートスプレッダを製造するための製造方法であって、W、Mo、またはダイヤモンドと、Cuとの複合材料からなる前記基体の少なくとも前記接続面にNiめっきを施して厚みが0.2μm以上、1.2μm以下の第1めっき層を形成し、式(I):
620℃≦≦850℃ (I)
を満足する温度T(℃)で熱処理して前記基体中から前記第1めっき層中にCuを拡散させる工程と、前記第1めっき層の表面にNiめっきを施して厚みが0.6μm以上、2.5μm以下の第2めっき層を形成し、式(II):
300℃≦T580℃ (II)
を満足する温度T(℃)で熱処理して前記第2めっき層と前記第1めっき層とを一体化させて前記Niめっき層を形成する工程とを含むことを特徴とする。
前記本発明の製造方法によれば、本発明のヒートスプレッダを、Niめっきと熱処理とを繰り返すだけで、再現性よく、かつ効率的に製造できる。すなわち、前記工程を経てNiめっき層を形成する場合には、高Cu領域の厚みとCuの含有量とを第1めっき層の厚みおよびCuの含有量とほぼ一致できると共に、低Cu領域の厚みとCuの含有量とを第2めっき層の厚みおよびCuの含有量とほぼ一致できる。
また、第1および第2めっき層におけるCuの含有量は、それぞれのめっき層に対する熱処理の条件、特に温度を変更することで任意に調整できる。そのため、それぞれのめっき層の厚みと熱処理の条件とを変更することで、高Cu領域の厚みとCuの含有量、Niめっき層の最表面におけるCuの含有量、ならびに前記最表面を含む低Cu領域の厚みとCuの含有量を任意に調整でき、本発明のヒートスプレッダを、再現性よく、かつ効率的に製造できる。
本発明によれば、他部材の接続の強度が低下したり、前記他部材が剥離したりしにくいため、半導体装置に高い信頼性を付与できるヒートスプレッダと、前記ヒートスプレッダを用いた半導体装置とを提供することができる。また本発明によれば、前記本発明のヒートスプレッダを効率的に、しかも再現性よく製造するための製造方法を提供することができる。
図1は、本発明のヒートスプレッダの、実施の形態の一例の要部であるNiめっき層の一部を拡大した断面図である。
本発明は、W、Mo、またはダイヤモンドと、Cuとの複合材料からなり、他部材との接続のための接続面を有する基体を備え、前記基体の少なくとも前記接続面にNiめっき層が形成されたヒートスプレッダであって、前記Niめっき層が、前記接続面にNiめっきを施して、厚み0.2μm以上、1.2μm以下の第1めっき層を形成し、式(I):
620℃≦≦850℃ (I)
を満足する温度T(℃)で熱処理して前記基体中から前記第1めっき層中にCuを拡散させたのち、前記第1めっき層の表面にNiめっきを施して、厚み0.6μm以上、2.5μm以下の第2めっき層を形成し、式(II):
300℃≦T580℃ (II)
を満足する温度T(℃)で熱処理して前記第2めっき層と前記第1めっき層とを一体化させて形成され、
前記Niめっき層は、前記基体との界面から厚み方向に0.2μm以上、1.9μm以下の範囲にCuの含有量R(質量%)が式(III):
2.5質量%≦R (III)
を満足する高Cu領域を有すると共に、前記Niめっき層の最表面がCuを含まないか、または前記最表面におけるCuの含有量R(質量%)が式(IV):
0質量%<R≦0.3質量% (IV)
を満足し、かつ前記Niめっき層の、前記基体に対する密着強度S(N/mm)が90N/mm以上であることを特徴とする。
基体1を形成する複合材料としては、
(a) 先に説明したように、WやMoからなる多孔質体の細孔内にCuを溶浸させて形成されたCu−W複合材料やCu−Mo複合材料が挙げられる他、
(b) 多数の微小なダイヤモンド粒子を結合材としてのCuで結合した複合構造を有するCu−ダイヤモンド複合材料、
等も挙げられる。
基体1は、半導体素子の動作時の発熱をできるだけスムースに除去することを考慮すると、熱伝導率が170W/m・K以上、650W/m・K以下、特に200W/m・K以上、650W/m・K以下であるのが好ましい。
伝導率が前記範囲未満では、半導体素子の動作時の発熱を効率的に逃がせないため、前記半導体素子の動作効率が低下したり、寿命が短くなったり、或いは寿命前に半導体素子が破損したりするおそれがある。一方、熱伝導率が前記範囲を超えるものは、Cuを含む材料としては作製することが困難である。
また基体1は、種々の半導体材料からなる半導体素子や、Si、セラミック等からなるヒートシンク、ステム、パッケージ等との熱膨張係数の整合性を向上することを考慮すると、その熱膨張係数が2.0×10-6/K以上、10×10-6/K以下であるのが好ましい。熱膨張係数が前記範囲未満であるか、あるいは前記範囲を超える場合には、このいずれにおいても熱膨張係数の整合性が低下する。そのため、ヒートスプレッダ4の接続面2に前記他部材を接続する際や半導体装置の使用時の熱履歴等によって半導体素子に過剰な応力が生じて、前記半導体素子の特性が劣化したり、半導体素子が破損したりするおそれがある。
また、半導体素子等の他部材の、ヒートスプレッダ4に対する接続の強度が低下したり、前記他部材がヒートスプレッダ4から剥離したりするおそれもある。なお、例えば半導体素子としてSi系、GaAs(ガリウム−砒素)系、GaN(窒化ガリウム)系等の半導体材料からなるものを用いる場合、前記半導体素子に対する熱膨張係数の整合性をさらに向上することを考慮すると、基体1の熱膨張係数は、前記範囲内でも4.0×10-6/K以上、8.0×10-6/K以下であるのがさらに好ましい。
また近時、ヒートスプレッダ4それ自体を半導体素子への電気的接続のための電極としても機能させることが試みられており、そのためには基体1の比抵抗が1.6×10-8Ωm以上、1.0×10-3Ωm以下であるのが好ましい。比抵抗が前記範囲を超える場合には、それ自体を素子の電極として機能させる効果が十分に得られないだけでなく、電極として機能させた際に基体1自体が発熱するおそれもある。また、比抵抗が前記範囲未満である材料(複合材料を含む)は特別なものに限られており、高価で、しかも製造が容易でない。そのため基体1の、ひいてはヒートスプレッダ4や半導体装置の生産性を低下させ、製造コストを高騰させる要因となる。
前記各特性を、いずれも好適な範囲内に調整するためには、基体1の複合構造や組成を調整すればよい。かかる調整によって、各特性がいずれも前記範囲を満足する基体1を形成できる。熱伝導率と熱膨張係数の観点から好適な基体1の材料としては、(a)のCu−W複合材料やCu−Mo複合材料、(b)のCu−ダイヤモンド複合材料が挙げられ、特に製造コストの観点からは(a)のうちCu−W複合材料が好ましい。なお、(b)のCu−ダイヤモンド複合材料におけるダイヤモンドの割合は40質量%以上、60質量%以下であるのが好ましい。
また(a)のCu−W複合材料におけるWの割合は75質量%以上、95質量%以下、特に80質量%以上、90質量%以下であるのが好ましい。Wの割合が前記範囲未満では、Cu−W複合材料からなる基体1の熱膨張係数が前記範囲を超えるため、接続面2に接続される他部材、すなわち、種々の半導体材料からなる半導体素子や、Si、セラミック等からなるヒートシンク、ステム、パッケージ等との、熱膨張係数の整合性が取れなくなるおそれがある。
またWの割合が前記範囲を超える場合には、Cu−W複合材料からなる基体1の熱伝導率が先に説明した範囲未満となって、半導体素子の動作時の発熱を効率的に逃がすことができないため、半導体素子の動作効率が低下したり、寿命が短くなったり、寿命前に半導体素子が破損したりするおそれがある。前記Cu−W複合材料からなる基体1は、先に説明した特許文献1に記載の製造方法によって製造できる。
すなわちWの粉末を、必要に応じて、結合材として機能する少量のNiを添加したW合金の粉末や樹脂バインダ等と混合して所定の立体形状にプレス成形した後、還元性雰囲気中で焼結させてWからなる多孔質体を作製し、前記多孔質体の細孔内に、還元性雰囲気中で、加熱して溶融させたCuを溶浸させてCu−W複合材料からなる基体1の前駆体を得る。そして前記前駆体を、必要に応じてワイヤ放電加工等によって所定の基体1の立体形状に切り出すと共に、その接続面2を所定の表面粗さとなるように仕上げ加工して基体1が製造される。
接続面2の表面粗さは、日本工業規格JIS B0601:2001「製品の幾何特性仕様(GPS)−表面性状:輪郭曲線方式−用語,定義及び表面性状パラメータ」において規定された粗さ曲線の算術平均粗さRaで表して1.6μm以下であるのが好ましい。算術平均粗さRaが前記範囲を超える場合には、接続面2に接続される他部材との間で良好な熱伝導が得られないおそれがある。
基体1の形状等は、接続面2に接続する半導体素子の形状や寸法、あるいは前記接続面2に半導体素子やヒートシンク、ステム、パッケージ等の他部材を接続して構成される半導体装置の全体の形状等に合わせて任意に設定できるが、例えば平板状の基体1の場合はその厚みが0.15mm以上、10mm以下、特に1mm以上、3mm以下であるのが好ましい。厚みが前記範囲を超える場合には半導体装置の薄型化、小型化が難しい上、材料費が嵩んで、ヒートスプレッダ4の、ひいては半導体装置の製造コストを増加させる原因にもなる。
一方、厚みが前記範囲未満では、基体1が反りを生じやすくなって、接続面2に、半導体素子等の他部材を良好に密着できないおそれがある。また、ヒートスプレッダ4の熱容量が不足して熱を十分に除去できないおそれもある。平板状の基体1の反り量は、例えば平面形状が矩形状の基体1の場合、その対角線方向の長さ1mmあたり1μm以下、特に0.5μm以下であるのが好ましい。反り量が前記範囲を超える場合には、前記のように接続面2に、半導体素子等の他部材を良好に密着できないおそれがある。
そのため、半導体素子の動作時の発熱を効率的に逃がせなくなって、半導体素子の動作効率が低下したり、寿命が短くなったり、寿命前に半導体素子が破損したりするおそれがある。なお反り量の最小値は、対角線方向の長さ1mmあたり0μmであって反りがないのが最も好ましい。基体1は前記平板状の他、例えば特許文献3に記載された、平板の片面に半導体素子を収容する凹部を有する凹形状等の任意の立体形状に形成できる。
前記基体1の、少なくとも接続面2に形成されるNiめっき層3は、先に説明したように、基体1との界面から厚み方向に0.2μm以上、1.9μm以下の範囲にCuの含有量R(質量%)が式(III):
2.5質量%≦R (III)
を満足する高Cu領域5を有すると共に、その最表面6がCuを含まないか、または前記最表面6におけるCuの含有量R(質量%)が式(IV):
0質量%<R≦0.3質量% (IV)
を満足し、かつ前記Niめっき層3の、基体1に対する密着強度S(N/mm)が90N/mm以上である必要がある。これにより、Niめっき層3の、基体1に対する良好な密着性を確保しながら、前記Niめっき層3の最表面に露出されるCuの量を少なくして、Niめっき層3の、高温高湿環境等に対する耐性を向上できる。そのため、前記Cuが酸化したり腐食したりすることによる、他部材の、ヒートスプレッダ4に対する接続の強度が低下したり、前記他部材がヒートスプレッダ4から剥離したりする不具合が発生するのを抑制できる。
高Cu領域5の厚みが1.9μm以下に限定されるのは、厚みが1.9μmを超える場合には、Niめっき層3の全体の厚みにもよるが、前記高Cu領域5からのCuの拡散を抑制して、その最表面6を、Cuを含まないか、またはその含有量Rが式(IV)を満足する状態にできないためである。つまり高Cu領域5の厚みが1.9μmを超えると、Niめっき層3の、高温高湿環境等に対する耐性を向上する効果が得られない。
また高Cu領域5の厚みは、前記範囲内でも0.2μm以上である必要がある。高Cu領域の厚みを前記範囲内とすることによって、前記高Cu領域5を設けたことによる、Niめっき層3の、基体1に対する良好な密着性を維持する効果をさらに向上できる。
また高Cu領域5におけるCuの含有量Rが式(III)を満足する範囲に限定されるのは、含有量Rが2.5質量%未満では、基体1から高Cu領域5へのCuの拡散が十分でないことになり、Niめっき層3の、基体1に対する良好な密着性を確保する効果、つまりNiめっき層3の、基体1に対する密着強度S(N/mm)を90N/mm以上とする効果が得られないためである。
含有量Rは、20質量%以下であるのが好ましい。含有量Rが20質量%を超える場合には、Niめっき層3の全体の厚みにもよるが、前記高Cu領域5からのCuの拡散を抑制して、Niめっき層3の最表面6を、Cuを含まないか、またはその含有量Rが式(IV)を満足する状態にできないおそれがある。つまり高Cu領域5におけるCuの含有量Rが20質量%を超える場合にも、Niめっき層3の、高温高湿環境等に対する耐性を向上する効果が得られないおそれがある。なお含有量Rは、前記範囲内でも7質量%以下であるのがさらに好ましい。
Niめっき層3の最表面6におけるCuの含有量Rが式(IV)を満足する範囲に限定されるのは、含有量R0.3質量%を超える場合には、Niめっき層3の、高温高湿環境等に対する耐性を向上する効果が得られないためである。なお、Niめっき層3の耐性を向上する効果を考慮すると、前記最表面6はCuを含有していない、言い換えれば含有量Rが0質量%であるのが最も好ましく、本発明は、含有量R0.3質量%以下で、0質量%までの範囲を包含している。
ただしNiめっき層3の、基体1に対する良好な密着性を確保する効果との兼ね合いを考慮すると、Niめっき層3の最表面6は、前記式(IV)の範囲でCuを含有していても差し支えない。
Niめっき層3の、基体1に対する密着強度S(N/mm)が90N/mm以上に限定されるのは、密着強度Sが90N/mm未満では、前記Niめっき層3の、基体1に対する良好な密着性を確保できないためである。つまり密着強度Sが90N/mm未満では、ヒートスプレッダ4の接続面2に他部材を接続する際や、半導体装置の使用時の熱履歴等によってNiめっき層3が脹れを生じたり基体1から剥離したりしやすくなる。
前記密着強度Sは高いほど好ましく、その上限は特に限定されないが、実用的な密着強度を有するNiめっき層3を備えたヒートスプレッダ4を、生産性良く製造すること等を考慮すると、密着強度S(N/mm)は900N/mm以下であるのが好ましい。
Niめっき層3は、これも先に説明したように、その最表面6から厚み方向に0.3μm以上の範囲にCuを含まないか、またはその含有量R(質量%)が式(V)
0質量%<R<0.5質量% (V)
を満足する低Cu領域7を有しているのが好ましい。Niめっき層3の最表面6側に低Cu領域7を設けることによって、前記最表面6に蓄積されるCuの量をさらに少なくして、前記Cuの酸化や腐食による、他部材の、ヒートスプレッダ4に対する接続の強度が低下したり、前記他部材がヒートスプレッダ4から剥離したりする不具合の発生をより一層有効に防止できる。
低Cu領域7の厚みが0.3μm以上であるのが好ましいのは、厚みが0.3μm未満では、高Cu領域5の厚みやCuの含有量RH等にもよるが、かかる低Cu領域7を設けることによる前記効果が十分に得られないおそれがあるためである。低Cu領域7の厚みの上限は、特に限定されないが4.5μmであるのが好ましい。厚みが4.5μmを超えても、それ以上の効果は得られない。のみならず、Niめっき層3の全体の厚みが大きくなり、残留応力が高くなって、前記Niめっき層3が、ヒートスプレッダ4の接続面2に他部材を接続する際や、半導体装置の使用時の熱履歴等によって脹れを生じたり基体1から剥離したりしやすくなるおそれがある。
低Cu領域7におけるCuの含有量Rが式(V)を満足する範囲であるのが好ましいのは、含有量Rが0.5質量%以上では、高Cu領域5の厚みやCuの含有量R等にもよるが、かかる低Cu領域7を設けることによる前記効果が十分に得られないおそれがあるためである。なお、Niめっき層3の耐性を向上する効果を考慮すると、前記低Cu領域7はCuを含有していない、言い換えれば含有量Rが0質量%であるのが最も好ましく、本発明は、含有量Rが0.5質量%未満で、0質量%までの範囲を包含している。
ただしNiめっき層3の、基体1に対する良好な密着性を確保する効果との兼ね合いを考慮すると、低Cu領域7は、前記式(V)の範囲でCuを含有していても差し支えない。
図1では、高Cu領域5と低Cu領域7とが直接に接触するように記載されているが、前記両領域5、7間には、いずれの領域に課された条件も満足しない中間層が介在してもよい。
Niめっき層3中に含まれるCuの含有量の、厚み方向の分布を、本発明では、マーカス型高周波グロー放電発光表面分析装置〔ホリバ・ジョバンイボン社(HORIBA JOBIN YVON S. A. S.)製のJY5000RF−PSS〕を用いて測定した値でもって表すこととする。
前記分析装置は、測定試料を、その最表面からアルゴンプラズマによって厚み方向に削りながら、所定の厚みごとに元素分析を繰り返す装置であって、前記分析装置によれば、測定試料を最表面から深さ数10μmに及ぶ範囲まで、分解能よく元素分析できると共に、分析面積が4mmφと広いので、偏析等の影響を少なくして、測定試料のより平均的な情報を得ることが可能である。
本発明では、前記分析装置を用いて、測定試料を、その最表面からアルゴンプラズマによって厚み方向に削りながら、厚み約0.003μmごとに元素分析した結果を、例えば図4、図5に示すようにプロットして、試料中に含まれるCu等の各元素の、厚み方向の含有量の分布曲線を求める。図5は、図4の分布曲線のうちCuの分布曲線を拡大して示したグラフである。
次に前記分布曲線から、測定試料の最表面、つまりNiめっき層3の最表面6におけるCuの含有量R(質量%)を求めると共に、Niめっき層3の主成分であるNiの含有量と、基体1としての、図の例の場合はCu−W複合材料の主成分であるWの含有量とが一致する点を、基体1とNiめっき層3との界面とする。
そして前記界面からNiめっき層3の最表面6へ向けて、前記Niめっき層3の厚み方向の、Cuの含有量R(質量%)が2.5質量%以上、20質量%以下である領域の厚みを求めて高Cu領域5の厚みとすると共に、前記最表面6から基体1へ向けて、前記Niめっき層3の厚み方向の、Cuの含有量R(質量%)が0.5質量%未満である領域の厚みを求めて低Cu領域7の厚みとする。
基体1に対するNiめっき層3の密着強度SA(N/mm2)は、本発明では日本工業規格JIS K6850:1999「接着剤−剛性被着材の引張せん断接着強さ試験方法」に規定された試験方法を応用した、下記の測定方法によって測定した値でもって表すこととする。
すなわち矩形平板状のヒートスプレッダを2枚用意し、前記2枚のヒートスプレッダの、それぞれ矩形の短辺側の一端から長さ方向の12.5mmの範囲を半田接合部として、Pb−Sn共晶半田(Pb:60質量%、Sn:40質量%)を用いて、220℃×3分間の条件で半田接合したものを試験片として用意する。次に前記試験片の、互いに反対方向に突出した2つの非接着部を、それぞれ精密万能試験機(オートグラフ)のつかみ具で保持して、試験片の幅方向の中心線と、つかみ具の中心線とが一致するように注意しながら50mm/分の速度で、それぞれ反対方向に引っ張った際の破断応力(N/mm2)を、Niめっき層3の基体1に対する密着強度SA(N/mm2)とする。
例えばNiめっき層3が、高Cu領域のもとになる第1めっき層と、低Cu領域のもとになる第2めっき層とを積層して形成されており、しかも両めっき層が、第2めっき層形成後の熱処理が不十分であった等の理由で十分に一体化されていない場合に、前記測定を実施すると、Niめっき層3は、基体1との界面ではなく前記両めっき層の界面で剥離することがある。その際に測定される密着強度は、厳密には、Niめっき層3の全体としての、基体1に対する密着強度ではなく、前記界面での両めっき層間の密着強度であることになる。
しかし前記両密着強度は同じ測定によって求められ、区別することが困難である上、両めっき層間の界面での剥離は、Niめっき層3の全体が基体1から剥離する場合と同じ結果を引き起こすことになる。そのため2層構造のNiめっき層3は、基体1に対する密着強度に優れるだけでなく、第1めっき層と第2めっき層との界面での密着性にも優れている必要があると考えられる。したがって本願発明でいうところの、Niめっき層3の、基体1に対する密着強度SA(N/mm2)には、前記界面での剥離によって測定される密着強度をも含むこととする。
Niめっき層3の全体の厚みは5μm以下、特に0.6μm以上、5μm以下であるのが好ましい。厚みが5μmを超える場合には残留応力が高くなって、Niめっき層3が、ヒートスプレッダ4の接続面2に他部材を接続する際や、半導体装置の使用時の熱履歴等によって脹れを生じたり基体1から剥離したりしやすくなるおそれがある。一方、厚みが0.6μm未満では、高Cu領域5を備えると共に、その最表面6におけるCuの含有量R0.3質量%以下であるNiめっき層3を形成するのが実質的に困難である。
前記Niめっき層3を有する本発明のヒートスプレッダ4は、
(i) W、Mo、またはダイヤモンドと、Cuとの複合材料からなる前記基体の少なくとも前記接続面にNiめっきを施して厚みが0.2μm以上、1.2μm以下の第1めっき層を形成し、式(I):
620℃≦≦850℃ (I)
を満足する温度T(℃)で熱処理して前記基体中から前記第1めっき層中にCuを拡散させる工程と、
(ii) 前記第1めっき層の表面にNiめっきを施して厚みが0.6μm以上、2.5μm以下の第2めっき層を形成し、式(II):
300℃≦T580℃ (II)
を満足する温度T(℃)で熱処理して前記第2めっき層と前記第1めっき層とを一体化させて前記Niめっき層を形成する工程と、
を含む本発明の製造方法によって製造できる。
すなわち前記(i)の工程において、基体1の、少なくとも接続面2に直接に接するように形成した第1めっき層を温度T1(℃)で熱処理して基体1中からCuを第1めっき層中に拡散させた後、(ii)の工程において第1めっき層上に積層した第2めっき層を温度T2(℃)で熱処理して前記第1めっき層と一体化させる。
そうすると、基体1との界面から第1めっき層の厚みにほぼ対応した範囲が高Cu領域5とされると共に、最表面6を含む、第2めっき層の厚みにほぼ対応した範囲が低Cu領域7とされたNiめっき層3が形成される。
また、第1および第2めっき層に対する熱処理の温度T1、T2を、それぞれ前記範囲内で変更することで、それぞれのめっき層におけるCuの含有量を任意に調整できる。そのため前記製造方法によれば、前記第1および第2めっき層の厚みと熱処理の条件とを変更することで、高Cu領域5の厚みとCuの含有量RH(質量%)、Niめっき層3の最表面6におけるCuの含有量RS(質量%)、ならびに前記最表面6を含む低Cu領域7の厚みとCuの含有量RL(質量%)を任意に、しかも再現性よく調整でき、本発明のヒートスプレッダ4を、Niめっきと熱処理とを繰り返すだけで、再現性よく、かつ効率的に製造できる。
前記製造方法において、工程(i)の第1めっき層の形成と熱処理、並びに工程(ii)の第2めっき層の形成と熱処理はそれぞれ1回ずつ行うのが、工程数を減らして製造コストを低減する上で好ましい。しかし、それぞれの工程を厚み方向に2回以上に分けて繰り返し行うようにしてもよい。その場合には、各層の厚みと熱処理の条件とを個別に変更することで、Niめっき層の厚み方向におけるCuの含有量の分布をより細かく制御できる。
第1および第2めっき層を形成するためのNiめっき処理としては電気Niめっき、無電解Niめっき、および気相めっき(PVD法、CVD法を含む)のいずれを採用してもよい。このうち無電解Niめっきとしては、
(a) 還元剤として次亜リン酸ソーダ〔NaH2PO2等〕を用いた無電解Ni−Pめっき、
(b) 還元剤として水素化ホウ素化合物〔NaBH4、(CH3)2HN・BH3、(C25)2HN・BH3等〕を用いた無電解Ni−Bめっき、および
(c) 還元剤としてヒドラジン化合物〔N24、N24・H2SO4、N24・HCl、N24・2HCl等〕を用いた狭義の無電解Niめっき、
のいずれを採用してもよい。
なお(a)の無電解Ni−Pめっきによって形成されるNiめっき層中に含まれるPの含有量は6質量%以上、15質量%以下、特に9質量%以上、12質量%以下であるのが好ましい。また(b)の無電解Ni−Bめっきによって形成されるNiめっき層中に含まれるBの含有量は0.1質量%以上、5質量%以下、特に0.3質量%以上、3質量%以下であるのが好ましい。
第1めっき層は、電気Niめっき、または(b)の無電解Ni−Bめっきによって形成するのが好ましい。電気Niめっきによって形成されるめっき層は、ほぼ純Niからなるため、基体1からのCuの拡散によって、前記基体1に対してより強固に一体化できる。また無電解Ni−Bめっきによって形成されるめっき層は、電気めっきによるものに比べて均一性や緻密性に優れている。
第1めっき層の厚みは0.2μm以上、1.2μm以下である必要がある。厚みが0.2μm未満では、Niめっき層3中に、十分な厚みを有する高Cu領域を形成できないため、前記Niめっき層3の、基体1に対する密着強度が大幅に低下す。そして、ヒートスプレッダ4の接続面2に他部材を接続する際や、半導体装置の使用時の熱履歴等によって、前記Niめっき層3が脹れを生じたり基体1から剥離したりしやすくな
また、厚みが1.2μmを超える場合には残留応力が高くなったり、基体1と第1めっき層との熱膨張係数の差に起因する熱応力が高くなったりしやすいため、前記(i)の工程の温度Tでの熱処理中に、前記第1めっき層が脹れを生じたり基体1から剥離したりしやすくな
第2めっき層は、Niめっき層3の最表面6を形成する層であるため、前記最表面6上に接続される他部材や、前記他部材を最表面6に接続するために用いられる樹脂接着剤等との相性や要求される特性等に応じて最適なNiめっき方法を選択して形成すればよい。例えば前記最表面6に、先に説明したAgフィラーと塩素とを含む樹脂接着剤を用いて他部材を接続する場合は、無電解Ni−Pめっきによって第2めっき層を形成するのが好ましい。Ni−Pめっき層は、熱処理をすることでNi3Pを生じ、前記Ni3Pが、樹脂接着剤中のAgフィラーや塩素イオンと良好な結合性を有するため、接続の信頼性を向上できる。
第2めっき層の厚みは0.6μm以上、2.5μm以下である必要がある。厚みが0.6μm未満では、前記(ii)の工程の温度Tでの熱処理時に、第1めっき層中から第2めっき層中に拡散するCuの量が多くなりすぎる。そのため、Niめっき層3の最表面6におけるCuの含有量R(質量%)を、式(IV)を満足する含有量に抑制できなかったり、前記Niめっき層3中に、所定の厚みを有する低Cu領域を形成できなかったりす
一方、厚みが2.5μmを超えても、それ以上の効果は得られない。のみならず、Niめっき層3の全体の厚みが大きくなり、残留応力が高くなるため、前記Niめっき層3が、ヒートスプレッダ4の接続面2に他部材を接続する際や、半導体装置の使用時の熱履歴等によって脹れを生じたり基体1から剥離したりしやすくな
先に説明したように、第1めっき層の熱処理の温度T(℃)が式(I)を満足する温度とされるのは、620℃未満では、基体1中から第1めっき層中に十分な量のCuを拡散させて、Niめっき層3の、基体1に対する良好な密着性を確保できないためである。一方、850℃を超える場合には、第1めっき層中に拡散するCuの量が多くなりすぎて、却って、Niめっき層3の、基体1に対する良好な密着性を確保できないためである。のみならず、基体1と第1めっき層との熱膨張係数の差に起因する熱応力が高くなって、温度Tでの熱処理中に、前記第1めっき層が脹れを生じたり基体1から剥離したりしやすくなるおそれもある。
第2めっき層の熱処理の温度T(℃)が式(II)を満足する温度とされるのは、300℃未満では、第1および第2めっき層を良好に一体化できないためである。一方、580℃を超える場合には、第1めっき層中から第2めっき層中に拡散するCuの量が多くなりすぎて、Niめっき層3の最表面6におけるCuの含有量R(質量%)を、式(IV)を満足する含有量に抑制できないためである。
本発明の半導体装置は、半導体素子と、前記半導体素子の動作時に発生する熱を除去するための、前記本発明のヒートスプレッダとを備えることを特徴とするものである。半導体装置の具体的な構成としては、ヒートスプレッダが複数の接続面を備え、前記複数の接続面のうち少なくとも1つの接続面に前記半導体素子、他の接続面に熱除去部材が、それぞれAgフィラーを配合した樹脂接着剤を介して接続されたものが挙げられる。
前記半導体装置においては、ヒートスプレッダの接続面に他部材を接続する際や、半導体装置の使用時の熱履歴等によって、前記他部材の、ヒートスプレッダに対する接続の強度が低下したり剥離したりするのをさらに確実に防止して、半導体装置に高い信頼性を付与することを考慮すると、前記他部材の、ヒートスプレッダの接続面に対する接続の強度を示す初期の接着強度S(N/mm)が15.7N/mm 以上であるのが好ましい。また、温度+85℃、相対湿度85%の高温高湿環境下で1000時間、静置する高温高湿試験を行った後の前記接着強度S(N/mm)が5N/mm以上であるのが好ましい。
接着強度SB(N/mm2)は、日本工業規格JIS K 6850:1999「接着剤−剛性被着材の引張せん断接着強さ試験方法」に規定された試験方法で測定される接着強度でもって表すこととする。また測定の際には、ヒートスプレッダの接続面に、実際に他部材を接続するために用いる樹脂接着剤を使用することとする。前記接着強度SB(N/mm2)は、初期および高温高湿試験後のいずれにおいても高ければ高いほど好ましく、その上限は、それぞれ前記測定方法における測定限界、つまり測定に使用した樹脂接着剤の接着強度や、あるいは半導体素子等の他部材自体の破壊強度等に達しても構わない。
図2は、本発明の半導体装置の、実施の形態の一例を示す断面図である。図の例の半導体装置8は、平板状のパッケージ9と、前記パッケージ9の図において上側の面10の中央部に、半田バンプ11を介して接続された平板状の半導体素子12と、前記本発明のヒートスプレッダ4とを備えている。
ヒートスプレッダ4は、図の例では、先に説明したように全体が平板状で、かつ前記平板の、図において下側の面13の中央部に、前記半導体素子12を収容するための凹部14が設けられた凹形状に形成された基体1を備えている。そして前記基体1の、凹部14の底面15が半導体素子12との接続のための接続面2とされ、前記凹部14の周囲の面13がパッケージ9との接続のための接続面2とされていると共に、図の例の場合は外周面の全面に、先に説明したようにCuの含有量を厚み方向に分布させたNiめっき層3が形成されてヒートスプレッダ4が構成されている。
前記ヒートスプレッダ4を、前記接続面15上のNiめっき層3と、半導体素子12の、図において上側の面16との間に樹脂接着剤の層17、接続面13上のNiめっき層3と、パッケージ9の上側の面10との間に樹脂接着剤の層18を挟んで接着して互いに固定することで半導体装置8が構成されている。前記半導体装置8においては、半導体素子12の動作時の熱を、ヒートスプレッダ4を介して直接に、また前記ヒートスプレッダ4とパッケージ9とを介して間接的に除去できる。
のみならず、前記半導体素子12をパッケージ9とヒートスプレッダ4とで外部から保護しているため、ヒートスプレッダ4が先に説明した本発明の構成を有するものであことと相まって、半導体素子12の動作の安定性や、半導体装置8の信頼性等を向上できる。なお、半導体装置の構成は、図の例のものには限定されず、例えば平板状のヒートスプレッダの片面に半導体素子、反対面にヒートシンク、ステム、パッケージ等を接続する等、様々な構成を採用できる。
〈実施例1〉
(基体の作製)
平均粒径3μmのW粉末に1質量%のアクリルバインダを加えて平均粒径50μmに造粒し、前記造粒物を、幅30mm×長さ110mmの平面形状が矩形状の凹部を有する金型の、前記凹部内に充填して面圧1.5ton/cm2の圧力をかけて矩形平板状にプレス成形し、次いで水素ガス雰囲気中で800℃で1時間の加熱をしてバインダを除去させた後、引き続き水素ガス雰囲気中で1250℃に加熱して焼結させてWからなる多孔質体を作製した。
次に前記多孔質体を、その空隙量の1.3倍の体積のCu板と重ねた状態で、水素ガス雰囲気中で1250℃に加熱してCuを溶解させることで、前記Cuを、Wからなる多孔質体の細孔内に溶浸させてCu−W複合材料(Cu:10質量%、W:90質量%)からなる基体の前駆体を得、前記前駆体の板の、互いに平行な2面(接続面)と、前記2面と交差する4側面とをそれぞれ研削加工して幅25mm×長さ100mm×厚み2mmの矩形平板状の基体を作製した。
(ヒートスプレッダの製造)
前記基体の表面の全面に、電気Niめっきによって厚み1.2μmの第1めっき層を形成し、水素ガス雰囲気中で800℃に加熱して熱処理した後、前記第1めっき層上に、無電解Ni−Pめっきによって厚み1μmの第2めっき層を形成し、水素ガス雰囲気中で500℃に加熱して熱処理してNiめっき層を形成すると共に、ヒートスプレッダを製造した。
(Cu等の含有量分布の測定)
前記ヒートスプレッダのNiめっき層について、前出のマーカス型高周波グロー放電発光表面分析装置〔ホリバ・ジョバンイボン社(HORIBA JOBIN YVON S. A. S.)製のJY5000RF−PSS〕を用いて、Cu等の元素の、厚み方向の含有量の分布を測定した。測定は、先に説明したように測定試料を、その最表面からアルゴンプラズマによって厚み方向に削りながら、厚み約0.003μmごとに元素分析した結果をプロットすることで行った。結果を図4に示す。また、図4のうちCuの分布曲線を拡大して図5に示す。
両図よりNiめっき層は、基体との界面(Niの含有量とWの含有量とが一致する点)から最表面(表面からの深さ0μmの点)に向かって厚み方向に1μmの範囲が、Cuの含有量R(質量%)が式(III)の範囲内で、かつ最大含有量が4.8質量%である高Cu領域、Niめっき層の最表面のCuの含有量R(質量%)が0.01質量%(測定限界)未満で、かつ、前記最表面から基体に向かって厚み方向に1.1μmの範囲が、Cuの含有量R(質量%)が式(V)の範囲内である低Cu領域となっていることが確認された。
(接着強度の測定)
日本工業規格JIS K 6850:1999「接着剤−剛性被着材の引張せん断接着強さ試験方法」に規定された試験方法に則って、他部材の、ヒートスプレッダの接続面に対する接続の強度を示す接着強度を測定した。すなわち図3に示すように、前記ヒートスプレッダ4を2枚用意し、前記2枚のヒートスプレッダ4の、それぞれ短辺側の一端から長さ方向の12.5mmの範囲を接着部19として、70質量%のAgフィラーを含む液状のエポキシ樹脂接着剤の層20を介して、前記接着部19から、各々のヒートスプレッダ4の非接着部21がそれぞれ反対方向に突出するように重ね合わせた状態で、180℃で1時間の加熱をして接着剤を硬化させた後、さらに150℃で24時間、乾燥させて密着強度測定用の試験片22を作製した。
そして前記試験片22の、互いに反対方向に突出した2つの非接着部21を、それぞれ図示しない精密万能試験機(オートグラフ)のつかみ具で保持して、試験片22の幅方向の中心線と、つかみ具の中心線とが一致するように注意しながら、50mm/分の速度で、図中に白抜きの矢印で示すようにそれぞれ反対方向に引っ張った際の破断応力(N/mm2)を、初期の接着強度として求めたところ17.6N/mm2であって、実施例1のヒートスプレッダは、他部材の接続の強度に優れていることが確認された。
また、同様にして作製した試験片22を、温度+85℃、相対湿度85%の高温高湿環境下で1000時間、静置した後、同様にして接着強度を求めたところ11.8N/mm2であって、実施例1のヒートスプレッダは、前記高温高湿環境に対する耐性にも優れていることが判った。
(密着強度の測定)
Niめっき層の、基体に対する密着強度を、前記接着強度の測定方法を応用した下記の方法で測定した。すなわち2枚のヒートスプレッダを、エポキシ樹脂接着剤に代えてPb−Sn共晶半田(Pb:60質量%、Sn:40質量%)を用いて、220℃×3分間の条件で半田接合したものを試験片として、前記と同様にして破断応力を測定したところ、オートグラフの測定限界である100N/mm2を超えており、Niめっき層は基体に対して強固に密着していることが確認された。
〈比較例1〉
第2めっき層の熱処理温度を800℃としたこと以外は実施例1と同様にして、ヒートスプレッダを製造した。前記ヒートスプレッダのNiめっき層について、実施例1と同様にして、Cu等の元素の厚み方向の含有量の分布を測定した。結果を図6に示す。また図6のうち、Cuの分布曲線を拡大して図7に示す。両図よりNiめっき層は、基体との界面から最表面に向かって厚み方向に1.8μmの範囲が、Cuの含有量R(質量%)が式(III)の範囲内で、かつ最大含有量が6.3質量%である高Cu領域になっていることが確認されたが、多量のCuがNiめっき層の最表面まで拡散しており、前記Niめっき層の最表面のCuの含有量R(質量%)が0.8質量%と高い上、低Cu領域が形成されていないことが判った。
また前記ヒートスプレッダについて、実施例1と同様にして、Niめっき層の密着強度を求めたところ、オートグラフの測定限界である100N/mm2を超えており、Niめっき層は、基体に対して強固に密着していることが確認された。また実施例1と同様にして接着強度を求めたところ、初期の接着強度は16.7N/mm2であって、比較例1のヒートスプレッダは他部材の接続の強度に優れていることが確認されたが、高温高湿環境下で静置した後の接着強度は2.9N/mm2と大きく低下しており、前記高温高湿環境に対する耐性が不十分であることが判った。
〈実施例2、比較例2、3〉
第1めっき層の厚みを0.05μm(比較例2)、0.2μm(実施例2)、2.1μm(比較例3)としたこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
〈実施例3、4、比較例4〉
第2めっき層の厚みを0.3μm(比較例4)、0.6μm(実施例3)、2.5μm(実施例4)としたこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
〈実施例5、6、比較例5〉
第1めっき層の熱処理温度T1(℃)を500℃(比較例5)、620℃(実施例5)、900℃(比較例6)としたこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
〈実施例6〉
第1めっき層の熱処理温度T1(℃)を850℃とし、かつ第2めっき層の厚みを2.5μm、熱処理温度T2(℃)を580℃としたこと以外は実施例1と同様にしてヒートスプレッダを製造した。
〈実施例7〜9、比較例7〜10〉
第2めっき層の熱処理温度T2(℃)を250℃(比較例7)、280℃(比較例8)、300℃(実施例7)、350℃(実施例8)、550℃(実施例9)、620℃(比較例9)、700℃(比較例10)としたこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
〈実施例10〉
第2めっき層を電気Niめっきによって形成したこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
〈実施例11〉
第1および第2めっき層を、いずれも無電解Ni−Bめっきによって形成したこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
〈実施例12〉
下記の工程を経て作製したCu−Mo複合材料からなる基体を使用したこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
(基体の作製)
平均粒径3μmのMo粉末に1質量%のアクリルバインダを加えて平均粒径50μmに造粒し、前記造粒物を、幅30mm×長さ110mmの平面形状が矩形状の凹部を有する金型の、前記凹部内に充填して面圧1.5ton/cm2の圧力をかけて矩形平板状にプレス成形し、次いで水素ガス雰囲気中で800℃で1時間の加熱をしてバインダを除去させた後、引き続き水素ガス雰囲気中で1250℃に加熱して焼結させてMoからなる多孔質体を作製した。
次に前記多孔質体を、その空隙量の1.3倍の体積のCu板と重ねた状態で、水素ガス雰囲気中で1250℃に加熱してCuを溶解させることで、前記Cuを、Moからなる多孔質体の細孔内に溶浸させてCu−Mo複合材料(Cu:15質量%、Mo:85質量%)からなる基体の前駆体を得、前記前駆体の板の、互いに平行な2面(接続面)と、前記2面と交差する4側面とをそれぞれ研削加工して幅25mm×長さ100mm×厚み2mmの矩形平板状の基体を作製した。
〈実施例13〉
下記の工程を経て作製したCu−ダイヤモンド複合材料からなる基体を使用したこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
(基体の作製)
平均粒径15μmのダイヤモンド粒子とCu粉末とを、ダイヤモンド複合材料の総体積に占めるダイヤモンド粒子の割合が60体積%となるように配合した混合物を、プレス圧2ton/cm2の条件で予備成形後、真空中でモリブデンからなるカプセル中に封止した。次いで前記カプセルを加圧圧力5GPa、加熱温度1100℃の条件で5分間、加圧しながら加熱し、次いで圧力を保持した状態で温度を500℃以下に下げて30分間、保持したのち常温、常圧に戻してカプセルを回収した。
次に前記カプセルの表面を研削することでモリブデンを除去して焼結体を取り出し、放電加工して幅25mm×長さ50mmに切り出した後、平面研磨して幅25mm×長さ50mm×厚み2mmの矩形平板状の基体を作製した。
〈比較例11〉
熱処理した第1めっき層の上に第2めっき層を形成しなかったこと以外は実施例1と同様にして、ヒートスプレッダを製造した。
前記各実施例、比較例のヒートスプレッダについて、実施例1と同様にして、Niめっき層におけるCu等の元素の、厚み方向の含有量の分布を求めると共に、前記Niめっき層の基体に対する密着強度、並びに初期および高温高湿環境下で静置した後の接着強度を求めた。結果を実施例1、比較例1の結果と併せて表1、表2に示す。
Figure 0004876097
Figure 0004876097
表の実施例1および比較例1、11の結果より、Niめっき層のCuの分布に差をつける必要があること、実施例1、2および比較例2、3の結果より、第1めっき層の厚みによって規定される高Cu領域の厚みは2μm以下、特に0.1μm以上、2μm以下であるのが好ましいこと、実施例1、3、4および比較例4の結果より、第2めっき層の厚みによって規定される低Cu領域の厚みは0.3μm以上であるのが好ましいことが判った。
また実施例1、5、6および比較例5、6の結果より、第1めっき層の熱処理温度は600℃を超え、850℃以下である必要があること、実施例1、7〜9および比較例7〜10の結果より、第2めっき層の熱処理温度は300℃以上、600℃以下である必要があることが判った。また実施例1〜9および比較例1、4、9、10の結果より、Niめっき層の最表面におけるCuの含有量は0.5質量%未満である必要があることが判った。
さらに実施例1、10、11の結果より、第1のめっき層は電気Niめっきで形成するのが好ましく、第2のめっき層は無電解Ni−Pめっきで形成するのが好ましいこと、実施例1、12、13の結果より、基体はCu−W複合材料で形成するのが好ましいことが判った。
〈実施例14〉
(基体の作製)
平均粒径3μmのW粉末に1質量%のアクリルバインダを加えて平均粒径50μmに造粒し、前記造粒物を、縦35mm×横35mmの平面形状が矩形状の凹部を有する金型の、前記凹部内に充填して面圧1.5ton/cm2の圧力をかけて矩形平板状にプレス成形し、次いで水素ガス雰囲気中で800℃で1時間の加熱をしてバインダを除去させた後、引き続き水素ガス雰囲気中で1250℃に加熱して焼結させてWからなる多孔質体を作製した。
次に前記多孔質体を、その空隙量の1.3倍の体積のCu板と重ねた状態で、水素ガス雰囲気中で1250℃に加熱してCuを溶解させることで、前記Cuを、Wからなる多孔質体の細孔内に溶浸させてCu−W複合材料(Cu:10質量%、W:90質量%)からなる基体の前駆体を得、前記前駆体の板の、互いに平行な2面(接続面)と、前記2面と交差する4側面とをそれぞれ研削加工して縦30mm×横30mm×厚み1mmの矩形平板状とした。そして前記平板の片面に、機械加工によって縦19mm×横19mm×深さ0.25mmの、平面形状が矩形状の凹部を座ぐり加工して、図2に示すように平板状で、かつ前記平板の、図において下側の面13の中央部に凹部14が設けられた基体1を作製した。
(ヒートスプレッダの製造)
前記基体1の表面の全面に、電気Niめっきによって、厚み1.2μmの第1めっき層を形成し、水素ガス雰囲気中で800℃に加熱して熱処理した後、前記第1めっき層上に、無電解Ni−Pめっきによって、厚み1μmの第2めっき層を形成し、水素ガス雰囲気中で500℃に加熱して熱処理してNiめっき層3を形成して、Cuの含有量の分布が実施例1と同じヒートスプレッダ4を製造した。
(半導体装置の製造)
縦30mm×横30mm×厚み1mmのアルミナ製のパッケージ9の、図2において上側の面10の中央部に、半田バンプ11を介して、縦15mm×横15mm×厚み0.2mmのシリコン系の半導体素子12を接続した後、前記半導体素子12の図において上側の面と、ヒートスプレッダ4の凹部14の底面15である接続面2上のNiめっき層3との間、およびパッケージ9の上側の面10と、ヒートスプレッダ4の凹部14の周囲の面13である接続面2上のNiめっき層3との間に、それぞれ15質量%のAgフィラーを含む液状のエポキシ樹脂接着剤の層を挟んだ状態で、150℃で1時間の加熱をして接着剤を硬化させて図2に示す半導体装置8を製造した。
(接着強度の測定)
接着強度の測定のために、接着面が直径10mmの円形である治具を用意した。そして前記半導体装置8を、温度+85℃、相対湿度85%の高温高湿環境下で1000時間、静置した後、パッケージ9の、図2において下側の面23の中央部と、基体1の、図において上側の面24の中央部のNiめっき層3上とに、それぞれ前記治具の接着面を、半導体装置の製造で使用したのと同じエポキシ樹脂接着剤の層を挟んで重ねた状態で、150℃で1時間の加熱をして接着剤を硬化させて、それぞれの面に治具を接着した。
そして一対の治具を、図2の上下方向に引っ張って引張強度の推移を測定したところ、引張強度が4.9N/mm2の時点で引張強度の推移に変化が見られたが、外観上は、パッケージ9とヒートスプレッダ4との間で剥離等は見られなかった。そのため測定を中止し、半導体装置8を分解して内部を確認したところ、半導体素子12とヒートスプレッダ4との間や、半導体素子12とパッケージ9との間では剥離等は見られず、半導体素子12自体が破損しているのが確認された。
〈比較例12〉
第2めっき層の熱処理温度を800℃としたこと以外は実施例14と同様にして、Cuの含有量の分布が比較例1と同じヒートスプレッダ4を製造し、前記ヒートスプレッダ4を使用したこと以外は実施例14と同様にして、図2に示す半導体装置8を製造した。そして前記半導体装置8を温度+85℃、相対湿度85%の高温高湿環境下で1000時間、静置した後、実施例14と同様にして引っ張り強度の推移を測定したところ、引張強度が0.98N/mm2の時点で、ほぼ同時にパッケージ9とヒートスプレッダ4との間、および半導体素子12とヒートスプレッダ4との間で剥離した。そこで剥離面を観察したところ、いずれの剥離面においても、Niめっき層3中のCuの腐食によって、エポキシ樹脂接着剤が前記Niめっき層3から剥離したことが確認された。
本発明のヒートスプレッダの、実施の形態の一例の要部であるNiめっき層の一部を拡大した断面図である。 本発明の半導体装置の、実施の形態の一例を示す断面図である。 本発明の、実施例、比較例において、接着強度を測定するために作製した試験片の概略を示す断面図である。 本発明の、実施例1のヒートスプレッダにおける、Niめっき層の厚み方向の、元素の分布曲線を示すグラフである。 図4の分布曲線のうち、Cuの分布曲線を拡大して示したグラフである。 比較例1のヒートスプレッダにおける、Niめっき層の厚み方向の、元素の分布曲線を示すグラフである。 図6の分布曲線のうち、Cuの分布曲線を拡大して示したグラフである。
符号の説明
1 基体
2、13、15 接続面
3 Niめっき層
4 ヒートスプレッダ
5 高Cu領域
6 最表面
7 低Cu領域
8 半導体装置
9 パッケージ(他部材)
12 半導体素子(他部材)
17、18 樹脂接着剤の層

Claims (6)

  1. W、Mo、またはダイヤモンドと、Cuとの複合材料からなり、他部材との接続のための接続面を有する基体を備え、前記基体の少なくとも前記接続面にNiめっき層が形成されたヒートスプレッダであって、前記Niめっき層が、前記接続面にNiめっきを施して、厚み0.2μm以上、1.2μm以下の第1めっき層を形成し、式(I):
    620℃≦≦850℃ (I)
    を満足する温度T(℃)で熱処理して前記基体中から前記第1めっき層中にCuを拡散させたのち、前記第1めっき層の表面にNiめっきを施して、厚み0.6μm以上、2.5μm以下の第2めっき層を形成し、式(II):
    300℃≦T580℃ (II)
    を満足する温度T(℃)で熱処理して前記第2めっき層と前記第1めっき層とを一体化させて形成され、
    前記Niめっき層は、前記基体との界面から厚み方向に0.2μm以上、1.9μm以下の範囲にCuの含有量R(質量%)が式(III):
    2.5質量%≦R (III)
    を満足する高Cu領域を有すると共に、前記Niめっき層の最表面がCuを含まないか、または前記最表面におけるCuの含有量R(質量%)が式(IV):
    0質量%<R≦0.3質量% (IV)
    を満足し、かつ前記Niめっき層の、前記基体に対する密着強度S(N/mm)が90N/mm以上であることを特徴とするヒートスプレッダ。
  2. 前記基体がCu−W複合材料からなり、前記Cu−W複合材料におけるWの含有量が75質量%以上、95質量%以下である請求項1に記載のヒートスプレッダ。
  3. 半導体素子と、前記半導体素子の動作時に発生する熱を除去するための、請求項1または2に記載のヒートスプレッダとを備えることを特徴とする半導体装置。
  4. 前記ヒートスプレッダが複数の接続面を備え、前記複数の接続面のうち少なくとも1つの接続面に前記半導体素子、他の接続面に熱除去部材が、それぞれAgフィラーを配合した樹脂接着剤を介して接続されている請求項に記載の半導体装置。
  5. 前記接続面に対する前記半導体素子、および前記熱除去部材の接着強度S(N/mm)が、それぞれ15.7N/mm以上である請求項に記載の半導体装置。
  6. 請求項1または2に記載のヒートスプレッダを製造するための製造方法であって、W、Mo、またはダイヤモンドと、Cuとの複合材料からなる前記基体の少なくとも前記接続面にNiめっきを施して厚みが0.2μm以上、1.2μm以下の第1めっき層を形成し、式(I):
    620℃≦≦850℃ (I)
    を満足する温度T(℃)で熱処理して前記基体中から前記第1めっき層中にCuを拡散させる工程と、前記第1めっき層の表面にNiめっきを施して厚みが0.6μm以上、2.5μm以下の第2めっき層を形成し、式(II):
    300℃≦T580℃ (II)
    を満足する温度T(℃)で熱処理して前記第2めっき層と前記第1めっき層とを一体化させて前記Niめっき層を形成する工程とを含むことを特徴とするヒートスプレッダの製造方法。
JP2008121265A 2007-05-31 2008-05-07 ヒートスプレッダとその製造方法および半導体装置 Expired - Fee Related JP4876097B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008121265A JP4876097B2 (ja) 2007-05-31 2008-05-07 ヒートスプレッダとその製造方法および半導体装置
US12/155,228 US20080298024A1 (en) 2007-05-31 2008-05-30 Heat spreader and method for manufacturing the same, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007145688 2007-05-31
JP2007145688 2007-05-31
JP2008121265A JP4876097B2 (ja) 2007-05-31 2008-05-07 ヒートスプレッダとその製造方法および半導体装置

Publications (2)

Publication Number Publication Date
JP2009010340A JP2009010340A (ja) 2009-01-15
JP4876097B2 true JP4876097B2 (ja) 2012-02-15

Family

ID=40325084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121265A Expired - Fee Related JP4876097B2 (ja) 2007-05-31 2008-05-07 ヒートスプレッダとその製造方法および半導体装置

Country Status (1)

Country Link
JP (1) JP4876097B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182385A1 (ja) * 2014-05-29 2015-12-03 株式会社アライドマテリアル ヒートスプレッダとその製造方法

Also Published As

Publication number Publication date
JP2009010340A (ja) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5713684B2 (ja) Led発光素子用複合材料基板、その製造方法及びled発光素子
US5807626A (en) Ceramic circuit board
JP5679557B2 (ja) アルミニウム−黒鉛複合体からなる基板、それを用いた放熱部品及びled発光部材
JP6797797B2 (ja) セラミックス金属回路基板およびそれを用いた半導体装置
US20080298024A1 (en) Heat spreader and method for manufacturing the same, and semiconductor device
WO2013018504A1 (ja) 半導体装置とその製造方法
WO2013021750A1 (ja) 配線基板およびその製造方法ならびに半導体装置
CN108475647B (zh) 电力用半导体装置以及制造电力用半导体装置的方法
JP4136648B2 (ja) 異種材料接合体及びその製造方法
JP2001010874A (ja) 無機材料とアルミニウムを含む金属との複合材料の製造方法とその関連する製品
CN1529357A (zh) 用于放置半导体芯片的封装件及其制造方法和半导体器件
JP2003212670A (ja) 異種材料の接合体及びその製造方法
CN102017107A (zh) 接合结构以及电子器件
JP2008041707A (ja) 半導体装置及びその製造方法
JP4104429B2 (ja) モジュール構造体とそれを用いたモジュール
TWI283463B (en) Members for semiconductor device
JP4876097B2 (ja) ヒートスプレッダとその製造方法および半導体装置
JP2010278171A (ja) パワー半導体及びその製造方法
JP5676278B2 (ja) アルミニウム−黒鉛複合体、それを用いた放熱部品及びled発光部材
JP2003192462A (ja) 窒化珪素回路基板およびその製造方法
TW201306195A (zh) 散熱基板
JP5681035B2 (ja) Led光源パッケージ
JP2012038948A (ja) Led発光素子用金属基複合材料基板、その製造方法及びled発光素子。
JPH05201777A (ja) セラミックス−金属接合体
JP2024041251A (ja) 電子部品接合方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100310

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees