JP4873770B2 - Unidirectional electrical steel sheet - Google Patents
Unidirectional electrical steel sheet Download PDFInfo
- Publication number
- JP4873770B2 JP4873770B2 JP2000002727A JP2000002727A JP4873770B2 JP 4873770 B2 JP4873770 B2 JP 4873770B2 JP 2000002727 A JP2000002727 A JP 2000002727A JP 2000002727 A JP2000002727 A JP 2000002727A JP 4873770 B2 JP4873770 B2 JP 4873770B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- content
- secondary recrystallization
- orientation
- recrystallization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、変圧器などの電気機器の鉄心材料に用いられる、結晶方位(ゴス方位)が一方向に揃った一方向性電磁鋼板に関するものである。
【0002】
【従来の技術】
一方向性電磁鋼板は、鋼板面が{110}面で圧延方向が〈100〉軸を有する、いわゆるゴス方位(ミラー指数で{110}〈001〉方位を表す)を持つ結晶粒から構成されており、軟磁性材料として変圧器や発電機の鉄心に使用される。この鋼板は、磁気特性として磁化特性および鉄損特性が良好でなければならない。磁化特性の良否は、かけられた一定の磁場中で鉄心内に誘起される磁束密度の高低で決まり、磁束密度の高い製品は鉄心を小型化できる。高い磁束密度は、鋼板結晶粒の方位を、{110}〈001〉に高度に揃えることによって達成できる。なお、通常、磁束密度の代表値として、800A/mの磁場の強さでの値B8が用いられている。
【0003】
鉄損は、鉄心に所定の交流磁場を与えた場合に熱エネルギーとして消費される電力損失であり、その良否に対しては、磁束密度、板厚、被膜張力、不純物量、比抵抗、結晶粒の大きさ等が影響する。その中でも、磁束密度が高く、比抵抗が大きいことが鉄損を小さくするうえで重要であり、できる限り鉄損が低い製品を安いコストで製造する方法の開発が課題となる。
【0004】
一方向性電磁鋼板は、微細析出物によるインヒビターと、冷間圧延から一次再結晶に至る集合組織制御を利用して二次再結晶させて製造され、磁束密度の高さは、インヒビターと集合組織に依存する。また、Si含有量が多いほど比抵抗が大きくなるが,Si含有量を増加させると集合組織が劣化することが問題となる。なお、通常、鉄損は、50Hzで磁束密度1.7 Tまで磁化したときの損失W17/50で代表される。
【0005】
ところで、これまで工業化された代表的な一方向性電磁鋼板の製造方法として、以下の四つの技術が知られている。
第一の技術は、M.F.Littmannにより特公昭30−3651号公報で示された、MnSを用いた二回冷間圧延法の技術であるが、磁束密度が高くない。B8は1.86T程度で、飽和磁束密度Bsに対する比(ゴス方位集積度)は0.92〜0.93程度である。
【0006】
第二の技術は、田口等により特公昭40−15644号公報で示された、「AlN+MnS」を用い最終冷間圧延率を80%以上の強圧下率とする技術であり、高い磁束密度は得られるが、工業生産に際しては、製造条件の厳密なコントロールが要求される。B8は1.93T程度で、飽和磁束密度Bsに対して0.95〜0.96程度(ゴス方位集積度)のものが得られる。
【0007】
第三の技術は、今中等により特公昭51−13469号公報で示された、「MnS(および/またはMnSe)+Sb」を用いた二回冷間圧延法の技術であり、磁束密度は第二の技術より劣る。B8は1.90T程度で、飽和磁束密度Bsに対し0.94〜0.95程度(ゴス方位集積度)である。
上記3種類の技術は、共通して次のような問題がある。上記技術はいずれも、インヒビターの造り混みを冷間圧延前で行っている。すなわち、熱間圧延に先立つスラブ加熱温度を1250℃超、実際には、1300℃以上と極めて高い温度にすることによって、粗大な析出物を一旦固溶させ、その後の熱間圧延あるいは熱処理で、析出物を微細・均一に析出させている。
【0008】
ところが、スラブ加熱温度を上げることは、スラブ加熱時の使用エネルギーの増大、設備損傷率の増大等の他、材質的にはスケールロス・耳割れによる歩留まり低下、スラブの結晶組織粗大化に起因する線状の二次再結晶不良が発生し、特に薄手材、高Si材においてこの問題は顕著になってくる。
このような高温スラブ加熱法の問題を解決するため、第四の技術として低温スラブ加熱法の技術が、特開昭62−40315号公報および特開平5−112827号公報に開示されている。これは、二次再結晶に必要なインヒビターを、脱炭焼鈍(一次再結晶)完了以降から仕上げ焼鈍における二次再結晶発現以前までに造り込むことで、スラブ加熱温度を普通鋼なみの1280℃以下とする技術である。インヒビターは、鋼中にNを侵入させることによって形成する(Al,Si)Nである。析出量は、従来の高温スラブ加熱法における析出量の3倍以上を確保できるので、インヒビターは強固で熱的安定性が高い。
【0009】
鋼中にNを侵入させる手段としては、仕上げ焼鈍昇温過程で、雰囲気ガスからのNの侵入を利用するか、もしくは、脱炭焼鈍の後段領域或いは脱炭焼鈍完了後、ストリップを連続ラインで窒化焼鈍するか、である。窒化源としては、NH3 等を混合した焼鈍雰囲気ガスを用いる。このような方法によって、一方向性電磁鋼板の抜本的なコストダウンが達成できた。
【0010】
また、この方法は、熱的に安定なインヒビターを用いるので、上記第二の技術と同等の高磁束密度を得ることができる。B8は1.93T程度で、飽和磁束密度Bsに対する比(ゴス方位集積度)は0.95〜0.96程度である。
【0011】
【発明が解決しようとする課題】
従来の高温スラブ加熱法における結晶異常粒成長を防止する方法として、Si量に応じてC量を増加して鋳造時に変態を起こさせ、それによって、結晶粒を細分化する手法が採用されてきた。この方法では、Si量を高くするほどC量も高くせねばならないが、それにより、引き続く冷間圧延が困難になったり、脱炭焼鈍工程を非常に長時間処理しなければならなくなる。それ故、Si量を増加させて鉄損を向上させることは困難である。
【0012】
これに対して、上記低温スラブ加熱による製造法では、高温スラブ加熱において発現する結晶異常粒成長がほとんど起こらないので、これに起因する線状の二次再結晶不良の問題もなく、高C化を伴わずに高Si化を容易に行える。
そこで、本発明者らは、低温スラブ加熱の一回冷延法をベースに、高Si化を推進してきた。
【0013】
ところが、成分組成をはじめとする工程条件をそのままにして、Si含有量を増加させると、磁束密度B8が劣化し、所定の低鉄損が得られ難いという問題に直面した。
本発明者らは、この原因を鋭意調査し、まず、Si含有量が増加すると飽和磁束密度Bsが低下するので、ゴス二次再結晶の方位集積度を現す指標として、飽和磁束密度Bsに対するB8の比率(B8/Bs;以下ゴス方位集積度と記す)が有用であり、良好な鉄損を達成するためには、所要のゴス方位集積度を確保することが必要であることを見い出した。
【0014】
しかしながら、単にSi含有量を増加させた場合には、ゴス方位集積度でみても、ゴス方位集積度が劣化しており、所定の低鉄損が得られないことが判明した。
すなわち、Si含有量の増大にともなう冶金的な変化を一次再結晶集合組織の観点から解明し、高Si材においても、所要のゴス方位集積度を確保するための補償技術の開発が必要であることが判明した。
【0015】
【課題を解決するための手段】
本発明者らは、高Si化にともなう材質的な変化を詳細に調査することにより、ゴス方位集積度劣化の原因を解明するとともに、低温スラブ加熱−窒化法の製造プロセスにおいて、高Si化するための条件を検討した。
まず、高Si化にともなうゴス方位集積度の劣化は、一次再結晶組織中におけるゴス方位の減少が原因であることを解明した。
【0016】
また、ゴス方位の減少を補う成分組成設計を種々検討した結果、Sn含有量の調整により一次再結晶組織のゴス方位を効果的に増加させると、所要の二次再結晶のゴス方位集積度の確保が可能となり、Si含有量に応じた鉄損を達成できることを発見した。
すなわち、本発明の要旨とするところは、下記(1)に示すとおりである。
(1)質量%で、Si:3.0〜4.0%、Mn:0.08〜0.45%、Al:0.001〜0.035%、Cr:0.01〜0.25%、および、Snを、
0.107×Si(%)−0.31≦Sn(%)≦0.121×Si(%)−0.32
を満たす量含有し、残部Feおよび不可避的不純物からなる電磁鋼であって、B8/Bsが0.96以上で、かつ、二次再結晶粒の平均粒径が14〜19.8mmであることを特徴とする一方向性電磁鋼板。
【0017】
【発明の実施の形態】
まず、本発明を実験結果に基づき説明する。
質量%で、Mn:0.1%、S:0.007%、Cr:0.12%、酸可溶性Al:0.029%、N:0.0083%、および、P:0.030%をベース成分含有量とし、Cを0.021〜0.095%、Siを2.85〜3.74%の範囲で変更し、Snを0.005〜0.16%の範囲で変更した電磁鋼スラブを、1150℃で60分間加熱した後に熱間圧延し、2.3mmの熱延板とした。そして、この熱延板に、「1120℃×30秒+900℃×120秒」の焼鈍を施し、その後、急冷却した。
【0018】
前記熱延焼鈍板を酸洗し、次いで、0.22mm厚の鋼板に冷間圧延した。この鋼板に、焼鈍温度を変更して脱炭焼鈍を施すことにより、鋼板における一次再結晶粒の平均粒径をほぼ23μmに調整した。この後、窒化焼鈍を750℃×30秒で、水素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素量をほぼ220ppmに調整した。次いで、この鋼板にMgOとTiO2 を主成分とする焼鈍分離剤を塗布し、1200℃まで10℃/hrの昇温速度で加熱し、その後、1200℃で20時間の仕上げ焼鈍を施した。
【0019】
この仕上げ焼鈍板から余剰の焼鈍分離剤を除去して歪取り焼鈍した後、張力コーティング処理を行い、鉄損を測定した。磁束密度は、皮膜張力と界面性状の影響を取り除くため、酸液中で絶縁皮膜等を除去する処理を行った後に測定した。また、磁束密度については、Si含有量が増えると飽和磁束が低下し、磁束密度B8ではゴス二次再結晶の先鋭度を反映できないので、B8/Bsの規格値でゴス方位集積度を評価した。X線回折による結晶方位測定により、B8/Bsの妥当性を確認した。
【0020】
図1に、熱延板焼鈍板の結晶粒径とゴス方位集積度の関係を示す。B8/Bs≧0.96の高い二次再結晶先鋭度を得るためには、Si含有量に応じてSn含有量を高める必要があることが判明した。これが本発明における第1の特徴である。ここで、図中のB8/Bs≧0.96の材料において、鉄損はSi含有量の増大にともない低下しており、高Si化の効果を発揮できることを確認した。鉄損改善代は0.1%のSi含有量あたりW17/50で約0.015W/kgであった。
【0021】
次に、Si含有量に応じてSn含有量を高めることにより、所要の二次再結晶ゴス方位集積度を確保できるメカニズムを調査するため、一次再結晶集合組織を調査した。図1で処理した中間工程サンプルである脱炭焼鈍板の1/5tにおいて、インバース面強度を測定した。図2と図3に、一次再結晶の(110)面強度と(111)面強度に及ぼすSi量とSn量の影響を示す。Si量の増加に伴い(110)が減少し(111)が増加することが判る。
【0022】
また、Sn量を増加させると逆に(110)が増加し(111)が減少することが判る。すなわち、高Si化にともなう集合組織の変化を、Sn量増加が補う形で作用したものと推定される。
一次再結晶集合組織が、二次再結晶ゴス方位集積度に及ぼすメカニズムは現在のところ明らかでないが、次のように考えられる。
【0023】
二次再結晶ゴス方位集積度は、前記したように、インヒビター強度と一次再結晶集合組織に依存すると考えられる。そして、本発明においては、主に一次再結晶集合組織の影響が大きいものと考える。
一般に、一次再結晶については、二次再結晶核としてのゴス方位と、ゴス核と対応方位関係にある{111}<211>方位を考えればよい。また、ゴス方位は冷間圧延で結晶粒内に形成される変形帯を生成サイトし、結晶粒内に変形帯が多く形成されるとゴス核が多くなると考えられている。一方、{111}<211>は、冷間圧延前の結晶粒界近傍を再結晶生成サイトとし、結晶粒界近傍での変形が多いと{111}<211>は増加すると考えられる。
【0024】
一般に、Siは鉄の固溶強化元素であることが知られており、Si量の増加にともない結晶粒内の強度が高まり、相対的に結晶粒界の強度は低下すると考えられる。
したがって、鋼板組織においては、変形帯の形成が抑制され、結晶粒界近傍での変形が促進されるので、ゴス量が減少し、{111}<211>が増加するものと推定される。
【0025】
一方、Snは結晶粒界等への偏析元素として知られており、Sn添加により相対的に結晶粒界強度が高まるものと考えられる。
したがって、Sn量を増加させると結晶粒界近傍の変形が抑制され、相対的に結晶粒内の変形帯の形成が促進されるため、ゴス量が増加し{111}<211>が減少するものと推定される。
【0026】
二次再結晶ゴス方位の集積度を高めるためには、二次再結晶核と対応方位の量的なバランスが重要であると考えられる。
したがって、Si量を単独で増加させた場合には、対応方位に対し二次再結晶核が不足し、二次再結晶ゴス方位の集積度が劣化する。
そこで、Sn量を増加させることにより二次再結晶核の減少を補い、二次再結晶核と対応方位をバランスさせ、二次再結晶におけるゴス方位集積度を高めることが可能になるものと推定される。
【0027】
以上の考察から、一次再結晶集合組織に対するSnの効果を引き出すには、冷間圧延前の結晶粒界にSnが十分に偏析していることが重要であると考えられる。そして、Snの偏析においては、焼鈍による拡散が重要であると考え、熱延板焼鈍の条件を検討した。
次に、熱延板に係る焼鈍条件ついて検討した結果を述べる。
【0028】
図1の実験に用いた、3.48%Siおよび0.081%Snの材料を用いて、熱延板焼鈍の均熱時間を30秒、60秒、および、150秒とし、焼鈍温度を700〜1200℃に変更した。その他の工程条件は、図1の実験と同一条件とした。B8/Bsに対する時間t(秒)と温度T(K)の影響を図4に示す。
図からB8/Bs≧0.96を得るためには、該時間tを、
logt(秒)≧5803.2/T(K)−2.8741
の範囲内にすることが重要であることが判る。これが、本発明における第2の特徴である。
【0029】
上記式は、αFe中のSnの拡散定数から計算した、熱延焼鈍板の結晶粒半径の約20μmをSnが拡散する温度と時間の関係にほぼ一致している。
すなわち、上記式の条件を満たせば、Snが結晶粒界に充分拡散し偏析が可能と考えられる。そして、前述した、Snの一次再結晶集合組織への効果が発揮され、良好な二次再結晶ゴス方位集積度が得られるものと推定される。
【0030】
次に、上記特徴を有する発明を適用して得た製品において、その二次再結晶組織を特徴づけるパラメータを解析した。図1で用いた二次再結晶マクロ板について、二次再結晶の平均粒径を測定した。二次再結晶粒径は、Si量の増大にともない大きくなり、Sn量の増大にともない小さくなる傾向にある。この傾向は、前述した一次再結晶集合組織のゴス(110)の量に対する傾向と一致しており、二次再結晶核の量が変化したためと推定される。
【0031】
そこで、高いB8/Bsを得るための適性な二次再結晶粒径が存在するのではないかと考え、二次再結晶粒径とB8/Bsの関係を整理した。その結果を図5に示す。
図から判るように、B8/Bs≧0.96を得るための二次再結晶平均粒径は14〜21μmの範囲であり、本発明は、製品の二次再結晶粒径でも特徴づけられることを発見した。これが、SiとSnの含有量を含めた本発明における第3の特徴である。
【0032】
レーザー処理などの磁区細分化をしない場合、結晶粒径が小さいほうが鉄損改善に有利であり、本発明は、製品のB8/Bsと結晶粒径の観点から、低鉄損材として特徴づけられる。
次に、本発明の成分組成に係る限定理由について説明する。
Siは、製品の比抵抗を効果的に上げ低鉄損を得るための重要な元素であり、狙うべき鉄損に応じて含有量が決定される.Si含有量が3.0%未満になると低鉄損の製品が得難く、一方、4.0%を超えて多くなり過ぎると、材料の冷延性に問題を生ずる。
【0033】
本発明における第1の特徴であるSn含有量(Sn(%))は、図1の説明で詳細に述べたとおり、その範囲を、Si含有量(Si(%))との関係で、
0.107×Si(%)−0.31≦Sn(%)≦0.121×Si(%)−0.32
の範囲にする。
【0034】
なお、Snは、積極的に添加しない場合、トランプエレメントとして0.01%程度混入するが、これ以下では磁気特性改善の効果を発揮しない。一方、多量に添加すると、結晶粒径への偏析以外に表面への偏析が顕著となり、脱炭性や一次皮膜形成に重要な酸化性を抑制してしまうので、好ましくなく、その上限を0.16%とする。
【0035】
Cは、組識制御のためスラブの段階で0.02〜0.10%程度含有されるが、後の脱炭焼鈍工程で除去される。製品においてCが残留していると、時効により磁気特性が劣化するので、製品中のC含有量は少ないほど好ましく、通常は、脱炭焼鈍において100ppm以下まで除去される。
スラブの段階で、C含有量が0.02%未満になると、二次再結晶が不安定になり、二次再結晶した場合でもゴス方位集積度(B8/Bs)が0.94以下と低いものとなる。一方、C含有量が0.10%を超えると、二次再結晶は安定するが、やはりゴス方位集積度が劣化するとともに、脱炭焼鈍時間も長くなり、生産性を損なう。
【0036】
また、従来知見どおりγ相率を調整するため、製鋼工程においてSi量に応じてC量を調整することは本発明の特徴を損なうものでない。
本発明の出発材料(電磁鋼スラブ)の成分系における特徴の一つは、S、Seを単独又は複合で0.015%以下、好ましくは、0.0070%以下含有する点にある。SおよびSeは周知のごとく、それぞれ、MnSおよびMnSeを形成し、粒成長を抑制する作用を有する。本発明においては、二次再結晶粒を発現させるに必要なインヒビターを脱炭焼鈍以降で造り込むことを特徴としており、冷間圧延以前で微細な析出物が分散することは、一次再結晶粒径を調整して高磁束密度低鉄損を得る本発明においては、好ましくない。
【0037】
したがって、Sおよび/またはSeの含有量は0.015%以下とする。また、Sおよび/またはSeの含有量を少なくすることは、熱間圧延時の耳割れの低減にも効果が大きい。
Mnは、MnSまたはMnSeの形成元素であり、インヒビター効果の無害化のためにMnはできるだけ多いほうが好ましい。その含有量が少な過ぎると、1250℃以下の低温スラブ加熱であっても、MnSまたはMnSeが一部分溶解し、一次再結晶粒径が不安定となり磁気特性の変動をもたらす。一方、多過ぎると過剰な変態組織が影響し、高い磁束密度を持つ製品を得難くなる。適正なMnの含有量は、0.08〜0.45%である。
【0038】
Alは、Nと結合してAlNを形成するが、本発明においては、後工程、すなわち、一次再結晶完了後に鋼を窒化することにより、(Al,Si)Nを形成せしめることを必須としているから、フリーのAlが一定量以上必要である。そのため、酸可溶性Alとして、0.020〜0.035%添加する。このAlは、脱炭焼鈍時の酸化や、仕上げ焼鈍時の純化などにより、製品では若干減少する。
【0039】
Nは、スラブ段階で0.0035〜0.012%にする必要がある。N含有量が0.012%を超えると、ブリスターと呼ばれる鋼板表面の脹れが発生するし、また、一次再結晶組織の調整が困難になる。N含有量の下限は0.0035%がよい。N含有量が0.0035%未満になると、二次再結晶粒を発達させるのが困難になる。
【0040】
なお、Nは、後述の窒化処理による分と併せてインヒビターとして機能した後、仕上げ焼鈍における純化おいて除去される。Nもまた時効を起こすため製品では少ない程よく、通常は、50ppm以下に抑制される。
Crは、本発明の特徴であるSnの表面偏析による脱炭性や酸化性の抑制を緩和させる作用があるので、その添加を必須とする。Cr含有量の下限は、トランプエレメントとして含有する0.01%とし、これ以上を意図的に添加するものとする。一方、Crを多量に添加すると酸化過多となり、逆に、皮膜形成を阻害する。添加コストの負荷も勘案し、上限を0.25%とする。
【0041】
この他、微量のP、Cu、Sb、Ni、Bi、V、Nb、B等を含むことは本発明の特徴を損なうものではない。
次に、本発明の製造プロセスについて説明する。電磁鋼スラブは、転炉或いは電気炉等の溶解炉で鋼を溶製し、必要に応じて真空脱ガス処理をし、次いで、連続鋳造によって、または、造塊後分塊圧延することによって得られる。その後、熱間圧延に先立つスラブ加熱がなされる。
【0042】
本発明の製造プロセスにおいては、スラブ加熱温度は1280℃以下の低い温度で行い、加熱エネルギーの消費量を少なくするとともに、鋼中のAlNを完全に固溶させずに不完全固溶状態とする。また、当然のことながら、高Mn、低S(Se)の成分設計のために、固溶温度が高いMnS(Se)も不完全固溶状態である。スラブ加熱後は、直ちに通常の方法により粗熱延と仕上熱延を行い、板厚2〜3mm厚の熱延板とする。
【0043】
良好な磁気特性の製品を得るためには、Snの結晶粒界偏析の観点から、最終冷間圧延前の焼鈍が必須である。すなわち、一回冷間圧延を採用する場合は熱延板焼鈍の条件、また、二回以上の冷間圧延を採用する場合は中間焼鈍の条件を特定する必要がある。焼鈍条件は図3の説明で詳細に述べたとおり、均熱時間t(秒)と均熱温度T(K)とするとき、該tを、
logt(秒)≧5803.2/T(K)−2.8741
の範囲内に制御することが重要である。上式は、Fe中におけるSnの拡散距離に関する式であるので、「1120℃×30秒+900℃×120秒」のような二段サイクルの場合、それぞれ左項と右項の均熱に従って計算した結果の累計で判断する必要がある。一次再結晶集合組織の制御のため焼鈍を行った後に、急冷却等の公知技術を実施しても本発明の特徴を阻害するものでない。
【0044】
続いて、冷間圧延以降の工程条件について説明する。本発明は、熱延板焼鈍を行い、次いで、圧下率が80%以上の一回冷間圧延、または、圧下率の調整のため中間焼鈍を介挿する最終圧下率が80%以上の二回以上の冷間圧延により最終板厚とする、強圧下最終冷間圧延を前提とする。冷間圧延は通常の方法で行う。高い磁束密度を得るために圧下率を微調整したり、パス間で時効処理をすることは好ましい。
【0045】
最終板厚に冷間圧延された鋼板に、脱炭焼鈍を施す。脱炭焼鈍は、脱炭を行う他に、一次再結晶組織の調整及び被膜形成に必要な酸化層を生成させる役割がある。これは、通常、800〜900℃の温度域で、湿水素、窒素ガス中で行う。一次再結晶粒径は15〜30μmが好ましい。
次に、窒化処理を行う。窒化処理の条件は、ストリップ窒化、仕上げ焼鈍中の窒化等に係る公知の条件とする。ストリップ窒化の場合、焼鈍温度を650〜850℃とすることが、窒化にとって有利である。良好な二次再結晶粒を安定して発達させるには、窒素量は120ppm以上、好ましくは、150ppm以上が必要である。
【0046】
この後、公知の方法で、MgOとTiO2 を主成分とする焼鈍分離剤を塗布し、1100℃以上の温度で仕上げ焼鈍を行う。仕上げ焼鈍の条件は公知の条件でよく、ゴス方位集積度を高めるために、雰囲気を調整したり、加熱速度を遅くすることは有効である。
本発明で得られる製品においては、前述のSi、Mn、Al、CrおよびSnの成分が重要である。特に、SiとSnの量的関係に特徴がある。NとSは、仕上げ焼鈍中に純化されるので必須成分から除外した。また、Alも仕上げ焼鈍中に少なくなるが、AlNをインヒビターとして使用するので、下限を0.001%とする。
【0047】
また、二次再結晶組織の特徴として、ゴス方位集積度の簡易指標としてのB8/Bsが0.95以上、好ましくは0.96以上であること、および、二次再結晶平均粒径が12〜25mm、好ましくは14〜21mmであることが重要である。ただし、二次再結晶平均粒径の上限は、表1中、発明例の最大値19.8(mm)に基づいて、19.8mmとした。粒径は、結晶粒径の個数を数えて平均面積から円相当粒径に換算する方法、画像解析処理装置等を用いる方法により測定できる。
【0048】
仕上げ焼鈍後のコイルには、形状矯正焼鈍や絶縁コーティングを施すが、必要に応じて、レーザー、プラズマ、機械的方法、エッチング、その他の手法によって磁区細分化処理を施すことも可能である。
【0049】
【実施例】
(実施例1)
質量%で、Mn:0.1%、S:0.007%、Cr:0.12%、酸可溶性Al:0.029%、N:0.0083%、および、P:0.030%をベース成分含有量とし、Cを0.021〜0.095%、Siを2.85〜3.74%の範囲で変更し、Snを0.005〜0.16%の範囲で変更した電磁鋼スラブを、1150℃で60分間加熱した後に熱間圧延し、2.3mm厚の熱延板とした。
【0050】
この熱延板に対し、「1120℃×30秒+900℃×120秒」の焼鈍を施した後、急冷却した。この熱延焼鈍板を酸洗し、0.22mm厚の鋼板に冷間圧延した。この鋼板を、焼鈍温度を変更して脱炭焼鈍することにより、一次再結晶粒の粒径を23μmに調整した。
この後、窒化焼鈍を750℃×30秒、水素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素量をほぼ220ppmに調整した。次いで、MgOとTiO2 を主成分とする焼鈍分離剤を塗布し、1200℃まで10℃/hrで加熱し、その後、1200℃で20時間の仕上げ焼鈍を行った。
【0051】
この仕上げ焼鈍板から余剰の焼鈍分離剤を除去して歪取り焼鈍した後、コロイダルシリカとリン酸アルミニウムを主成分とする張力コーティング処理を行い、鉄損を測定した。磁束密度(B8とBs)は、皮膜張力と界面性状の影響を取り除くため酸液中で絶縁皮膜等を除去する処理の後に測定した。また、同じ試料から画像処理によって二次再結晶平均粒径を測定した。
【0052】
測定結果を表1に示す。また、図1に熱延板焼鈍板の結晶粒径とゴス方位集積度の関係を示す。Si含有量から計算されるSn含有量が
0.107×Si(%)−0.31≦Sn(%)≦0.121×Si(%)−0.32
の範囲において、B8/Bs≧0.96の高い二次再結晶ゴス方位集積度が得られている。
【0053】
一方、二次再結晶粒径とB8/Bsの関係を整理した結果を、図5に示す。B8/Bs≧0.96を得るための二次再結晶平均粒径は12〜25mm、好ましくは、14〜21mmの範囲である。
【0054】
【表1】
【0055】
(実施例2)
実施例1の実験で用いた、3.48%Siおよび0.081%Snの材料を用いて、熱延板焼鈍における均熱時間を、30秒、60秒および150秒とし、焼鈍温度を700〜1200℃に変更した。その他の工程条件は実施例1の実験と同一条件とした。磁気特性の測定結果を表2に、B8/Bsに対する時間t(秒)と温度T(K)の影響を図4に示す。t(秒)とT(K)の関係が
logt(秒)≧5803.2/T(K)−2.8741
を満たせば、B8/Bs≧0.96の高い二次再結晶ゴス方位集積度が得られていることが判る。
【0056】
【表2】
【0057】
【発明の効果】
本発明により、コストメリットが高い低温スラブ加熱−窒化処理を前提とするプロセスにおいて、高Si化が可能となり、ゴス方位集積度が高く、二次再結晶粒径が小さく、鉄損が良好な一方向性電磁鋼板を製造することができる。
【図面の簡単な説明】
【図1】SiおよびSn含有量と二次再結晶ゴス方位集積度(B8/Bs)の関係を示す図である。
【図2】SiおよびSn含有量と一次再結晶の(110)面強度の関係を示す図である。
【図3】SiおよびSn含有量と一次再結晶の(111)面強度の関係を示す図である。
【図4】熱延板焼鈍の均熱温度T(K)および時間t(秒)と二次再結晶ゴス方位集積度(B8/Bs)の関係を示す図である。
【図5】各Si含有量における二次再結晶平均粒径とゴス方位集積度(B8/Bs)の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a unidirectional electrical steel having a crystal orientation (Goss orientation) aligned in one direction, which is used for an iron core material of electrical equipment such as a transformer. On the board It is related.
[0002]
[Prior art]
The unidirectional electrical steel sheet is composed of crystal grains having a so-called Goth orientation (representing a {110} <001> orientation in terms of Miller index) having a {110} plane and a rolling direction of the <100> axis. It is used as a soft magnetic material for transformers and generator cores. This steel plate must have good magnetic properties and iron loss properties as magnetic properties. The quality of the magnetization characteristics is determined by the level of magnetic flux density induced in the iron core in a constant magnetic field applied. Products with high magnetic flux density can reduce the size of the iron core. High magnetic flux density can be achieved by highly aligning the orientation of the steel plate crystal grains to {110} <001>. Normally, a value B8 at a magnetic field strength of 800 A / m is used as a representative value of the magnetic flux density.
[0003]
Iron loss is power loss that is consumed as thermal energy when a predetermined alternating magnetic field is applied to the iron core. For its quality, magnetic flux density, plate thickness, film tension, impurity content, specific resistance, crystal grains This affects the size of the. Among them, a high magnetic flux density and a large specific resistance are important for reducing the iron loss, and the development of a method for manufacturing a product having a low iron loss as much as possible at a low cost becomes an issue.
[0004]
Unidirectional electrical steel sheets are manufactured by secondary recrystallization using an inhibitor based on fine precipitates and texture control from cold rolling to primary recrystallization. Depends on. Moreover, although the specific resistance increases as the Si content increases, there is a problem that the texture deteriorates when the Si content is increased. Normally, the iron loss is represented by a loss W17 / 50 when magnetized to a magnetic flux density of 1.7 T at 50 Hz.
[0005]
By the way, the following four techniques are known as a manufacturing method of typical unidirectional electrical steel sheets that have been industrialized so far.
The first technique is M.M. F. Although it is a technique of the two-time cold rolling method using MnS which was disclosed in Japanese Patent Publication No. 30-3651 by Littmann, the magnetic flux density is not high. B8 is about 1.86T, and the ratio to the saturation magnetic flux density Bs (Goss orientation integration degree) is about 0.92 to 0.93.
[0006]
The second technique is a technique of making the final cold rolling reduction more than 80% by using “AlN + MnS” disclosed in Japanese Patent Publication No. 40-15644 by Taguchi et al. However, strict control of manufacturing conditions is required for industrial production. B8 is about 1.93T, and about 0.95 to 0.96 (Goss orientation integration degree) with respect to the saturation magnetic flux density Bs is obtained.
[0007]
The third technique is a technique of the double cold rolling method using “MnS (and / or MnSe) + Sb” disclosed in Japanese Patent Publication No. 51-13469 by Imachu et al. Inferior to technology. B8 is about 1.90T and is about 0.94 to 0.95 (Goth orientation integration degree) with respect to the saturation magnetic flux density Bs.
The above three types of techniques have the following problems in common. In any of the above techniques, the inhibitor is crowded before cold rolling. That is, by setting the slab heating temperature prior to hot rolling to over 1250 ° C., in fact, an extremely high temperature of 1300 ° C. or higher, coarse precipitates are once solid-dissolved, and in subsequent hot rolling or heat treatment, Precipitates are deposited finely and uniformly.
[0008]
However, increasing the slab heating temperature results from an increase in energy consumption during slab heating, an increase in equipment damage rate, etc., and in terms of material, yield loss due to scale loss and ear cracking, and coarsening of the slab crystal structure. A linear secondary recrystallization failure occurs, and this problem becomes remarkable particularly in a thin material and a high Si material.
In order to solve such a problem of the high temperature slab heating method, as a fourth technique, a technique of a low temperature slab heating method is disclosed in Japanese Patent Laid-Open Nos. 62-40315 and 5-112827. This is because the inhibitor necessary for the secondary recrystallization is built from the time after the decarburization annealing (primary recrystallization) is completed to the time before the secondary recrystallization appears in the final annealing, and the slab heating temperature is 1280 ° C, which is the same as that of ordinary steel. The technology is as follows. Inhibitors are (Al, Si) N formed by the penetration of N into the steel. Since the precipitation amount can ensure three times or more of the precipitation amount in the conventional high-temperature slab heating method, the inhibitor is strong and has high thermal stability.
[0009]
As a means to penetrate N into the steel, use the penetration of N from the atmosphere gas in the finish annealing temperature rise process, or after the decarburization annealing or after completion of the decarburization annealing, the strip is continuously lined. Is nitridation annealing? As a nitriding source, NH Three An annealing atmosphere gas mixed with the above is used. By such a method, drastic cost reduction of the unidirectional electrical steel sheet could be achieved.
[0010]
Further, since this method uses a thermally stable inhibitor, a high magnetic flux density equivalent to that of the second technique can be obtained. B8 is about 1.93T, and the ratio (goth orientation integration degree) to the saturation magnetic flux density Bs is about 0.95 to 0.96.
[0011]
[Problems to be solved by the invention]
As a method of preventing abnormal crystal grain growth in the conventional high-temperature slab heating method, a technique has been adopted in which the amount of C is increased in accordance with the amount of Si to cause transformation during casting, thereby subdividing the crystal grains. . In this method, the higher the amount of Si, the higher the amount of C. However, the subsequent cold rolling becomes difficult, and the decarburization annealing process must be processed for a very long time. Therefore, it is difficult to increase the iron loss by increasing the amount of Si.
[0012]
On the other hand, in the manufacturing method using the low-temperature slab heating, the abnormal crystal grain growth that occurs in the high-temperature slab heating hardly occurs. High Si can be easily achieved without accompanying.
Therefore, the present inventors have promoted high Si based on the single cold rolling method of low temperature slab heating.
[0013]
However, when the Si content is increased while keeping the process conditions including the component composition as it is, the magnetic flux density B8 is deteriorated and it is difficult to obtain a predetermined low iron loss.
The inventors diligently investigated the cause of this. First, since the saturation magnetic flux density Bs decreases as the Si content increases, B8 relative to the saturation magnetic flux density Bs is used as an index indicating the degree of orientation integration of goth secondary recrystallization. The ratio (B8 / Bs; hereinafter referred to as Goss direction integration degree) was useful, and in order to achieve good iron loss, it was found that the required Goss direction integration degree was required.
[0014]
However, it has been found that when the Si content is simply increased, the Goss orientation integration degree is deteriorated even in the Goss orientation integration degree, and a predetermined low iron loss cannot be obtained.
That is, it is necessary to elucidate the metallurgical change accompanying the increase of the Si content from the viewpoint of the primary recrystallization texture, and to develop a compensation technique for ensuring the required degree of Goss orientation integration even in high Si materials. It has been found.
[0015]
[Means for Solving the Problems]
The present inventors have investigated in detail the material changes accompanying the increase in Si, thereby elucidating the cause of the deterioration in Goss orientation integration and increasing the Si in the low-temperature slab heating-nitriding manufacturing process. The conditions for this were examined.
First, it was clarified that the deterioration of the Goss orientation accumulation degree with the increase in Si was caused by the decrease of the Goss orientation in the primary recrystallized structure.
[0016]
In addition, as a result of various investigations on the component composition design that compensates for the decrease in goth orientation, when the goth orientation of the primary recrystallized structure is effectively increased by adjusting the Sn content, the degree of goth orientation integration of the required secondary recrystallization It was discovered that the iron loss according to the Si content can be achieved.
That is, the gist of the present invention is the following (1 ) It is shown.
(1) By mass%, Si: 3.0-4.0%, Mn: 0.08-0.45%, Al: 0.001-0.035%, Cr: 0.01-0.25% And Sn,
0.107 × Si (%) − 0.31 ≦ Sn (%) ≦ 0.121 × Si (%) − 0.32
An electromagnetic steel containing the balance of Fe and inevitable impurities, B8 / Bs is 0.96 or more, and the average grain size of secondary recrystallized grains is 14 to 19.8 mm A unidirectional electrical steel sheet characterized by
[0017]
DETAILED DESCRIPTION OF THE INVENTION
First, the present invention will be described based on experimental results.
% By mass: Mn: 0.1%, S: 0.007%, Cr: 0.12%, acid-soluble Al: 0.029%, N: 0.0083%, and P: 0.030% Electromagnetic steel with base component content, C changed from 0.021 to 0.095%, Si changed from 2.85 to 3.74%, and Sn changed from 0.005 to 0.16%. The slab was heated at 1150 ° C. for 60 minutes and then hot rolled to obtain a 2.3 mm hot rolled sheet. And this hot-rolled sheet was subjected to annealing of “1120 ° C. × 30 seconds + 900 ° C. × 120 seconds”, and then rapidly cooled.
[0018]
The hot-rolled annealed plate was pickled and then cold-rolled to a 0.22 mm thick steel plate. By changing the annealing temperature and subjecting this steel plate to decarburization annealing, the average grain size of the primary recrystallized grains in the steel plate was adjusted to approximately 23 μm. Thereafter, nitridation annealing was performed at 750 ° C. × 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia, and the nitrogen content of the steel sheet was adjusted to approximately 220 ppm. Next, MgO and TiO 2 An annealing separation agent containing as a main component was applied, heated to 1200 ° C. at a heating rate of 10 ° C./hr, and then subjected to finish annealing at 1200 ° C. for 20 hours.
[0019]
After removing the excess annealing separator from the finish annealed plate and performing strain relief annealing, a tension coating treatment was performed and the iron loss was measured. The magnetic flux density was measured after removing the insulating film and the like in an acid solution in order to remove the influence of the film tension and interface properties. As for the magnetic flux density, the saturation magnetic flux decreases as the Si content increases, and the magnetic flux density B8 cannot reflect the sharpness of goth secondary recrystallization. Therefore, the Goss orientation integration degree was evaluated using the standard value of B8 / Bs. . The validity of B8 / Bs was confirmed by measuring the crystal orientation by X-ray diffraction.
[0020]
In FIG. 1, the relationship between the crystal grain size of a hot-rolled sheet annealing board and a Goss orientation integration degree is shown. In order to obtain a high secondary recrystallization sharpness of B8 / Bs ≧ 0.96, it has been found that the Sn content needs to be increased according to the Si content. This is the first feature of the present invention. Here, in the material of B8 / Bs ≧ 0.96 in the figure, the iron loss decreased with the increase of the Si content, and it was confirmed that the effect of increasing the Si content can be exhibited. The iron loss improvement allowance was about 0.015 W / kg at W17 / 50 per 0.1% Si content.
[0021]
Next, the primary recrystallization texture was investigated in order to investigate the mechanism by which the required secondary recrystallization goth orientation accumulation degree can be secured by increasing the Sn content according to the Si content. The inverse surface strength was measured at 1 / 5t of the decarburized annealing plate, which is an intermediate process sample processed in FIG. FIG. 2 and FIG. 3 show the effects of the Si content and the Sn content on the (110) plane strength and (111) plane strength of primary recrystallization. It can be seen that (110) decreases and (111) increases as the amount of Si increases.
[0022]
It can also be seen that when the Sn amount is increased, (110) increases and (111) decreases. In other words, it is presumed that the change in the texture accompanying the increase in Si content acted in such a way that the increase in Sn content compensated.
Although the mechanism of the primary recrystallization texture on the secondary recrystallization Goss orientation accumulation degree is not clear at present, it is considered as follows.
[0023]
As described above, the degree of secondary recrystallization Goth orientation accumulation is considered to depend on the inhibitor strength and the primary recrystallization texture. In the present invention, the influence of primary recrystallization texture is considered to be large.
In general, for the primary recrystallization, the Goss orientation as the secondary recrystallization nucleus and the {111} <211> orientation in a corresponding orientation relationship with the Goss nucleus may be considered. In addition, it is considered that the Goss orientation forms deformation sites formed in the crystal grains by cold rolling, and that many Goss nuclei are formed when many deformation bands are formed in the crystal grains. On the other hand, {111} <211> is considered to increase {111} <211> when the vicinity of the crystal grain boundary before cold rolling is a recrystallization formation site and there are many deformations near the crystal grain boundary.
[0024]
In general, Si is known to be a solid solution strengthening element of iron, and it is considered that the strength in the crystal grains increases and the strength of the crystal grain boundaries relatively decreases as the amount of Si increases.
Therefore, in the steel sheet structure, the formation of deformation bands is suppressed and deformation near the crystal grain boundary is promoted, so that it is estimated that the amount of goth decreases and {111} <211> increases.
[0025]
On the other hand, Sn is known as a segregation element to crystal grain boundaries and the like, and it is considered that the grain boundary strength is relatively increased by the addition of Sn.
Therefore, when the Sn amount is increased, deformation near the crystal grain boundary is suppressed, and the formation of deformation bands in the crystal grains is relatively promoted, so that the amount of goth increases and {111} <211> decreases. It is estimated to be.
[0026]
In order to increase the degree of integration of secondary recrystallization goth orientation, it is thought that a quantitative balance between secondary recrystallization nuclei and corresponding orientation is important.
Therefore, when the amount of Si is increased alone, secondary recrystallization nuclei are insufficient with respect to the corresponding orientation, and the degree of integration of the secondary recrystallization goth orientation deteriorates.
Therefore, it is estimated that increasing the amount of Sn can compensate for the decrease in secondary recrystallization nuclei, balance the secondary recrystallization nuclei and the corresponding orientation, and increase the degree of Goss orientation integration in secondary recrystallization. Is done.
[0027]
From the above consideration, it is considered important that Sn is sufficiently segregated at the grain boundary before cold rolling in order to bring out the effect of Sn on the primary recrystallization texture. And in the segregation of Sn, the spreading | diffusion by annealing was considered important and the conditions of hot-rolled sheet annealing were examined.
Next, the result of having examined about the annealing conditions concerning a hot-rolled sheet is described.
[0028]
Using the material of 3.48% Si and 0.081% Sn used in the experiment of FIG. 1, the soaking time of hot-rolled sheet annealing was 30 seconds, 60 seconds, and 150 seconds, and the annealing temperature was 700. Changed to ~ 1200 ° C. Other process conditions were the same as those in the experiment of FIG. The influence of time t (second) and temperature T (K) on B8 / Bs is shown in FIG.
In order to obtain B8 / Bs ≧ 0.96 from the figure, the time t is
logt (seconds) ≧ 5803.2 / T (K) −2.8741
It turns out that it is important to be within the range. This is the second feature of the present invention.
[0029]
The above formula almost coincides with the relationship between the temperature and time at which Sn diffuses about 20 μm of the crystal grain radius of the hot-rolled annealed plate calculated from the diffusion constant of Sn in αFe.
That is, if the condition of the above formula is satisfied, it is considered that Sn is sufficiently diffused into the crystal grain boundary and segregation is possible. Then, it is presumed that the above-described effect on the primary recrystallization texture of Sn is exhibited, and a good degree of secondary recrystallization goth orientation integration is obtained.
[0030]
Next, in the product obtained by applying the invention having the above characteristics, parameters characterizing the secondary recrystallization structure were analyzed. For the secondary recrystallization macroplate used in FIG. 1, the average particle size of the secondary recrystallization was measured. The secondary recrystallized grain size tends to increase as the Si amount increases and decrease as the Sn amount increases. This tendency is in agreement with the above-described tendency of the primary recrystallization texture with respect to the amount of goth (110), and it is estimated that the amount of secondary recrystallization nuclei has changed.
[0031]
Therefore, the relationship between the secondary recrystallized grain size and B8 / Bs was arranged, considering that there is an appropriate secondary recrystallized grain size for obtaining high B8 / Bs. The result is shown in FIG.
As can be seen from the figure, the secondary recrystallization average particle size for obtaining B8 / Bs ≧ 0.96 is in the range of 14 to 21 μm, and the present invention is also characterized by the secondary recrystallization particle size of the product. I found This is the third feature of the present invention including the contents of Si and Sn.
[0032]
When magnetic domain subdivision such as laser processing is not performed, a smaller crystal grain size is advantageous for iron loss improvement, and the present invention is characterized as a low iron loss material from the viewpoint of B8 / Bs of the product and crystal grain size. .
Next, the reason for limitation related to the component composition of the present invention will be described.
Si is an important element for effectively increasing the specific resistance of a product and obtaining low iron loss, and its content is determined according to the iron loss to be targeted. When the Si content is less than 3.0%, it is difficult to obtain a product having a low iron loss. On the other hand, when the Si content exceeds 4.0%, the cold rolling property of the material becomes problematic.
[0033]
The Sn content (Sn (%)), which is the first feature of the present invention, is described in detail in the description of FIG. 1, and the range is related to the Si content (Si (%)).
0.107 × Si (%) − 0.31 ≦ Sn (%) ≦ 0.121 × Si (%) − 0.32
In the range.
[0034]
If Sn is not positively added, about 0.01% is mixed as a playing element, but below this, the effect of improving the magnetic properties is not exhibited. On the other hand, if added in a large amount, segregation to the surface becomes remarkable in addition to segregation to the crystal grain size, and this suppresses oxidation characteristics important for decarburization and primary film formation. 16%.
[0035]
C is contained in an amount of about 0.02 to 0.10% at the slab stage for organization control, but is removed in a later decarburization annealing step. If C remains in the product, the magnetic properties deteriorate due to aging, so the C content in the product is preferably as low as possible. Usually, it is removed to 100 ppm or less by decarburization annealing.
When the C content is less than 0.02% at the slab stage, secondary recrystallization becomes unstable, and even when secondary recrystallization occurs, the Goss orientation accumulation degree (B8 / Bs) is as low as 0.94 or less. It will be a thing. On the other hand, when the C content exceeds 0.10%, the secondary recrystallization is stabilized, but the Goss orientation accumulation degree is deteriorated and the decarburization annealing time is also increased, thereby impairing the productivity.
[0036]
Moreover, in order to adjust the γ phase ratio as in the past, adjusting the C content in accordance with the Si content in the steelmaking process does not impair the characteristics of the present invention.
One of the characteristics in the component system of the starting material (electromagnetic steel slab) of the present invention is that it contains S and Se alone or in combination of 0.015% or less, preferably 0.0070% or less. As is well known, S and Se form MnS and MnSe, respectively, and have an action of suppressing grain growth. In the present invention, it is characterized in that an inhibitor necessary for developing secondary recrystallized grains is built in after decarburization annealing, and that fine precipitates are dispersed before cold rolling, primary recrystallized grains In the present invention in which the diameter is adjusted to obtain a high magnetic flux density and a low iron loss, this is not preferable.
[0037]
Therefore, the content of S and / or Se is set to 0.015% or less. Moreover, reducing the content of S and / or Se has a great effect in reducing the ear cracks during hot rolling.
Mn is a forming element of MnS or MnSe, and it is preferable that Mn is as much as possible in order to make the inhibitor effect harmless. If the content is too small, even in the case of low-temperature slab heating at 1250 ° C. or lower, MnS or MnSe partially dissolves, the primary recrystallized grain size becomes unstable, and the magnetic properties vary. On the other hand, if the amount is too large, an excessive transformation structure is affected, making it difficult to obtain a product having a high magnetic flux density. The appropriate Mn content is 0.08 to 0.45%.
[0038]
Al combines with N to form AlN, but in the present invention, it is essential to form (Al, Si) N by nitriding the steel after the subsequent step, that is, primary recrystallization. Therefore, a certain amount or more of free Al is necessary. Therefore, 0.020 to 0.035% is added as acid-soluble Al. This Al is slightly reduced in products due to oxidation during decarburization annealing and purification during finish annealing.
[0039]
N needs to be 0.0035 to 0.012% in the slab stage. If the N content exceeds 0.012%, the surface of the steel plate called blisters will swell, and it will be difficult to adjust the primary recrystallization structure. The lower limit of the N content is preferably 0.0035%. When the N content is less than 0.0035%, it becomes difficult to develop secondary recrystallized grains.
[0040]
Note that N functions as an inhibitor in combination with the nitriding treatment described later, and is removed during purification in finish annealing. Since N also causes aging, it is better that it is less in the product, and is usually suppressed to 50 ppm or less.
Since Cr has the effect of mitigating the suppression of decarburization and oxidation due to the surface segregation of Sn, which is a feature of the present invention, its addition is essential. The lower limit of the Cr content is 0.01% contained as a playing element, and more than this is intentionally added. On the other hand, when a large amount of Cr is added, excessive oxidation occurs, and conversely, film formation is inhibited. Considering the load of addition cost, the upper limit is made 0.25%.
[0041]
In addition, inclusion of trace amounts of P, Cu, Sb, Ni, Bi, V, Nb, B, etc. does not impair the features of the present invention.
Next, the manufacturing process of the present invention will be described. An electromagnetic steel slab is obtained by melting steel in a melting furnace such as a converter or electric furnace, vacuum degassing treatment as necessary, and then performing continuous casting or rolling after ingot casting. It is done. Thereafter, slab heating prior to hot rolling is performed.
[0042]
In the production process of the present invention, the slab heating temperature is a low temperature of 1280 ° C. or less, and the consumption of heating energy is reduced, and the AlN in the steel is not completely dissolved but incompletely dissolved. . Naturally, MnS (Se) having a high solid solution temperature is also in an incomplete solid solution state due to the component design of high Mn and low S (Se). Immediately after the slab heating, rough hot rolling and finish hot rolling are performed by a normal method to obtain a hot rolled plate having a thickness of 2 to 3 mm.
[0043]
In order to obtain a product having good magnetic properties, annealing before the final cold rolling is essential from the viewpoint of segregation of Sn grain boundaries. That is, when single cold rolling is employed, it is necessary to specify conditions for hot-rolled sheet annealing, and when two or more cold rollings are employed, it is necessary to specify conditions for intermediate annealing. As described in detail in the explanation of FIG. 3, the annealing conditions are set as a soaking time t (second) and a soaking temperature T (K),
logt (seconds) ≧ 5803.2 / T (K) −2.8741
It is important to control within the range. Since the above equation is related to the diffusion distance of Sn in Fe, in the case of a two-stage cycle such as “1120 ° C. × 30 seconds + 900 ° C. × 120 seconds”, it was calculated according to the soaking of the left and right terms, respectively. Judgment must be made based on the cumulative results. Even if it implements well-known techniques, such as rapid cooling, after annealing for control of a primary recrystallization texture, the characteristic of this invention is not inhibited.
[0044]
Then, the process conditions after cold rolling are demonstrated. In the present invention, hot-rolled sheet annealing is performed, and then cold rolling is performed once in a cold rolling state of 80% or more, or a final rolling reduction rate of 80% or more is inserted through intermediate annealing for adjusting the reduction rate. It is premised on the final cold rolling under strong pressure to obtain the final sheet thickness by the above cold rolling. Cold rolling is performed by a normal method. In order to obtain a high magnetic flux density, it is preferable to finely adjust the rolling reduction or perform an aging treatment between passes.
[0045]
The steel sheet cold-rolled to the final thickness is subjected to decarburization annealing. In addition to decarburization, the decarburization annealing has a role of generating an oxide layer necessary for adjusting the primary recrystallization structure and forming a film. This is usually performed in wet hydrogen or nitrogen gas at a temperature range of 800 to 900 ° C. The primary recrystallization particle size is preferably 15 to 30 μm.
Next, nitriding is performed. The conditions for the nitriding treatment are known conditions related to strip nitriding, nitriding during finish annealing, and the like. In the case of strip nitriding, it is advantageous for nitriding that the annealing temperature is 650 to 850 ° C. In order to stably develop good secondary recrystallized grains, the amount of nitrogen is required to be 120 ppm or more, preferably 150 ppm or more.
[0046]
After this, MgO and TiO are known by a known method. 2 An annealing separation agent containing as a main component is applied and finish annealing is performed at a temperature of 1100 ° C. or higher. The conditions for the finish annealing may be known conditions, and it is effective to adjust the atmosphere or slow the heating rate in order to increase the degree of Goss direction integration.
In the product obtained by the present invention, the above-mentioned components of Si, Mn, Al, Cr and Sn are important. In particular, the quantitative relationship between Si and Sn is characteristic. N and S are excluded from the essential components because they are purified during the finish annealing. Al is also reduced during finish annealing, but since AlN is used as an inhibitor, the lower limit is made 0.001%.
[0047]
Further, as a characteristic of the secondary recrystallization structure, B8 / Bs as a simple index of the Goss orientation accumulation degree is 0.95 or more, preferably 0.96 or more, and the secondary recrystallization average particle diameter is 12 It is important that it is ˜25 mm, preferably 14 to 21 mm. However, the upper limit of the secondary recrystallization average particle diameter was set to 19.8 mm in Table 1 based on the maximum value 19.8 (mm) of the inventive examples. The grain size can be measured by a method of counting the number of crystal grain sizes and converting from an average area to a circle-equivalent grain size, a method using an image analysis processing device, or the like.
[0048]
The coil after finish annealing is subjected to shape correction annealing or insulating coating, but can be subjected to magnetic domain subdivision treatment by laser, plasma, mechanical method, etching, or other methods as necessary.
[0049]
【Example】
Example 1
% By mass: Mn: 0.1%, S: 0.007%, Cr: 0.12%, acid-soluble Al: 0.029%, N: 0.0083%, and P: 0.030% Electromagnetic steel with base component content, C changed from 0.021 to 0.095%, Si changed from 2.85 to 3.74%, and Sn changed from 0.005 to 0.16%. The slab was heated at 1150 ° C. for 60 minutes and then hot-rolled to obtain a hot-rolled sheet having a thickness of 2.3 mm.
[0050]
The hot-rolled sheet was annealed at “1120 ° C. × 30 seconds + 900 ° C. × 120 seconds” and then rapidly cooled. The hot-rolled annealed plate was pickled and cold-rolled to a steel plate having a thickness of 0.22 mm. The steel sheet was decarburized and annealed by changing the annealing temperature to adjust the primary recrystallized grain size to 23 μm.
Thereafter, nitridation annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen, and ammonia, and the nitrogen content of the steel sheet was adjusted to approximately 220 ppm. Next, MgO and TiO 2 An annealing separation agent containing as a main component was applied, heated to 1200 ° C. at 10 ° C./hr, and then annealed at 1200 ° C. for 20 hours.
[0051]
After removing the excess annealing separator from the finish annealed plate and performing strain relief annealing, a tension coating treatment mainly comprising colloidal silica and aluminum phosphate was performed, and the iron loss was measured. The magnetic flux density (B8 and Bs) was measured after the treatment of removing the insulating film and the like in an acid solution in order to remove the influence of the film tension and interface properties. Moreover, the secondary recrystallization average particle diameter was measured by image processing from the same sample.
[0052]
The measurement results are shown in Table 1. FIG. 1 shows the relationship between the crystal grain size of the hot-rolled sheet annealed sheet and the Goss orientation integration degree. Sn content calculated from Si content is
0.107 × Si (%) − 0.31 ≦ Sn (%) ≦ 0.121 × Si (%) − 0.32
In this range, a high degree of secondary recrystallization goth orientation integration of B8 / Bs ≧ 0.96 is obtained.
[0053]
On the other hand, the result of arranging the relationship between the secondary recrystallized grain size and B8 / Bs is shown in FIG. The secondary recrystallization average particle diameter for obtaining B8 / Bs ≧ 0.96 is 12 to 25 mm, preferably 14 to 21 mm.
[0054]
[Table 1]
[0055]
(Example 2)
Using the materials of 3.48% Si and 0.081% Sn used in the experiment of Example 1, the soaking time in hot-rolled sheet annealing was 30 seconds, 60 seconds and 150 seconds, and the annealing temperature was 700. Changed to ~ 1200 ° C. Other process conditions were the same as those in the experiment of Example 1. The measurement results of the magnetic properties are shown in Table 2, and the influence of time t (second) and temperature T (K) on B8 / Bs is shown in FIG. The relationship between t (seconds) and T (K)
logt (seconds) ≧ 5803.2 / T (K) −2.8741
It can be seen that a high secondary recrystallization Goth orientation integration degree of B8 / Bs ≧ 0.96 is obtained.
[0056]
[Table 2]
[0057]
【Effect of the invention】
According to the present invention, in a process premised on low-temperature slab heating-nitriding treatment with high cost merit, high Si can be achieved, Goth orientation integration degree is high, secondary recrystallized grain size is small, and iron loss is good. A grain-oriented electrical steel sheet can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between Si and Sn content and secondary recrystallization goth orientation integration degree (B8 / Bs).
FIG. 2 is a diagram showing the relationship between Si and Sn content and (110) plane strength of primary recrystallization.
FIG. 3 is a graph showing the relationship between Si and Sn content and (111) plane strength of primary recrystallization.
FIG. 4 is a diagram showing the relationship between the soaking temperature T (K) and time t (seconds) of hot-rolled sheet annealing and the degree of secondary recrystallization Goth orientation integration (B8 / Bs).
FIG. 5 is a diagram showing the relationship between secondary recrystallization average grain size and Goth orientation integration degree (B8 / Bs) at each Si content.
Claims (1)
0.107×Si(%)−0.31≦Sn(%)≦0.121×Si(%)−0.32
を満たす量含有し、残部Feおよび不可避的不純物からなる電磁鋼であって、B8/Bsが0.96以上で、かつ、二次再結晶粒の平均粒径が14〜19.8mmであることを特徴とする一方向性電磁鋼板。% By mass, Si: 3.0-4.0%, Mn: 0.08-0.45%, Al: 0.001-0.035%, Cr: 0.01-0.25%, and Sn
0.107 × Si (%) − 0.31 ≦ Sn (%) ≦ 0.121 × Si (%) − 0.32
An electromagnetic steel containing the balance of Fe and inevitable impurities, B8 / Bs is 0.96 or more, and the average grain size of secondary recrystallized grains is 14 to 19.8 mm A unidirectional electrical steel sheet characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000002727A JP4873770B2 (en) | 2000-01-11 | 2000-01-11 | Unidirectional electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000002727A JP4873770B2 (en) | 2000-01-11 | 2000-01-11 | Unidirectional electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001192787A JP2001192787A (en) | 2001-07-17 |
JP4873770B2 true JP4873770B2 (en) | 2012-02-08 |
Family
ID=18531796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000002727A Expired - Fee Related JP4873770B2 (en) | 2000-01-11 | 2000-01-11 | Unidirectional electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4873770B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002220642A (en) | 2001-01-29 | 2002-08-09 | Kawasaki Steel Corp | Grain-oriented electrical steel sheet with low iron loss and method of manufacturing the same |
KR101149792B1 (en) | 2009-10-01 | 2012-06-08 | 주식회사 포스코 | Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and Method for manufacturing the same |
JP6251113B2 (en) * | 2014-04-15 | 2017-12-20 | アスモ株式会社 | motor |
KR101707451B1 (en) * | 2015-12-22 | 2017-02-16 | 주식회사 포스코 | Grain oriented electrical steel sheet and method for manufacturing the same |
EP4317476A4 (en) | 2021-03-31 | 2025-03-12 | Nippon Steel Corporation | ELECTRICAL LATHE, STATOR CORE AND ROTOR CORE SET, METHOD OF MANUFACTURING |
CN115595421B (en) * | 2022-09-28 | 2025-01-14 | 首钢智新迁安电磁材料有限公司 | A grain control method for oriented electrical steel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3390108B2 (en) * | 1995-08-02 | 2003-03-24 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density |
JPH09287025A (en) * | 1996-04-22 | 1997-11-04 | Nippon Steel Corp | Method for manufacturing unidirectional electrical steel sheet with excellent magnetic properties |
JP3455019B2 (en) * | 1996-07-11 | 2003-10-06 | 新日本製鐵株式会社 | Unidirectional electrical steel sheet for instruments with excellent low-field magnetic properties and manufacturing method |
-
2000
- 2000-01-11 JP JP2000002727A patent/JP4873770B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001192787A (en) | 2001-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7180694B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH10152724A (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
CN109906284B (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JP2000129352A (en) | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density | |
JP4873770B2 (en) | Unidirectional electrical steel sheet | |
JP4205816B2 (en) | Method for producing unidirectional electrical steel sheet with high magnetic flux density | |
JP7159594B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP4268277B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JPH06256847A (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
US12359275B2 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JPS6256924B2 (en) | ||
JPH05295440A (en) | Method for producing unidirectional electrical steel sheet using rapidly solidified thin slab | |
JPH07305116A (en) | High magnetic flux density grain-oriented electrical steel sheet manufacturing method | |
JP3311021B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss | |
JP2758543B2 (en) | Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties | |
JP3474594B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness | |
JPH10183249A (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH10273725A (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2001192733A (en) | Method for manufacturing unidirectional electrical steel sheet with high Goss orientation integration | |
WO2022210503A1 (en) | Production method for grain-oriented electrical steel sheet | |
CN117062921A (en) | Method for producing oriented electrical steel sheet | |
JPH07310125A (en) | High magnetic flux density grain-oriented electrical steel sheet manufacturing method | |
JPH08269572A (en) | Ultra high magnetic flux density grain-oriented electrical steel sheet manufacturing method | |
JPH09137223A (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH1180835A (en) | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density and extremely low iron loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100512 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100608 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20100806 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141202 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4873770 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141202 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141202 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141202 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |