[go: up one dir, main page]

JP4873515B2 - Oriented growth method of organic semiconductor crystal and organic laser device using it - Google Patents

Oriented growth method of organic semiconductor crystal and organic laser device using it Download PDF

Info

Publication number
JP4873515B2
JP4873515B2 JP2001065540A JP2001065540A JP4873515B2 JP 4873515 B2 JP4873515 B2 JP 4873515B2 JP 2001065540 A JP2001065540 A JP 2001065540A JP 2001065540 A JP2001065540 A JP 2001065540A JP 4873515 B2 JP4873515 B2 JP 4873515B2
Authority
JP
Japan
Prior art keywords
organic semiconductor
crystal
semiconductor crystal
organic
orientation growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001065540A
Other languages
Japanese (ja)
Other versions
JP2002270621A (en
Inventor
久雄 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001065540A priority Critical patent/JP4873515B2/en
Publication of JP2002270621A publication Critical patent/JP2002270621A/en
Application granted granted Critical
Publication of JP4873515B2 publication Critical patent/JP4873515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機半導体結晶の配向成長方法とそれを利用した有機レーザーデバイスに関するものである。
【0002】
【従来の技術】

Figure 0004873515
【0003】
今後、この有機固体レーザーの実現に向けて、さらに安定な分子材料の探索と並んで、より低電流エネルギー閾値でのレーザー発振を可能にする低損失の導波路や共振器構造の導入が必要である。
【0004】
【発明が解決しようとする課題】
上記した従来技術では、有機結晶成長法として一般的な気相法により有機半導体結晶を成長させ、サイズの大きな個々の結晶(数mm2 、厚さ1〜10μm)に電流注入電極を設けてレーザーデバイスとしている。
しかし、今後、光デバイスへの複合集積化を目指す上では、このような結晶の微細化や基板への自己組織化といった技術が必要となる。また、結晶材料においては結晶中での分子配向が発光の偏光指向性や増幅効率に影響を及ぼすが、従来技術では結晶中での分子配向については考慮されておらず、また、有機半導体結晶の劈開端面を共振器ミラーとして用いるため、その発振特性について改良の余地がある。
【0005】
そこで、本発明は、安定な発光特性を有する、π共役系オリゴマー分子を用いて、分子配列を制御した有機半導体配向結晶を基板上に自己組織化するとともに、結晶自身が低損失の導波路や共振器構造を構成することにより、レーザー発振を可能とする有機半導体結晶の配向成長方法とそれを利用した有機レーザーデバイスを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕π共役系オリゴマーを用い、ホット・ウォール・エピタキシー法を有機半導体結晶の配向成長に適合することにより、π共役系オリゴマー分子を用いて、分子配列を制御した有機半導体配向結晶を基板上に自己組織化するとともに、結晶自身が低損失の導波路や共振器構造を構成することにより、レーザー発振を可能とする有機半導体結晶の配向成長を行わせる有機半導体結晶の配向成長方法であって、前記π共役系オリゴマーが青色発光を示すp−セキシフェニル(p−6P)分子であり、温度制御したウォールで閉じられた空間に前記p−セキシフェニル(p−6P)分子を昇華させるため、熱力学的平衡に近い条件下で結晶成長を行うことを特徴とする。
【0007】
〔2〕π共役系オリゴマーを用い、ホット・ウォール・エピタキシー法を有機半導体結晶の配向成長に適合することにより、π共役系オリゴマー分子を用いて、分子配列を制御した有機半導体配向結晶を基板上に自己組織化するとともに、結晶自身が低損失の導波路や共振器構造を構成することにより、レーザー発振を可能とする有機半導体結晶の配向成長を行わせ、その有機半導体結晶の自己導波路効果を利用した発光増幅機能を有する有機レーザーデバイスであって、前記有機半導体結晶を適当な励起用レーザー光でポンピングすると、発光した光が結晶中に閉じ込められ、ロッド状結晶軸に沿って伝搬する自己導波路効果を呈することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施例を示すホット・ウォール・エピタキシー(Hot Wall Epitaxy)装置の構成図である。
図1において、1は石英セルであり、その石英セル1内には、青色発光を示すp−セキシフェニル(p−6P)分子原料2が入れられている。また、その石英セル1はサーモカップル3を有しており、さらに、石英セル1の外周部にはヒータ4が配置されている。5は石英管であり、KCl(001)面基板6が入れられており、石英管5はサーモカップル7を有している。また、その石英管5の外周部にはヒータ8が配置され、それらは真空雰囲気9下にある。10は石英セル1より昇華しKCl(001)面基板6上に有機半導体配向結晶の成長を行うp−6P分子である。
【0009】
このように、青色発光を示すp−セキシフェニル(p−6P)分子原料2を、石英管5を用いたホット・ウォール(Hot Wall)(140〜150℃)中に設置したKCl(001)面基板6上に昇華成長させることにより、図2に示すように、エピタキシャル配向したp−6Pロッド状単結晶11を作製することに成功した。このp−6Pロッド状単結晶11は長さが100μm以上、幅300〜800nm、高さ80〜150nmの一次元形態を持ち、紫外線励起下で非常に安定な青色発光を示した。
【0010】
このp−6Pロッド状単結晶11をYAGパルスレーザー(λ=355nm)励起光12(図4参照)で励起してその発光スペクトルを測定した結果、図3に示すように、数10μJ/cm2 のエネルギー閾値以上でスペクトルのGain−Narrowingが観察された。図3において、横軸は波長(nm)、縦軸は発光強度(cps:counts per second)を示している。
【0011】
p−6Pロッド状単結晶11では、図4に示すようにp−6P分子軸はKCl面基板6に平行に、かつp−6Pロッド状単結晶11の長軸に対して垂直に配向しているため、ロッド末端から放射するロッド軸に沿って伝搬する自己導波路効果によるAmplified Spontaneous Emission(ASE)発光13は、KCl面基板6に平行に偏光したモードで伝搬していることが確認された。
【0012】
このように、本発明では、高効率の発光を示すπ共役系オリゴマー分子を用い、化合物半導体の薄膜成長に利用されているホット・ウォール・エピタキシー法を有機半導体結晶の配向成長に最適化することにより、基板6上に発光増幅が可能なπ共役系オリゴマー結晶を成長させることができる。
そして、π共役系オリゴマー分子を用いて、分子配列を制御した有機半導体配向結晶を基板上に自己組織化するとともに、結晶自身が低損失の導波路や共振器構造を構成することにより、レーザー発振を可能とする有機半導体配向結晶の成長を行わせることができる。
【0013】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0014】
【発明の効果】
以上、詳細に説明したように、本発明によれば、
(A)ホット・ウォール・エピタキシー法では、温度制御したウォールで閉じられた空間に分子を昇華させるため、熱力学的平行に近い条件下で結晶成長を行うことが可能であり、欠陥の少ない良質な単結晶を基板上にエピタキシャル成長させることができる。
【0015】
(B)上記(A)で作製した結晶は、一次元のロッド状形態を持ち、この結晶を適当な励起用レーザー光でポンピングし、その発光スペクトルを測定すると、あるエネルギー閾値以上で顕著なスペクトルのGain−Narrowingが観察される。これは、発光した光が結晶中に閉じ込められ、ロッド軸に沿って伝搬する自己導波路効果によるASEである。
【0016】
以上の結果より、最適化したホット・ウォール・エピタキシー法により成長したπ共役系オリゴマー結晶は、安定な発光増幅を示し、今後、微小共振器構造や電流注入電極の導入により、有機青色レーザー材料として有望である。
【図面の簡単な説明】
【図1】 本発明の実施例を示すホット・ウォール・エピタキシー(Hot Wall Epitaxy)装置の構成図である。
【図2】 本発明の実施例を示すエピタキシャル配向したロッド状単結晶を示す図である。
【図3】 本発明の実施例を示すエピタキシャル配向したロッド状単結晶をYAGパルスレーザー励起光(λ=355nm)で励起してその発光スペクトルを測定した結果を示す図である。
【図4】 本発明の実施例を示す有機レーザーデバイスとしての機能を示す説明図である。
【符号の説明】
1 石英セル
2 青色発光を示すp−セキシフェニル(p−6P)分子原料
3,7 サーモカップル
4,8 ヒータ
5 石英管
6 KCl(001)面基板
9 真空雰囲気
10 ホットウォール中に昇華したp−6P分子
11 p−6Pロッド状単結晶
12 YAGパルスレーザー励起光
13 ASE発光[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic semiconductor crystal orientation growth method and an organic laser device using the same.
[0002]
[Prior art]
Figure 0004873515
[0003]
In the future, for the realization of this organic solid-state laser, along with the search for more stable molecular materials, it will be necessary to introduce low-loss waveguides and resonator structures that enable laser oscillation at lower current energy thresholds. is there.
[0004]
[Problems to be solved by the invention]
In the above prior art, an organic semiconductor crystal is grown by a general vapor phase method as an organic crystal growth method, and a laser is provided by providing a current injection electrode on each large crystal (several mm 2 , thickness 1 to 10 μm). As a device.
However, in the future, technologies such as crystal miniaturization and self-organization on a substrate will be required in order to achieve complex integration in optical devices. In crystal materials, the molecular orientation in the crystal affects the polarization directionality and amplification efficiency of light emission. However, in the prior art, the molecular orientation in the crystal is not taken into consideration. Since the cleaved end face is used as a resonator mirror, there is room for improvement in its oscillation characteristics.
[0005]
Therefore, the present invention uses a π-conjugated oligomer molecule having stable emission characteristics to self-assemble an organic semiconductor oriented crystal with a controlled molecular arrangement on a substrate, and the crystal itself has a low-loss waveguide or It is an object of the present invention to provide an organic semiconductor crystal orientation growth method capable of lasing by forming a resonator structure and an organic laser device using the method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1 ] Using a π- conjugated oligomer and adapting the hot wall epitaxy method to the orientation growth of the organic semiconductor crystal, using the π-conjugated oligomer molecule to control the organic semiconductor oriented crystal with a controlled molecular arrangement on the substrate The organic semiconductor crystal orientation growth method allows the organic semiconductor crystal to grow by self-organization and the crystal itself constitutes a low-loss waveguide or resonator structure. The π-conjugated oligomer is a p-sexiphenyl (p-6P) molecule that emits blue light, and sublimates the p-sexiphenyl (p-6P) molecule in a space closed by a temperature-controlled wall. The crystal growth is performed under a condition close to a mechanical equilibrium .
[0007]
[2 ] Using a π- conjugated oligomer and adapting the hot wall epitaxy method to the orientation growth of the organic semiconductor crystal, using the π-conjugated oligomer molecule, the organic semiconductor oriented crystal whose molecular arrangement is controlled on the substrate Self-organized and the crystal itself constitutes a low-loss waveguide or resonator structure, so that the organic semiconductor crystal can be oriented and grown to enable laser oscillation, and the self-waveguide effect of the organic semiconductor crystal An organic laser device having an emission amplification function using a self-propagating light that is confined in the crystal and propagates along the rod-shaped crystal axis when the organic semiconductor crystal is pumped with an appropriate excitation laser beam. It is characterized by exhibiting a waveguide effect.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a configuration diagram of a hot wall epitaxy (hot wall epitaxy) apparatus showing an embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a quartz cell, and a p-sexiphenyl (p-6P) molecular raw material 2 that emits blue light is placed in the quartz cell 1. The quartz cell 1 has a thermocouple 3, and a heater 4 is disposed on the outer periphery of the quartz cell 1. Reference numeral 5 denotes a quartz tube, in which a KCl (001) surface substrate 6 is placed, and the quartz tube 5 has a thermocouple 7. A heater 8 is disposed on the outer periphery of the quartz tube 5, and they are under a vacuum atmosphere 9. Reference numeral 10 denotes p-6P molecules that sublimate from the quartz cell 1 and grow an organic semiconductor oriented crystal on the KCl (001) plane substrate 6.
[0009]
As described above, the KCl (001) plane substrate in which the p-sexiphenyl (p-6P) molecular raw material 2 exhibiting blue light emission is installed in the hot wall (140 to 150 ° C.) using the quartz tube 5. As shown in FIG. 2, the epitaxial growth of the p-6P rod-shaped single crystal 11 was successfully achieved by sublimation growth on 6. This p-6P rod-shaped single crystal 11 had a one-dimensional form with a length of 100 μm or more, a width of 300 to 800 nm, and a height of 80 to 150 nm, and exhibited very stable blue light emission under ultraviolet excitation.
[0010]
The p-6P rod-shaped single crystal 11 was excited with a YAG pulse laser (λ = 355 nm) excitation light 12 (see FIG. 4) and its emission spectrum was measured. As a result, as shown in FIG. 3, it was several tens μJ / cm 2. A gain-narrowing of the spectrum was observed above the energy threshold of. In FIG. 3, the horizontal axis represents wavelength (nm) and the vertical axis represents emission intensity (cps: counts per second).
[0011]
In the p-6P rod-shaped single crystal 11, the p-6P molecular axis is oriented parallel to the KCl plane substrate 6 and perpendicular to the long axis of the p-6P rod-shaped single crystal 11, as shown in FIG. Therefore, it was confirmed that the Amplified Spontaneous Emission (ASE) emission 13 due to the self-waveguide effect propagating along the rod axis radiating from the rod end propagates in a mode polarized in parallel with the KCl plane substrate 6. .
[0012]
As described above, in the present invention, the hot wall epitaxy method used for the growth of a compound semiconductor thin film is optimized for the orientation growth of an organic semiconductor crystal by using a π-conjugated oligomer molecule exhibiting high-efficiency light emission. Thus, a π-conjugated oligomer crystal capable of light emission amplification can be grown on the substrate 6.
The organic semiconductor oriented crystal with controlled molecular arrangement is self-assembled on the substrate using π-conjugated oligomer molecules, and the crystal itself constitutes a low-loss waveguide or resonator structure, thereby generating laser oscillation. It is possible to grow an oriented organic semiconductor crystal that makes it possible.
[0013]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0014]
【Effect of the invention】
As described above in detail, according to the present invention,
(A) In the hot wall epitaxy method, molecules are sublimated into a space closed by a temperature-controlled wall, so that crystal growth can be performed under conditions close to thermodynamic parallelism and high quality with few defects. Single crystal can be epitaxially grown on the substrate.
[0015]
(B) The crystal produced in the above (A) has a one-dimensional rod-like form. When this crystal is pumped with an appropriate excitation laser beam and its emission spectrum is measured, it is a remarkable spectrum above a certain energy threshold. Gain-Narrowing is observed. This is an ASE due to the self-waveguide effect in which emitted light is confined in the crystal and propagates along the rod axis.
[0016]
From the above results, the π-conjugated oligomer crystal grown by the optimized hot wall epitaxy shows stable emission amplification, and will be used as an organic blue laser material in the future by introducing a microcavity structure and a current injection electrode. Promising.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a hot wall epitaxy (hot wall epitaxy) apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing an epitaxially oriented rod-like single crystal showing an example of the present invention.
FIG. 3 is a diagram showing a result of measuring an emission spectrum of an epitaxially oriented rod-shaped single crystal showing an example of the present invention by exciting it with YAG pulse laser excitation light (λ = 355 nm).
FIG. 4 is an explanatory diagram showing functions as an organic laser device showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Quartz cell 2 p-sexiphenyl (p-6P) molecular raw material which shows blue light emission 3,7 Thermocouple 4,8 Heater 5 Quartz tube 6 KCl (001) plane substrate 9 Vacuum atmosphere 10 P-6P sublimated in hot wall Molecule 11 p-6P rod-shaped single crystal 12 YAG pulse laser excitation light 13 ASE emission

Claims (2)

π共役系オリゴマーを用い、ホット・ウォール・エピタキシー法を有機半導体結晶の配向成長に適合することにより、π共役系オリゴマー分子を用いて、分子配列を制御した有機半導体配向結晶を基板上に自己組織化するとともに、結晶自身が低損失の導波路や共振器構造を構成することにより、レーザー発振を可能とする有機半導体結晶の配向成長を行わせる有機半導体結晶の配向成長方法であって、前記π共役系オリゴマーが青色発光を示すp−セキシフェニル(p−6P)分子であり、温度制御したウォールで閉じられた空間に前記p−セキシフェニル(p−6P)分子を昇華させるため、熱力学的平衡に近い条件下で結晶成長を行うことを特徴とする有機半導体結晶の配向成長方法。By using π-conjugated oligomers and adapting the hot wall epitaxy method to organic semiconductor crystal orientation growth, organic semiconductor oriented crystals with controlled molecular alignment are self-organized on the substrate using π-conjugated oligomer molecules. And an organic semiconductor crystal orientation growth method for performing organic semiconductor crystal orientation growth that enables laser oscillation by forming a low-loss waveguide or resonator structure. The conjugated oligomer is a p-sexiphenyl (p-6P) molecule that emits blue light, and sublimates the p-sexiphenyl (p-6P) molecule in a space closed by a temperature-controlled wall. An orientation growth method of an organic semiconductor crystal, characterized in that crystal growth is performed under near conditions . π共役系オリゴマーを用い、ホット・ウォール・エピタキシー法を有機半導体結晶の配向成長に適合することにより、π共役系オリゴマー分子を用いて、分子配列を制御した有機半導体配向結晶を基板上に自己組織化するとともに、結晶自身が低損失の導波路や共振器構造を構成することにより、レーザー発振を可能とする有機半導体結晶の配向成長を行わせ、該有機半導体結晶の自己導波路効果を利用した発光増幅機能を有する有機レーザーデバイスであって、前記有機半導体結晶を適当な励起用レーザー光でポンピングすると、発光した光が結晶中に閉じ込められ、ロッド状結晶軸に沿って伝搬する自己導波路効果を呈することを特徴とする有機レーザーデバイス。By using π-conjugated oligomers and adapting the hot wall epitaxy method to organic semiconductor crystal orientation growth, organic semiconductor oriented crystals with controlled molecular alignment are self-organized on the substrate using π-conjugated oligomer molecules. In addition, the crystal itself constitutes a low-loss waveguide or resonator structure, so that orientation growth of the organic semiconductor crystal enabling laser oscillation is performed, and the self-waveguide effect of the organic semiconductor crystal is used. An organic laser device having an emission amplification function , wherein when the organic semiconductor crystal is pumped with an appropriate excitation laser beam, the emitted light is confined in the crystal and propagates along the rod-shaped crystal axis. An organic laser device characterized by exhibiting
JP2001065540A 2001-03-08 2001-03-08 Oriented growth method of organic semiconductor crystal and organic laser device using it Expired - Fee Related JP4873515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065540A JP4873515B2 (en) 2001-03-08 2001-03-08 Oriented growth method of organic semiconductor crystal and organic laser device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065540A JP4873515B2 (en) 2001-03-08 2001-03-08 Oriented growth method of organic semiconductor crystal and organic laser device using it

Publications (2)

Publication Number Publication Date
JP2002270621A JP2002270621A (en) 2002-09-20
JP4873515B2 true JP4873515B2 (en) 2012-02-08

Family

ID=18924167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065540A Expired - Fee Related JP4873515B2 (en) 2001-03-08 2001-03-08 Oriented growth method of organic semiconductor crystal and organic laser device using it

Country Status (1)

Country Link
JP (1) JP4873515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783851B1 (en) 2003-11-11 2007-12-10 마츠시타 덴끼 산교 가부시키가이샤 Thin film transistor and process for fabricating the same, active matrix type display, wireless id tag, and portable apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832743B2 (en) * 1987-07-31 1996-03-29 三菱化学株式会社 Method for producing molecularly oriented thin film
JPH04302488A (en) * 1991-03-29 1992-10-26 Mitsubishi Cable Ind Ltd Multiwave oscillating member of dye laser
JPH05110069A (en) * 1991-10-14 1993-04-30 Mitsubishi Electric Corp Manufacture of field effect transistor
JP2001516150A (en) * 1997-08-15 2001-09-25 ユニアックス コーポレイション Organic diodes with switchable photosensitivity
JP4061561B2 (en) * 1998-10-21 2008-03-19 富士電機ホールディングス株式会社 Material for organic molecular alignment thin film and method for producing organic molecular alignment thin film

Also Published As

Publication number Publication date
JP2002270621A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
Yu et al. Zinc oxide thin-film random lasers on silicon substrate
Ter-Mikirtychev et al. Stable room-temperature tunable color center lasers and passive Q-switchers
Hotta et al. The thiophene/phenylene co-oligomers: exotic molecular semiconductors integrating high-performance electronic and optical functionalities
Nguyen et al. Optically pumped lasing in single crystals of organometal halide perovskites prepared by cast-capping method
Lin et al. Influences of molecular orientations on stimulated emission characteristics of oligofluorene films
US20110062394A1 (en) Rare earth-doped sapphire films and related methods
US8748219B2 (en) Method and apparatus for super radiant laser action in half wavelength thick organic semiconductor microcavities
US20110027928A1 (en) PULSED LASER DEPOSITION OF HIGH QUALITY PHOTOLUMINESCENT GaN FILMS
Li et al. Temperature dependent geometry in perovskite microcrystals for whispering gallery and Fabry–Pérot mode lasing
Tarasov et al. Low-threshold whispering-gallery mode lasing in large-diameter ZnO microrods
JP4873515B2 (en) Oriented growth method of organic semiconductor crystal and organic laser device using it
JP4775801B2 (en) Molecular material deposition method and apparatus
JP4421319B2 (en) Laser apparatus and laser oscillation method
Talik et al. Review on recent developments on fabrication techniques of distributed feedback (DFB) based organic lasers
Hu et al. A high-precision, template-assisted, anisotropic wet etching method for fabricating perovskite microstructure arrays
Marano et al. High efficiency and tunability of holmium-doped fluoride crystals
Gruzintsev et al. Stimulated luminescence of ZnO nanocrystals of different shape grown by the method ofgas transport
Abiyasa et al. Influence of surface roughness on the lasing performance of highly disordered ZnO films
Burmester et al. Characterization of crystalline europium doped α-Y2O3 PLD-films grown on α-Al2O3
JP4037244B2 (en) Laser oscillation method and laser apparatus
Ido et al. Reduced lasing threshold in thiophene/phenylene co-oligomer crystalline microdisks
Akimov et al. Vapor growth of CdSe: Cr and CdS: Cr single crystals for mid-infrared lasers
JP4837181B2 (en) Organic microdot forming method and organic semiconductor laser element
Dokiya et al. Fabrication of polycrystalline films of cyano-substituted thiophene/phenylene co-oligomer by vaporized film deposition method
Ryabtsev et al. Thermo-optic properties of diode-pumped Nd: YAG lasers with ceramic and crystalline active elements

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees