JP4868384B2 - Rare earth-noble metal composite material and rare earth-noble metal composite oxide - Google Patents
Rare earth-noble metal composite material and rare earth-noble metal composite oxide Download PDFInfo
- Publication number
- JP4868384B2 JP4868384B2 JP2005236144A JP2005236144A JP4868384B2 JP 4868384 B2 JP4868384 B2 JP 4868384B2 JP 2005236144 A JP2005236144 A JP 2005236144A JP 2005236144 A JP2005236144 A JP 2005236144A JP 4868384 B2 JP4868384 B2 JP 4868384B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- noble metal
- composite material
- composite oxide
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000510 noble metal Inorganic materials 0.000 title claims description 50
- 239000002905 metal composite material Substances 0.000 title claims description 13
- 239000002131 composite material Substances 0.000 claims description 66
- 239000013078 crystal Substances 0.000 claims description 42
- 239000003054 catalyst Substances 0.000 claims description 17
- 239000012298 atmosphere Substances 0.000 claims description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000010970 precious metal Substances 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 claims 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 74
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 32
- 238000003795 desorption Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 23
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 19
- 239000010948 rhodium Substances 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 229910052763 palladium Inorganic materials 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 12
- 229910052703 rhodium Inorganic materials 0.000 description 11
- -1 specifically Inorganic materials 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910021645 metal ion Inorganic materials 0.000 description 9
- 229910052723 transition metal Inorganic materials 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 150000003624 transition metals Chemical class 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 229910052746 lanthanum Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 238000004566 IR spectroscopy Methods 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000004517 catalytic hydrocracking Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910017771 LaFeO Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Description
本発明は、新規な希土類−貴金属系複合材料及び希土類−貴金属系複合酸化物に関する。さらには、これらの複合材料及び複合酸化物の製造方法に関する。 The present invention relates to a novel rare earth-noble metal composite material and a rare earth-noble metal composite oxide. Furthermore, it is related with the manufacturing method of these composite materials and composite oxides.
一般式ABO3で示されるペロブスカイト型酸化物に含まれるLaCoO3等は、その触媒的作用、電子伝導性等の特性から各種触媒、固体酸化物型燃料電池(SOFC)の空気側電極材料等として検討されている。 LaCoO 3 and the like contained in the perovskite oxide represented by the general formula ABO 3 are various catalysts and air-side electrode materials for solid oxide fuel cells (SOFC) because of their catalytic action and electronic conductivity. It is being considered.
LaCoO3の合成方法としては、この酸化物を構成するLa2O3とCoOの固相反応法がある。また、液相反応法としては、LaとCoとを含む溶液から沈殿物として得る共沈反応法のほか、ゾル−ゲル法、アルコキシド法等が知られている。ところが、これらの方法では、得られる酸化物におけるLaとCoの原子レベルでの分散の均一性等に問題がある。 As a method for synthesizing LaCoO 3 , there is a solid phase reaction method of La 2 O 3 and CoO constituting this oxide. As a liquid phase reaction method, a sol-gel method, an alkoxide method, and the like are known in addition to a coprecipitation reaction method obtained as a precipitate from a solution containing La and Co. However, these methods have problems such as uniformity of dispersion at the atomic level of La and Co in the obtained oxide.
その問題点等を解決する1つの方法として希土類−異種元素複酸化物の合成方法(特開平6−135722号公報)が提案されている。 As one method for solving the problems and the like, a method for synthesizing rare earth-heterogeneous complex oxides (JP-A-6-135722) has been proposed.
また、自動車排ガス等の中に含まれる炭化水素(HC)、窒素酸化物(NOx)及び一酸化炭素(CO)を同時に除去できる三元触媒の触媒活性成分として、Pd(パラジウム)、Rh(ロジウム)、Pt(白金)等の貴金属が広く用いられている。 In addition, Pd (palladium), Rh (rhodium) are used as catalytic active components of a three-way catalyst capable of simultaneously removing hydrocarbons (HC), nitrogen oxides (NOx) and carbon monoxide (CO) contained in automobile exhaust gas. ), Noble metals such as Pt (platinum) are widely used.
しかしながら、それらの貴金属には、1)Pdは低温からHCの酸化に優れる、2)RhはNOxの還元に優れる、3)Ptは低温からCOの酸化に優れる等の利点がある反面、耐熱性が劣るという問題点を抱えている。 However, these precious metals have the following advantages: 1) Pd excels in HC oxidation from low temperature, 2) Rh excels in NOx reduction, 3) Pt excels in CO oxidation from low temperature, but heat resistance Has the problem of being inferior.
そのため、一般式ABO3で表されるペロブスカイト型構造の複合酸化物に、Pd、Rh又はPtを含浸担持させ、耐熱性の向上を図ることが試みられている。さらには、Pd、Rh又はPtを複合酸化物の構成元素として含有させれば、Pd、Rh又はPtを含浸担持させるよりも、より一層の耐熱性の向上及び排ガス浄化性能の向上を図れることが知られている。 Therefore, attempts have been made to improve heat resistance by impregnating and supporting Pd, Rh, or Pt on a composite oxide having a perovskite structure represented by the general formula ABO 3 . Furthermore, if Pd, Rh, or Pt is contained as a constituent element of the composite oxide, it is possible to further improve heat resistance and exhaust gas purification performance compared to impregnating and supporting Pd, Rh, or Pt. Are known.
例えば、Pdとしては、La0.9Ce0.1Fe0.57Co0.38Pd0.05O3、La0.9Ce0.1Mn0.57Co0.38Pd0.05O3、Nd0.6Ca0.4Fe0.52Mn0.36Pd0.12O3、Pr0.8Sr0.2Mn0.9Pd0.1O3(特開平8−217461号公報)、La0.9Ce0.1Fe0.56Co0.38Pd0.06O3(特開平8−224446号公報)、Sr0.9Ba0.1Co0.85Pd0.15O3(特開平7−116519号公報)、La0.8Sr0.2Fe0.95Pd0.05O3、Sr0.9Ba0.1Co0.85Pd0.15O3(特開平6−100319号公報)、Sr0.9Ba0.1Co0.85Pd0.15O3(特開平6−304449号公報)、La0.4Sr0.6Co0.95Pd0.05O3(特開平5−76762号公報、特開平5−245372号公報)等が知られている。
For example, as Pd, La 0.9 Ce 0.1 Fe 0.57 Co 0.38 Pd 0.05 O 3 , La 0.9 Ce 0.1 Mn 0.57 Co 0.38 Pd 0.05 O 3 , Nd 0.6 Ca 0.4 Fe 0.52 Mn 0.36 Pd 0.12 O 3 , Pr 0.8 Sr 0.2 Mn 0.9 Pd 0.1 O 3 (JP-A-8-217461), La 0.9 Ce 0.1 Fe 0.56 Co 0.38 Pd 0.06 O 3 (JP-A 8-224446), Sr 0.9 Ba 0.1 Co 0.85 Pd 0.15 O 3 (JP 7-116519 discloses), La 0.8 Sr 0.2 Fe 0.95 Pd 0.05
Rhとしては、例えばLa0.8Ba0.2Ni0.48Co0.50Rh0.02O3(特開平8−217461号公報)、La0.4Sr0.6Co0.95Rh0.05O3(特開平5−76762号公報)等が知られている。 As Rh, for example, La 0.8 Ba 0.2 Ni 0.48 Co 0.50 Rh 0.02 O 3 (Japanese Patent Laid-Open No. 8-217461), La 0.4 Sr 0.6 Co 0.95 Rh 0.05 O 3 (Japanese Patent Laid-Open No. 5-76762) and the like are known. ing.
Ptとしては、La0.4Sr0.6Co0.95Pt0.05O3(特開平5−76762号公報)、La0.9Ce0.1Co0.98Pt0.02O3、La1.0Co0.9Pt0.1O3、La1.0Co0.8Pt0.2O3(特開平6−100319号公報)、La0.8Sr0.2Cr0.95Pt0.05O3、La1.0Ni0.98Pt0.02O3、La1.0Co0.9Pt0.1O3、La1.0Fe0.8Pt0.2O3、La0.8Sr0.2Cr0.95Pt0.05O3(特開平6−304449号公報)、La1.0Co0.9Pt0.1O3、La1.0Fe0.8Pt0.2O3、La1.0Mn0.98Pt0.02O3、La0.8Sr0.2Cr0.95Pt0.05O3、La1.0Co0.95Pt0.05O3、La1.0Mn0.98Pt0.02O3(特開平7−116519号公報)、La0.2Ba0.7Y0.1Cu0.48Cr0.48Pt0.04O3、La0.9Ce0.1Co0.9Pt0.05Ru0.05O3(特開平8−217461号公報)等が提案されている。 Examples of Pt include La 0.4 Sr 0.6 Co 0.95 Pt 0.05 O 3 (Japanese Patent Laid-Open No. 5-76762), La 0.9 Ce 0.1 Co 0.98 Pt 0.02 O 3 , La 1.0 Co 0.9 Pt 0.1 O 3 , La 1.0 Co 0.8 Pt 0.2 O 3 (Japanese Patent Laid-Open No. 6-100319), La 0.8 Sr 0.2 Cr 0.95 Pt 0.05 O 3 , La 1.0 Ni 0.98 Pt 0.02 O 3 , La 1.0 Co 0.9 Pt 0.1 O 3 , La 1.0 Fe 0.8 Pt 0.2 O 3 , La 0.8 Sr 0.2 Cr 0.95 Pt 0.05 O 3 (JP-A-6-304449), La 1.0 Co 0.9 Pt 0.1 O 3 , La 1.0 Fe 0.8 Pt 0.2 O 3 , La 1.0 Mn 0.98 Pt 0.02 O 3 , La 0.8 Sr 0.2 Cr 0.95 Pt 0.05 O 3 , La 1.0 Co 0.95 Pt 0.05 O 3 , La 1.0 Mn 0.98 Pt 0.02 O 3 (Japanese Unexamined Patent Publication No. 7-116519), La 0.2 Ba 0.7 Y 0.1 Cu 0.48 Cr 0.48 Pt 0.04 O 3 , La 0.9 e 0.1 Co 0.9 Pt 0.05 Ru 0.05 O 3 ( JP-A-8-217461) have been proposed.
さらに、最近では、これらの技術を改良したものも提案されている。例えば、Pdとして特開2004−41866号公報、Rhとしては特開2004−41867号公報、Ptとして特開2004−41868号公報等が知られている。 Furthermore, recently, an improvement of these techniques has been proposed. For example, JP 2004-41866 A is known as Pd, JP 2004-41867 A is known as Rh, and JP 2004-41868 A is known as Pt.
しかしながら、上述した複合酸化物を得る方法では、得られる複合酸化物は原子レベルで分散の均一性という点ではさらなる改善の余地がある。一方、得られた複合酸化物が原子レベルでの分散の均一性に優れた希土類−異種元素複合酸化物の合成方法(特開平6−135722号公報)も提案されているものの、この方法ではPd、Rh又はPtの貴金属を担持することは実際困難である。 However, in the method for obtaining the composite oxide described above, there is room for further improvement in terms of uniformity of dispersion of the obtained composite oxide at the atomic level. On the other hand, a method for synthesizing a rare earth-heterogeneous element complex oxide (Japanese Patent Laid-Open No. 6-135722) in which the obtained complex oxide is excellent in dispersion uniformity at the atomic level has been proposed. It is actually difficult to support noble metals such as Rh or Pt.
従って、本発明は、貴金属元素が均一に分散され、均質性の高い酸化物を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a highly homogeneous oxide in which noble metal elements are uniformly dispersed.
本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、ヘキサシアノ多核錯体結晶と、特定の元素又はその化合物とを含有してなる材料を前駆体として用いて酸化物を製造すると、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the problems of the prior art, the present inventor produces an oxide using a material containing a hexacyano polynuclear complex crystal and a specific element or a compound thereof as a precursor. The present inventors have found that the above object can be achieved and have completed the present invention.
すなわち、本発明は、下記の希土類−貴金属系複合材料及び希土類−貴金属系複合酸化物に係る。 That is, the present invention relates to the following rare earth-noble metal composite materials and rare earth-noble metal composite oxides.
1. 一般式Ln[M(CN)6]・nH2O(ただし、Lnは希土類元素の少なくとも1種を示し、Mは3価の遷移金属元素の少なくとも1種を示す。nは0以上10以下である。)で示されるヘキサシアノ多核錯体結晶体と、前記Mと異なる貴金属元素及びその化合物の少なくとも1種の第2成分とを含むことを特徴とする希土類−貴金属系複合材料。 1. General formula Ln [M (CN) 6 ] · nH 2 O (where Ln represents at least one rare earth element, M represents at least one trivalent transition metal element, and n is from 0 to 10) A rare-earth-noble metal-based composite material comprising: a hexacyano polynuclear complex crystal represented by the formula: and a second component of a noble metal element different from M and a compound thereof.
2. 前記第2成分が、ヘキサシアノ多核錯体結晶体の少なくとも表面領域に存在する、前記項1に記載の希土類−貴金属系複合材料。
2.
3. 前記第2成分の一部又は全部が、前記結晶体に化学結合している、前記項1又は2に記載の希土類−貴金属系複合材料。
3.
4. 前記Lnと第2成分とのモル比(Ln:第2成分)=1:0.001〜0.2である、前記項1〜3のいずれかに記載の希土類−貴金属系複合材料。
4). Item 4. The rare earth-noble metal-based composite material according to any one of
5. 一般式Ln[M(CN)6]・nH2O(ただし、Lnは希土類元素の少なくとも1種を示し、Mは3価の遷移金属元素の少なくとも1種を示す。nは0以上10以下である。)で示されるヘキサシアノ多核錯体結晶体に、貴金属元素のイオンを含む溶液を接触させることを特徴とする希土類−貴金属系複合材料の製造方法。 5. General formula Ln [M (CN) 6 ] · nH 2 O (where Ln represents at least one rare earth element, M represents at least one trivalent transition metal element, and n is from 0 to 10) And a solution containing a noble metal element ion is brought into contact with the hexacyano polynuclear complex crystal represented by the following formula.
6. 前記項1〜4のいずれかに記載の複合材料を酸化性雰囲気中で熱処理することによって得られる希土類−貴金属系複合酸化物。
6). A rare earth-noble metal-based composite oxide obtained by heat-treating the composite material according to any one of
7. 熱処理を300℃以上で行う、前記項6に記載の希土類−貴金属系複合酸化物。 7). Item 7. The rare earth-noble metal-based composite oxide according to Item 6 , wherein the heat treatment is performed at 300 ° C or higher.
8. 前記複合酸化物が、一般式LnMO3・mM’、LnMM’O3+m及びLnMO3・mM’Ox(いずれの一般式においても、Lnは希土類元素の少なくとも1種を示し、Mは3価の遷移金属元素の少なくとも1種を示し、M’は前記Mと異なる貴金属元素の少なくとも1種を示す。mは0.001以上0.2以下である。xは、M’の価数をnとした場合、n/2で表される値である。)で示される複合酸化物を少なくとも1種を含む、前記項6〜7のいずれかに記載の希土類−貴金属系複合酸化物。 8). The composite oxide has the general formulas LnMO 3 · mM ′, LnMM′O 3 + m and LnMO 3 · mM′Ox (in any general formula, Ln represents at least one rare earth element, and M is trivalent. And M ′ represents at least one kind of noble metal element different from M. m is not less than 0.001 and not more than 0.2, x is the valence of M ′ n The rare earth-noble metal-based composite oxide according to any one of Items 6 to 7, comprising at least one composite oxide represented by n / 2).
9. 前記項6〜8のいずれかに記載の希土類−貴金属系複合酸化物を含む排ガス浄化用触媒。 9. An exhaust gas purifying catalyst comprising the rare earth-noble metal-based composite oxide according to any one of Items 6 to 8.
10. 前記項6〜8のいずれかに記載の希土類−貴金属系複合酸化物を含む脱水素触媒。 10. A dehydrogenation catalyst comprising the rare earth-noble metal-based composite oxide according to any one of Items 6 to 8.
11. 前記項6〜8のいずれかに記載の希土類−貴金属系複合酸化物を含む水素化分解触媒。 11. 9. A hydrocracking catalyst comprising the rare earth-noble metal-based composite oxide according to any one of Items 6 to 8.
本発明の複合材料の製造方法によれば、特に、ヘキサシアノ多核錯体結晶体の表面領域に貴金属元素又はその化合物が分布する複合材料を得ることができる。そして、この複合材料を酸化性雰囲気中で熱処理することにより、均質な(特に原子レベルで分散状態が均一な)酸化物を得ることができる。 According to the method for producing a composite material of the present invention, in particular, a composite material in which a noble metal element or a compound thereof is distributed in the surface region of a hexacyano polynuclear complex crystal can be obtained. Then, the composite material can be heat-treated in an oxidizing atmosphere to obtain a homogeneous oxide (particularly, a uniform dispersed state at the atomic level).
このように、上記複合材料によれば、それを比較的低い温度で熱処理するという簡易な方法によって、原子レベルで均一な酸化物を提供することができる。また、上記複合材料を経由する上記方法であれば、その組成、表面積等を自由に設計することも可能である。本発明の酸化物は、各種の用途に幅広く使用することができる。例えば、窒素酸化物(NOx)、CO、炭化水素(HC)等の除去用触媒 、脱水素触媒、水素化分解触媒等のほか、電極材料として好適に用いることができる。 Thus, according to the composite material, it is possible to provide a uniform oxide at the atomic level by a simple method of heat-treating the composite material at a relatively low temperature. Moreover, if it is the said method via the said composite material, it is also possible to design the composition, a surface area, etc. freely. The oxide of the present invention can be widely used for various applications. For example, it can be suitably used as an electrode material in addition to a catalyst for removing nitrogen oxide (NOx), CO, hydrocarbon (HC), etc., a dehydrogenation catalyst, a hydrocracking catalyst, and the like.
1.希土類−貴金属系複合材料及びその製造方法
複合材料
本発明の希土類−貴金属系複合材料は、一般式Ln[M(CN)6]・nH2O(ただし、Lnは希土類元素の少なくとも1種を示し、Mは3価の遷移金属の少なくとも1種を示す。nは0以上10以下である。)で示されるヘキサシアノ多核錯体結晶体と、前記Mと異なる貴金属元素及びその化合物の少なくとも1種の第2成分を含むことを特徴とする。
1. Rare earth-noble metal composite material and method for producing the same
Composite Material The rare earth-noble metal composite material of the present invention has a general formula Ln [M (CN) 6 ] .nH 2 O (where Ln represents at least one rare earth element, and M represents at least a trivalent transition metal). 1 is a type, wherein n is 0 or more and 10 or less), and includes at least one second component of a noble metal element different from M and a compound thereof.
上記のヘキサシアノ多核錯体結晶体は、一般式Ln[M(CN)6]・nH2O(ただし、Lnは希土類元素の少なくとも1種を示し、Mは3価の遷移金属の少なくとも1種を示す。nは0以上10以下である。)で示される。
Lnは、希土類元素のいずれであっても良く、具体的にはSc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等が挙げられる。これらの中でも、La、Ce、Pr、Nd、Sm、及びYbの少なくとも1種が望ましい。Mは、3価の遷移金属である。例えば、Cr、Mo、W、Mn、Fe、Ru、Co、Rh、Ir等が挙げられる。この中でも、特にCr、Mn、Fe及びCoの少なくとも1種が望ましい。
The hexacyano polynuclear complex crystal has the general formula Ln [M (CN) 6 ] · nH 2 O (where Ln represents at least one rare earth element and M represents at least one trivalent transition metal). N is 0 or more and 10 or less).
Ln may be any of rare earth elements, specifically, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc. Can be mentioned. Among these, at least one of La, Ce, Pr, Nd, Sm, and Yb is desirable. M is a trivalent transition metal. For example, Cr, Mo, W, Mn, Fe, Ru, Co, Rh, Ir, etc. are mentioned. Among these, at least one of Cr, Mn, Fe and Co is particularly desirable.
このヘキサシアノ多核錯体結晶体は、無水物又は水和物のいずれであっても良い。水和物である場合、nは一般的には10以下である。 This hexacyano polynuclear complex crystal may be either an anhydride or a hydrate. In the case of a hydrate, n is generally 10 or less.
第2成分は、前記Mと異なる貴金属元素及びその化合物の少なくとも1種である。貴金属元素としては、例えばPd、Rh、Pt、Os、Ag、Au、Ir等が挙げられる。この中でも、Pd、Rh及びPtの少なくとも1種が好ましい。上記化合物のとしては、いずれの形態であっても良い。例えば、硝酸塩、塩酸塩、硫酸塩、炭酸塩等の無機酸塩、シュウ酸塩、酢酸塩等の有機酸塩のほか、水酸化物、酸化物等が挙げられる。この中でも、無機酸塩、特に硝酸塩を用いることが望ましい。 The second component is at least one of a noble metal element different from M and a compound thereof. Examples of the noble metal element include Pd, Rh, Pt, Os, Ag, Au, Ir, and the like. Among these, at least one of Pd, Rh, and Pt is preferable. Any form may be sufficient as said compound. Examples thereof include inorganic acid salts such as nitrates, hydrochlorides, sulfates and carbonates, organic acid salts such as oxalates and acetates, hydroxides and oxides, and the like. Among these, it is desirable to use inorganic acid salts, particularly nitrates.
第2成分は、本発明の複合材料中のどこに存在していても良いが、特にヘキサシアノ多核錯体結晶体の表面領域に存在していることが望ましい。このような構成の複合材料を触媒材料、電極材料等として用いる場合には、より優れた触媒特性、電極特性等を効率的に得ることができる。 The second component may be present anywhere in the composite material of the present invention, but is desirably present in the surface region of the hexacyano polynuclear complex crystal. When the composite material having such a configuration is used as a catalyst material, an electrode material, or the like, more excellent catalyst characteristics, electrode characteristics, and the like can be efficiently obtained.
第2成分の一部又は全部は、ヘキサシアノ多核錯体結晶体に対して化学結合していることが望ましい。特に、ヘキサシアノ多核錯体結晶体の表面領域に第2成分が存在する場合は、化学結合により強固に第2成分が固定されることになり、触媒材料等として使用する場合にはより優れた耐熱性、耐久性等を発揮することができる。 Part or all of the second component is desirably chemically bonded to the hexacyano polynuclear complex crystal. In particular, when the second component is present in the surface region of the hexacyanopolynuclear complex crystal, the second component is firmly fixed by chemical bonding, and more excellent heat resistance when used as a catalyst material or the like. , Durability and the like can be exhibited.
第2成分の含有割合は、本発明材料の用途、所望の特性等に応じて適宜設定すれば良いが、一般的にはモル比で前記Ln:第2成分=1:0.001〜0.2程度(特に1:0.01〜0.2)となるように設定することが望ましい。 The content ratio of the second component may be appropriately set according to the use of the material of the present invention, desired characteristics, etc. In general, the above-mentioned Ln: second component = 1: 0.001-0. It is desirable to set it to about 2 (particularly 1: 0.01 to 0.2).
複合材料の製造方法
本発明の複合材料の製法は、上記のような構成が得られる限り特に制限されないが、特に下記の製法によって製造することが望ましい。すなわち、一般式Ln[M(CN)6]・nH2O(ただし、Lnは希土類元素の少なくとも1種を示し、Mは3価の遷移金属の少なくとも1種を示す。nは0以上10以下である。)で示されるヘキサシアノ多核錯体結晶体に、貴金属元素のイオンを含む溶液を接触させることを特徴とする希土類−貴金属系複合材料の製造方法によれば、より確実かつ効率的に本発明の複合材料を製造することができる。
Production method of composite material The production method of the composite material of the present invention is not particularly limited as long as the above-described constitution can be obtained, but it is particularly desirable to produce the composite material by the following production method . That is, the general formula Ln [M (CN) 6 ] .nH 2 O (where Ln represents at least one rare earth element, M represents at least one trivalent transition metal, and n is 0 to 10). According to the method for producing a rare earth-noble metal-based composite material, the hexacyano polynuclear complex crystal represented by the following formula is contacted with a solution containing ions of a noble metal element. The composite material can be manufactured.
上記ヘキサシアノ多核錯体結晶体は、本発明の複合材料についての説明で示したヘキサシアノ多核錯体結晶体と同じ構成のものを採用すれば良い。この結晶体は、公知の製法に従って製造することができる。例えば、特開平6−135722号公報等の方法に従えば良い。すなわち、上記ヘキサシアノ錯体のアルカリ金属塩又はアンモニウム塩と、希土類元素の塩とのイオン交換反応(下式(1))によって、ヘキサシアノ多核錯体結晶体を得ることができる。 The hexacyano polynuclear complex crystal may have the same structure as the hexacyano polynuclear complex crystal shown in the description of the composite material of the present invention. This crystal can be produced according to a known production method. For example, a method disclosed in JP-A-6-135722 may be followed. That is, a hexacyano polynuclear complex crystal can be obtained by an ion exchange reaction (the following formula (1)) between an alkali metal salt or ammonium salt of the hexacyano complex and a salt of a rare earth element.
A3[M(CN)6]+LnX3+aq.
=Ln[M(CN)6]・nH2O+3AX
・・・(1)
より具体的に言えば、上記ヘキサシアノ錯体のアルカリ金属塩としてK3[Fe(CN)6]を用い、希土類元素の塩としてLa(NO3)3を用い、両者をイオン交換反応させることによってLa[Fe(CN)6]・nH2Oを得ることができる。これを式で示すと下式(2)のようになる。
A 3 [M (CN) 6 ] + LnX 3 + aq.
= Ln [M (CN) 6 ] · nH 2 O + 3AX
... (1)
More specifically, K 3 [Fe (CN) 6 ] is used as the alkali metal salt of the hexacyano complex, La (NO 3 ) 3 is used as the rare earth element salt, and both are subjected to an ion exchange reaction to form La. [Fe (CN) 6 ] · nH 2 O can be obtained. This is expressed by the following equation (2).
K3[Fe(CN)6]+La(NO3)3+aq.
=La[Fe(CN)6]・nH2O+3KNO3 ・・・(2)
一方、貴金属元素のイオンを含む溶液は、例えば貴金属化合物を適当な溶媒に溶解させることによって調製することができる。好ましくは、貴金属元素の水溶性化合物(特に水可溶性塩)を水に溶解させて得られる水溶液を好適に用いることができる。例えば、上記化合物としては、貴金属元素の硝酸塩等を好適に使用することができる。
K 3 [Fe (CN) 6 ] + La (NO 3 ) 3 + aq.
= La [Fe (CN) 6 ] .nH 2 O + 3KNO 3 (2)
On the other hand, a solution containing noble metal element ions can be prepared, for example, by dissolving a noble metal compound in a suitable solvent. Preferably, an aqueous solution obtained by dissolving a water-soluble compound (especially a water-soluble salt) of a noble metal element in water can be suitably used. For example, a noble metal element nitrate or the like can be preferably used as the compound.
上記溶液の濃度は特に制限されないが、通常は0.1〜5mol/L程度の範囲内で適宜設定すれば良い。 The concentration of the above solution is not particularly limited, but is usually set appropriately within a range of about 0.1 to 5 mol / L.
ヘキサシアノ多核錯体結晶体に上記溶液を接触させる方法は限定的でなく、上記溶液中にヘキサシアノ多核錯体結晶体を浸漬する方法、上記溶液をヘキサシアノ多核錯体結晶体に吹き付けるもしくは含浸する方法等のいずれも採用できる。この場合、両者の配合割合は特に限定されず、得られる複合材料における両者の割合が前記の割合(モル比でLn:第2成分=1:0.001〜0.2)となるように適宜調節すれば良い。 The method of bringing the solution into contact with the hexacyanopolynuclear complex crystal is not limited. Any of the method of immersing the hexacyanopolynuclear complex crystal in the solution, the method of spraying or impregnating the solution with the hexacyanopolynuclear complex crystal, etc. Can be adopted. In this case, the mixing ratio of the two is not particularly limited, and the ratio of the two in the obtained composite material is appropriately set so as to be the above ratio (Ln: second component = 1: 0.001-0.2 in molar ratio). Adjust it.
また、両者を接触させる場合の温度条件等も特に限定されず、一般的には常温・常圧下で実施すれば良い。 Moreover, the temperature conditions etc. in the case of making both contact are not specifically limited, Generally, what is necessary is just to implement at normal temperature and a normal pressure.
2.希土類−貴金属系複合酸化物及びその製造方法
本発明の希土類−貴金属系複合酸化物は、前記の複合材料を原料とし、これを酸化性雰囲気中で熱処理を施して得られるものである。
2. Rare earth-noble metal-based composite oxide and method for producing the same The rare-earth-noble metal-based composite oxide of the present invention is obtained by heat-treating the above-described composite material in an oxidizing atmosphere.
前記の複合材料は、特にその表面領域に第2成分が存在している場合、そのような構造を維持するために前記複合材料を切削、粉砕等の機械的加工を施すことなく、熱処理に供することが望ましい。 The composite material is subjected to heat treatment without mechanical processing such as cutting and pulverization in order to maintain such a structure, particularly when the second component is present in the surface region. It is desirable.
熱処理温度は、原料の組成、所望の特性等により異なるが、一般的にはヘキサシアノ錯体中の有機成分が消失し、かつ、所望の酸化物が形成される温度とすれば良い。一般的には300℃以上(特に500〜800℃)とすることが望ましい。熱処理時間は、熱処理温度等に応じて適宜決定することができる。 The heat treatment temperature varies depending on the composition of the raw material, desired characteristics, and the like, but is generally a temperature at which an organic component in the hexacyano complex disappears and a desired oxide is formed. Generally, it is desirable to set it to 300 ° C. or more (particularly 500 to 800 ° C.). The heat treatment time can be appropriately determined according to the heat treatment temperature and the like.
熱処理雰囲気は、前記のとおり酸化性雰囲気とすれば良い。例えば、大気中、酸素ガス雰囲気中、酸素ガスと不活性ガスとの混合ガス雰囲気中等のいずれであっても良い。 The heat treatment atmosphere may be an oxidizing atmosphere as described above. For example, any of air, oxygen gas atmosphere, mixed gas atmosphere of oxygen gas and inert gas may be used.
上記熱処理を行うことにより、本発明の希土類−貴金属系複合酸化物を得ることができる。一般的には、熱処理により下式(3)のような反応が進行する(下式中、YはM’又はその化合物、pは下記の反応に必要な酸素のモル数を示す。)。 By performing the heat treatment, the rare earth-noble metal composite oxide of the present invention can be obtained. In general, the reaction represented by the following formula (3) proceeds by heat treatment (wherein Y represents M ′ or a compound thereof, and p represents the number of moles of oxygen necessary for the following reaction).
Ln[M(CN)6]・nH2O・mY+pO2
―>LnMO3・mM’(又はLnMM’O3+mもしくはLnMO3・mM’Ox) ・・・(3)
本発明の複酸化物は、前記Ln、M及び貴金属元素を含む混合酸化物である。具体的な酸化物の形態としては限定されないが、特に一般式LnMO3・mM’、LnMM’O3+m及びLnMO3・mM’Ox(いずれの一般式においても、Lnは希土類元素の少なくとも1種を示し、Mは3価の遷移金属の少なくとも1種を示し、M’は前記Mと異なる貴金属元素の少なくとも1種を示す。mは0.001以上0.2以下である。xは、M’の価数をnとした場合、n/2で表される値である。)で示される複合酸化物を少なくとも1種を含む。
Ln [M (CN) 6 ] · nH 2 O · mY + pO 2
-> LnMO 3 · mM ′ (or LnMM′O 3 + m or LnMO 3 · mM′Ox) (3)
The double oxide of the present invention is a mixed oxide containing Ln, M and a noble metal element. But it is not limited to the form of specific oxides, in particular the general formula LnMO 3 · mM ', also in the LnMM'O 3 + m and LnMO 3 · mM'Ox (either general formula, Ln is a rare earth element at least M represents at least one trivalent transition metal, M ′ represents at least one noble metal element different from M. m is from 0.001 to 0.2, and x is When the valence of M ′ is n, it is a value represented by n / 2).
Mは、3価の遷移金属である。例えば、Cr、Mo、W、Mn、Fe、Ru、Co、Rh、Ir等が挙げられる。この中でも、特にCr、Mn、Fe及びCoの少なくとも1種が望ましい。 M is a trivalent transition metal. For example, Cr, Mo, W, Mn, Fe, Ru, Co, Rh, Ir, etc. are mentioned. Among these, at least one of Cr, Mn, Fe and Co is particularly desirable.
M’は、前記Mと異なる貴金属元素の少なくとも1種である。貴金属元素としては、例えばPd、Rh、Pt、Os、Ag、Au、Ir等が挙げられるこの中でも、Pd、Rh及びPtの少なくとも1種が好ましい。 M ′ is at least one kind of noble metal element different from M. Examples of the noble metal element include Pd, Rh, Pt, Os, Ag, Au, and Ir. Among these, at least one of Pd, Rh, and Pt is preferable.
これらの複合酸化物の含有割合は特に限定されず、用いるM、M’等の種類に応じて適宜設定すれば良い。 The content ratio of these composite oxides is not particularly limited, and may be set as appropriate according to the type of M, M ′, etc. used.
また、本発明の酸化物中においては、本発明の効果を妨げない範囲内で他の不純物、未反応物等が含まれていても良い。例えば、原料由来のシアノ基等が多少残存していても良い。 Further, in the oxide of the present invention, other impurities, unreacted substances, and the like may be contained within a range that does not hinder the effects of the present invention. For example, some cyano groups derived from the raw material may remain.
<作用>
配位化合物は金属イオンと配位子で構成され、固体状態では結晶を形作る。結晶内部では同種、又は異種金属イオンが配位子を介して規則正しく配列した構造をしているが、その結晶界面では、金属イオンが欠損した(結合していない)配位不飽和場が必ず発生する。
<Action>
Coordination compounds are composed of metal ions and ligands, and form crystals in the solid state. The crystal has a structure in which the same or different metal ions are regularly arranged through ligands, but a coordinated unsaturated field in which the metal ions are missing (not bonded) always occurs at the crystal interface. To do.
本発明はこの配位不飽和場の利用法に関する発明であり、配位不飽和場に同種又は異種金属イオン又はその錯体を選択的に結合(配位結合)させることができる。 The present invention relates to a method for using this coordinated unsaturated field, and the same or different metal ions or their complexes can be selectively bonded (coordinated bond) to the coordinated unsaturated field.
シアノ架橋配位子によって同種、又は異なった金属イオンが規則配列した結晶(Ln[M(CN)x])において、Lnは希土類金属イオンであり、ここでは金属の価数、種類や組み合わせの数は限定しない。[M(CN)x]はシアノ錯体を示す。ここで、金属の価数、種類や組み合わせの数、シアノイオンの数は限定しない。
例えば、LaxCeyNdz[CoaMnbCrc(CN)6]
(x+y+z=1、a+b+c=1)
CoxNiy[PdaPtb(CN)4]
(x+y=1、a+b=1)
を挙げることができる。
In a crystal (Ln [M (CN) x ]) in which the same or different metal ions are regularly arranged by a cyano bridging ligand, Ln is a rare earth metal ion, and here, the valence, type, and number of combinations of metals. Is not limited. [M (CN) x] represents a cyano complex. Here, the valence of metal, the number of types and combinations, and the number of cyano ions are not limited.
For example, La x Ce y Nd z [ Co a Mn b Cr c (CN) 6]
(X + y + z = 1, a + b + c = 1)
Co x Ni y [Pd a Pt b (CN) 4 ]
(X + y = 1, a + b = 1)
Can be mentioned.
この結晶界面には、配位不飽和場として、金属イオンと結合していないシアノイオンが存在している。ここには、任意の金属イオンを結合させることができる。配位不飽和場に結合させる金属イオンの種類、価数、数等は限定しない。また、配位不飽和場に結合させる金属イオンは通常の水和イオンに限定しない。 At this crystal interface, there is a cyano ion that is not bonded to a metal ion as a coordinated unsaturated field. Arbitrary metal ions can be bound here. There are no limitations on the type, valence, number, etc. of the metal ions bound to the coordinated unsaturated field. Further, the metal ion to be bonded to the coordinated unsaturated field is not limited to a normal hydrated ion.
最も単純な例として、La[Co(CN)6]型の結晶の界面にPd2+イオンを結合させた系の結果を示す。模式的にはその結合構造を図1のように示すことができる。 As the simplest example, a result of a system in which Pd 2+ ions are bonded to an interface of a La [Co (CN) 6 ] type crystal is shown. The coupling structure can be schematically shown as in FIG.
次に、実施例及び比較例を示し、本発明をより詳細に説明する。ただし、本発明は、実施例の範囲に限定されない。なお、以下の記載において、触媒の前駆体とはPdによる被覆の有無に拘らず熱処理により複酸化物に転換される前の物質をいう。 Next, an Example and a comparative example are shown and this invention is demonstrated in detail. However, the present invention is not limited to the scope of the examples. In the following description, the catalyst precursor refers to a substance before being converted to a double oxide by heat treatment regardless of the presence or absence of coating with Pd.
<実施例1>
La(NO3)3の0.5Mから1 M程度の水溶液とK3[Co(CN)6]の0.5から1 M程度の水溶液とをLa3+と[Co(CN)6]3-が等モルになるように混合した。生成したLa[Co(CN)6]・nH2Oの結晶を濾別し、十分に水洗し、乾燥した。
<Example 1>
La 3+ and [Co (CN) 6 ] 3- are equivalent to an aqueous solution of about 0.5 to 1 M of La (NO 3 ) 3 and an aqueous solution of about 0.5 to 1 M of K 3 [Co (CN) 6 ]. The mixture was mixed to make a mole. The produced La [Co (CN) 6 ] .nH 2 O crystals were filtered off, washed thoroughly with water and dried.
La[Co(CN)6]・nH2Oを金属換算Pd濃度が4.3重量%のPd(NO3)2水溶液に浸し、Pdの被覆限界まで被覆させた。その結果、金属元素モル比がLa:Co:Pd=1.0:1.0:0.195のPd(NO3)2被覆La[Co(CN)6]・nH2O複合材料が得られた。La[Co(CN)6]・nH2OにPd(NO3)2が被覆されていることを確認するため、被覆処理前後の結晶をX線回折法及び赤外吸収分光法による同定を行った。X線回折法による観察結果を図2(上図)、赤外吸収分光法による測定結果を図3に示す。これにより、La[Co(CN)6]・nH2OにPd(NO3)2が被覆されていることを確認できた。 La [Co (CN) 6 ] · nH 2 O was immersed in a Pd (NO 3 ) 2 aqueous solution having a metal-converted Pd concentration of 4.3% by weight to cover the coating limit of Pd. As a result, a Pd (NO 3 ) 2 coated La [Co (CN) 6 ] .nH 2 O composite material having a metal element molar ratio of La: Co: Pd = 1.0: 1.0: 0.195 was obtained. In order to confirm that Pd (NO 3 ) 2 is coated on La [Co (CN) 6 ] · nH 2 O, the crystals before and after the coating treatment are identified by X-ray diffraction and infrared absorption spectroscopy. It was. The observation result by X-ray diffraction method is shown in FIG. 2 (upper figure), and the measurement result by infrared absorption spectroscopy is shown in FIG. This confirmed that La [Co (CN) 6 ] · nH 2 O was coated with Pd (NO 3 ) 2 .
図2は、実施例1で得られた前駆体のX線回折分析の結果を示す図であり、それぞれPdを被覆処理する前後で差異がないことを示している。即ち、被覆されたPdは、X線回折分析で観察されるシアノ錯体結晶格子には取り込まれていないことを示している。 FIG. 2 is a view showing the results of X-ray diffraction analysis of the precursor obtained in Example 1, and shows that there is no difference before and after the coating treatment with Pd. That is, the coated Pd is not incorporated into the cyano complex crystal lattice observed by X-ray diffraction analysis.
図3は、実施例1のLa[Co(CN)6]・5H2OのPd被覆処理前後のFT−IRスペクトルである。被覆前のスペクトルが下の曲線であり、被覆後のスペクトルが上の曲線である。上の曲線(La[Co(CN)6]・5H2O+Pd)によれば、Pd原子の配位結合部分はLa,Coの金属とCN基の結合を示すピークと重なるために確認できないが、Pdを介して表面に結合しているNO3基のピークが確認できた。 3 is an FT-IR spectrum before and after the Pd coating treatment of La [Co (CN) 6 ] · 5H 2 O in Example 1. FIG. The spectrum before coating is the lower curve, and the spectrum after coating is the upper curve. According to the upper curve (La [Co (CN) 6 ] · 5H 2 O + Pd), the coordination bond portion of the Pd atom cannot be confirmed because it overlaps with the peak indicating the bond between the metal of La and Co and the CN group. A peak of NO 3 group bonded to the surface via Pd was confirmed.
次に、この複合材料を大気中酸化雰囲気にて600℃熱処理してモル比でLa:Co:Pd:O=1.0:1.0:0.195:3.20の複合酸化物を得た。得られた酸化物粉末の比表面積は、24.6m2/gであった。酸化物粒子のバルク内の結晶性が同一であることをX線回折法と透過型電子顕微鏡による格子観察により確認した。X線回折法による分析の結果を図2(下図)に示す。透過型電子顕微鏡による観察では、被覆処理したものと被覆処理しないものの酸化物の結晶子はともにLaCoO3の結晶格子となり、被覆処理したPdがLaCoO3の結晶に固溶していないことを確認した。また、被覆処理したPdは、結晶化しない状態かつ粒子ではない状態でLaCoO3の表面に存在していることを確認した。 Next, this composite material was heat-treated at 600 ° C. in an oxidizing atmosphere in the air to obtain a composite oxide having a molar ratio of La: Co: Pd: O = 1.0: 1.0: 0.195: 3.20. The specific surface area of the obtained oxide powder was 24.6 m 2 / g. The crystallinity in the bulk of the oxide particles was confirmed by X-ray diffraction and lattice observation with a transmission electron microscope. The result of the analysis by the X-ray diffraction method is shown in FIG. Observation with a transmission electron microscope confirmed that the oxide crystallites of the coated and non-coated oxides were LaCoO 3 crystal lattices, and the coated Pd was not dissolved in the LaCoO 3 crystals. . Further, it was confirmed that the coated Pd was present on the surface of LaCoO 3 in a state where it was not crystallized and was not a particle.
以上により前駆体において被覆処理したPdが複合酸化物の表面を被覆していることを確認した。 As described above, it was confirmed that Pd coated on the precursor covered the surface of the composite oxide.
また、Pdが表面に高分散している効果として、得られた複合酸化物を還元ガスである5%水素−95%アルゴン気流中で昇温し、酸素の脱離挙動を調べた。その結果を表1に示す。得られた昇温脱離スペクトルから酸素の脱離は、247℃から開始し400℃付近に極大をもつものと、491℃から開始し600℃付近に極大をもつ脱離挙動を示した。 Further, as an effect of high dispersion of Pd on the surface, the obtained composite oxide was heated in a 5% hydrogen-95% argon stream as a reducing gas, and the desorption behavior of oxygen was examined. The results are shown in Table 1. From the temperature-programmed desorption spectrum, oxygen desorption started at 247 ° C and had a maximum near 400 ° C, and oxygen desorption started at 491 ° C and had a maximum near 600 ° C.
<実施例2>
実施例1と同様にして得られたLa[Co(CN)6]・nH2Oを金属換算Pd濃度が0.43重量%のPd(NO3)2水溶液に浸し、金属元素モル比がLa:Co:Pd=1.0:1.0:0.104のPd(NO3)2被覆La[Co(CN)6]・nH2O複合材料を得た。実施例1と同様にして、被覆処理前後の結晶をX線回折法及び赤外吸収分光法による同定を行うことにより、La[Co(CN)6]・nH2OにPd(NO3)2が被覆されていることを確認した。
<Example 2>
La [Co (CN) 6 ] · nH 2 O obtained in the same manner as in Example 1 was immersed in a Pd (NO 3 ) 2 aqueous solution having a metal-converted Pd concentration of 0.43% by weight, and the metal element molar ratio was La: Co. : Pd = 1.0: 1.0: 0.104 Pd (NO 3 ) 2 coated La [Co (CN) 6 ] · nH 2 O composite material was obtained. In the same manner as in Example 1, the crystals before and after the coating treatment were identified by X-ray diffraction and infrared absorption spectroscopy, whereby Pd (NO 3 ) 2 was added to La [Co (CN) 6 ] · nH 2 O. It was confirmed that was coated.
次いで、上記複合材料を大気中酸化雰囲気にて600℃熱処理してモル比でLa:Co:Pd:O=1.0:1.0:0.104:3.12の複合酸化物を得た。得られた酸化物粉末の比表面積は、25.3m2/gであった。実施例1と同様に酸素の昇温脱離スペクトルを測定した。その結果を表1に示す。昇温脱離スペクトルは、253℃から開始し400℃付近に極大をもつものと、493℃から開始し600℃付近に極大をもつ脱離挙動を示した。 Next, the composite material was heat-treated at 600 ° C. in an oxidizing atmosphere in the air to obtain a composite oxide having a molar ratio of La: Co: Pd: O = 1.0: 1.0: 0.104: 3.12. The specific surface area of the obtained oxide powder was 25.3 m 2 / g. In the same manner as in Example 1, the temperature programmed desorption spectrum of oxygen was measured. The results are shown in Table 1. The temperature-programmed desorption spectrum showed a desorption behavior starting at 253 ° C. and having a maximum near 400 ° C., and desorption behavior starting at 493 ° C. and having a maximum near 600 ° C.
<実施例3>
実施例1と同様にして得られたLa[Co(CN)6]・nH2Oを金属換算Pd濃度が0.04重量%のPd(NO3)2水溶液に浸し、金属元素モル比がLa:Co:Pd=1.0:1.0:0.068のPd(NO3)2被覆La[Co(CN)6]・nH2O複合材料を得た。実施例1と同様にして、被覆処理前後の結晶をX線回折法及び赤外吸収分光法による同定を行うことにより、La[Co(CN)6]・nH2OにPd(NO3)2が被覆されていることを確認した。
<Example 3>
La [Co (CN) 6 ] · nH 2 O obtained in the same manner as in Example 1 was immersed in a Pd (NO 3 ) 2 aqueous solution having a metal-converted Pd concentration of 0.04 wt%, and the metal element molar ratio was La: Co. : Pd = 1.0: 1.0: 0.068 Pd (NO 3 ) 2 coated La [Co (CN) 6 ] · nH 2 O composite material was obtained. In the same manner as in Example 1, the crystals before and after the coating treatment were identified by X-ray diffraction and infrared absorption spectroscopy, whereby Pd (NO 3 ) 2 was added to La [Co (CN) 6 ] · nH 2 O. It was confirmed that was coated.
次いで、この複合材料を大気中酸化雰囲気にて600℃熱処理してモル比でLa:Co:Pd:O=1.0:1.0:0.068:3.10の複合酸化物を得た。得られた酸化物粉末の比表面積は、24.7m2/gであった。実施例1と同様に酸素の昇温脱離スペクトルを測定したところ、263℃から開始し400℃付近に極大をもつものと、498℃から開始し600℃付近に極大をもつ脱離挙動を示した。 Next, this composite material was heat-treated at 600 ° C. in an oxidizing atmosphere in the air to obtain a composite oxide having a molar ratio of La: Co: Pd: O = 1.0: 1.0: 0.068: 3.10. The specific surface area of the obtained oxide powder was 24.7 m 2 / g. When the temperature-programmed desorption spectrum of oxygen was measured in the same manner as in Example 1, it showed a desorption behavior starting from 263 ° C and having a maximum at around 400 ° C, and starting from 498 ° C and having a maximum at around 600 ° C. It was.
このようにPd2+イオンの濃度を調製すれば、Pd2+の結晶界面へ結合量を制御できる。また、個々の結晶におけるPd2+イオンの結合量は均一である。 By adjusting the concentration of Pd 2+ ions in this way, the amount of binding to the crystal interface of Pd 2+ can be controlled. In addition, the amount of Pd 2+ ions bound in each crystal is uniform.
<比較例1〜3>
比較例1として、実施例1と同様にして得られたLa[Co(CN)6]・nH2Oを被覆処理なしに大気中酸化雰囲気にて600℃熱処理してLaCoO3を得た。得られた酸化物粉末の比表面積は、24.2m2/gであった。
<Comparative Examples 1-3>
As Comparative Example 1, La [Co (CN) 6 ] · nH 2 O obtained in the same manner as in Example 1 was heat-treated at 600 ° C. in an oxidizing atmosphere in the air without coating treatment to obtain LaCoO 3 . The specific surface area of the obtained oxide powder was 24.2 m 2 / g.
こうして得られた酸化物粉末について、実施例1と同様に酸素の昇温脱離スペクトルを測定した。その結果を表1に示す。昇温脱離スペクトルでは、322℃から開始し400℃付近に極大をもつものと、520℃から開始し600℃付近に極大をもつ脱離挙動を示した。 With respect to the oxide powder thus obtained, the temperature programmed desorption spectrum of oxygen was measured in the same manner as in Example 1. The results are shown in Table 1. Thermal desorption spectra showed a desorption behavior starting at 322 ° C and having a maximum near 400 ° C, and desorption behavior starting at 520 ° C and having a maximum near 600 ° C.
また、比較例2として、固相法で合成したLaCoO3に0.2モル倍のPdを公知の方法で担持させたものについて、実施例1と同様に酸素の昇温脱離スペクトルを測定した。その結果を表1に示す。昇温脱離スペクトルでは、311℃から開始し400℃付近に極大をもつものと、508℃から開始し600℃付近に極大をもつ脱離挙動を示した。 Further, as Comparative Example 2, the temperature-programmed desorption spectrum of oxygen was measured in the same manner as in Example 1 for LaCoO 3 synthesized by a solid phase method and 0.2 mol times of Pd supported by a known method. The results are shown in Table 1. Thermal desorption spectra showed a desorption behavior starting at 311 ° C and having a maximum near 400 ° C, and desorption behavior starting at 508 ° C and having a maximum near 600 ° C.
比較例3として、共沈法で作成したLaCoO3について、実施例1と同様にして酸素の昇温脱離スペクトルを測定した。その結果を表1に示す。昇温脱離スペクトルでは、325℃から開始し400℃付近に極大をもつものと、522℃から開始し600℃付近に極大をもつ脱離挙動を示した。 As Comparative Example 3, the temperature programmed desorption spectrum of oxygen was measured in the same manner as in Example 1 for LaCoO 3 prepared by the coprecipitation method. The results are shown in Table 1. The temperature-programmed desorption spectrum showed a desorption behavior starting at 325 ° C and having a maximum near 400 ° C, and desorption behavior starting at 522 ° C and having a maximum near 600 ° C.
このように、本発明を用いることにより、貴金属を含む各種触媒の表面活性の指標である酸素脱離の開始温度が50〜70℃低下し、表面に被覆されたPdの分散度が高く、活性が高いことがわかる。 Thus, by using the present invention, the starting temperature of oxygen desorption, which is an index of the surface activity of various catalysts containing noble metals, is reduced by 50 to 70 ° C., the degree of dispersion of Pd coated on the surface is high, and the activity Is high.
<実施例4>
実施例1における遷移金属Mをコバルトから鉄に変えて、フェリシアン化カリウムK3[Fe(CN)6]水溶液と、硝酸ランタン(III)水溶液を、各々の化合物が等モルとなるように混合し撹拌した。こうして生成したLa[Fe(CN)6]・nH2Oの結晶を濾別し、十分に水洗し、乾燥した。この生成物を、パラジウム換算で20重量%の硝酸パラジウム水溶液に浸し、パラジウムの被覆限界まで被覆させて複合材料を得た。この複合材料を大気中酸化雰囲気にて600℃で熱処理し、モル比でLa:Fe:Pd:O=1:1:0.045:3の複合酸化物を得た。本材料中へのPdの担持量は貴金属換算で2重量%に相当する。
<Example 4>
The transition metal M in Example 1 was changed from cobalt to iron, and an aqueous solution of potassium ferricyanide K 3 [Fe (CN) 6 ] and an aqueous solution of lanthanum nitrate (III) were mixed and stirred so that each compound was equimolar. did. The thus produced crystals of La [Fe (CN) 6 ] · nH 2 O were filtered off, washed thoroughly with water and dried. This product was immersed in a 20% by weight palladium nitrate aqueous solution in terms of palladium and coated to the palladium coating limit to obtain a composite material. This composite material was heat-treated at 600 ° C. in an oxidizing atmosphere in the air to obtain a composite oxide having a molar ratio of La: Fe: Pd: O = 1: 1: 0.045: 3. The amount of Pd supported in this material corresponds to 2% by weight in terms of noble metal.
この複合酸化物をX線回析法による分析と、透過型電子顕微鏡による観察により、被覆処理したパラジウムがLaFeO3の結晶に固溶も、結晶化も、粗大粒子化もしていない事を確認した。得られたX線回折による結果を図4に示す。 Analysis of this composite oxide by X-ray diffraction and observation with a transmission electron microscope confirmed that the coated palladium was not dissolved, crystallized, or coarsened into LaFeO 3 crystals. . The results obtained by X-ray diffraction are shown in FIG.
<比較例4>
市販のγ−Al2O3に硝酸パラジウムをPd分が2重量%となるように含浸担持し、100℃で乾燥し、600℃で30分間焼成し、触媒(2重量%Pd/γ−Al2O3)を調製した。
<Comparative example 4>
Commercially available γ-Al 2 O 3 was impregnated with palladium nitrate so that the Pd content was 2% by weight, dried at 100 ° C., calcined at 600 ° C. for 30 minutes, and catalyst (2% by weight Pd / γ-Al 2 O 3) was prepared.
<モデルガスによる浄化試験>
実施例4、比較例4の複合酸化物を、電気炉を用い大気中800℃で10時間エージング処理した。
エージング処理を施した複合酸化物100mgを下記測定装置のカラムに入れ、下記の条件のモデルガスを該カラムに流通させることにより行った。
<Purification test with model gas>
The composite oxides of Example 4 and Comparative Example 4 were aged for 10 hours at 800 ° C. in the atmosphere using an electric furnace.
The
=測定装置=
株式会社理学製 TPD−TypeR(昇温脱離ガス分析システム)
=モデルガス条件=
・モデルガスの組成
トータルの流量:300cc/min
NO含有量:1667ppm
C3H6又はC3H8含有量5000ppmC(200秒毎切替)
H2O含有量:10重量%
He:残部
・モデルガス温度:450℃
= Measuring device =
RPD Co., Ltd. TPD-TypeR (Temperature desorption gas analysis system)
= Model gas conditions =
・ Total flow rate of model gas composition: 300cc / min
NO content: 1667ppm
C 3 H 6 or C 3 H 8 content 5000 ppmC (switched every 200 seconds)
H 2 O content: 10% by weight
He: balance / model gas temperature: 450 ° C.
得られたモデルガス中のNOxについての排ガス浄化性能の評価結果を図5に表す。NOxの除去特性は、NOのマスナンバーに相当する30のイオン強度で比較した。図5の縦軸は残存NOのイオン強度であり、イオン強度レベルが低い程、NO除去特性に優れることを表している。本結果から実施例4の複合酸化物は、還元剤としてC3H6及びC3H8を導入した際のNO除去特性が、比較例4の触媒に比べて優れることがわかる。 The evaluation results of the exhaust gas purification performance for NOx in the obtained model gas are shown in FIG. The NOx removal characteristics were compared at 30 ionic strengths corresponding to NO mass numbers. The vertical axis in FIG. 5 represents the ionic strength of residual NO, and the lower the ionic strength level, the better the NO removal characteristics. From this result, it can be seen that the composite oxide of Example 4 is superior in NO removal characteristics when C 3 H 6 and C 3 H 8 are introduced as the reducing agent compared to the catalyst of Comparative Example 4.
このように、本発明の複合酸化物を触媒として用いる事により、ガソリン、ディーゼル機関等の内燃機関から排出される炭化水素成分であるプロパン、プロピレン含有雰囲気下において優れたNOx除去性能を示すことがわかる。 Thus, by using the composite oxide of the present invention as a catalyst, it exhibits excellent NOx removal performance in an atmosphere containing propane and propylene, which are hydrocarbon components discharged from internal combustion engines such as gasoline and diesel engines. Recognize.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005236144A JP4868384B2 (en) | 2004-08-16 | 2005-08-16 | Rare earth-noble metal composite material and rare earth-noble metal composite oxide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004236443 | 2004-08-16 | ||
JP2004236443 | 2004-08-16 | ||
JP2005236144A JP4868384B2 (en) | 2004-08-16 | 2005-08-16 | Rare earth-noble metal composite material and rare earth-noble metal composite oxide |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006083054A JP2006083054A (en) | 2006-03-30 |
JP2006083054A5 JP2006083054A5 (en) | 2008-05-15 |
JP4868384B2 true JP4868384B2 (en) | 2012-02-01 |
Family
ID=36161864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005236144A Expired - Fee Related JP4868384B2 (en) | 2004-08-16 | 2005-08-16 | Rare earth-noble metal composite material and rare earth-noble metal composite oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4868384B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5697068B2 (en) * | 2006-12-28 | 2015-04-08 | 独立行政法人産業技術総合研究所 | Method for producing Prussian blue-type metal complex nanoparticles, Prussian blue-type metal complex nanoparticles obtained thereby, dispersion thereof, color development control method thereof, electrode and transmission light control device using the same |
US8580230B2 (en) * | 2009-02-23 | 2013-11-12 | Kent State University | Materials and methods for MRI contrast agents and drug delivery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06135722A (en) * | 1992-09-14 | 1994-05-17 | Shinagawa Refract Co Ltd | Method for synthesizing multiple oxide of rare earth element and other element |
JP2004041867A (en) * | 2002-07-09 | 2004-02-12 | Daihatsu Motor Co Ltd | Exhaust gas purifying catalyst |
JP3917479B2 (en) * | 2002-07-09 | 2007-05-23 | ダイハツ工業株式会社 | Exhaust gas purification catalyst |
-
2005
- 2005-08-16 JP JP2005236144A patent/JP4868384B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006083054A (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4311918B2 (en) | Method for producing perovskite complex oxide | |
EP2050497B1 (en) | Exhaust gas purifying catalyst and method of preparation | |
EP2039425B1 (en) | Process for production of an exhaust gas clean-up catalyst | |
US7713911B2 (en) | Catalyst powder, exhaust gas purifying catalyst, and method of producing the catalyst powder | |
JP2004041868A (en) | Exhaust gas purifying catalyst | |
JP3917479B2 (en) | Exhaust gas purification catalyst | |
WO2004004899A1 (en) | Method for producing catalyst for clarifying exhaust gas | |
JPH10216509A (en) | Oxygen storing cerium-based compounded oxide | |
US20050233897A1 (en) | Catalyst for exhaust gas purification | |
EP1695761A1 (en) | Catalyst composition | |
JP2010099638A (en) | Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst | |
WO2007113981A1 (en) | Catalyst composition | |
KR101150313B1 (en) | Perovskite complex oxide and catalyst | |
EP1516855B1 (en) | Cerium-zirconium composite metal oxide with a cerium oxide core surrounded by zirconium oxide | |
JP2003246624A (en) | Method for producing pyrochlore type oxide | |
JP5915520B2 (en) | Exhaust gas purification catalyst | |
JP2009533206A (en) | Sulfur-resistant emission catalyst | |
EP2939737A1 (en) | Catalyst carrier and exhaust gas purifying catalyst | |
JPH0780311A (en) | Catalyst for purification of exhaust gas | |
US20070292329A1 (en) | Method for Producing Noble Metal-Containing Heat-Resistant Oxide | |
JPH0312936B2 (en) | ||
JP4868384B2 (en) | Rare earth-noble metal composite material and rare earth-noble metal composite oxide | |
JP2007144413A (en) | Exhaust gas purification catalyst | |
JP5910486B2 (en) | Exhaust gas purification catalyst | |
JP4204521B2 (en) | Exhaust gas purification catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20110830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111025 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
RD17 | Notification of extinguishment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7437 Effective date: 20111028 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111109 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |