[go: up one dir, main page]

JP4860226B2 - Partial oxidation reforming catalyst and partial oxidation reforming method - Google Patents

Partial oxidation reforming catalyst and partial oxidation reforming method Download PDF

Info

Publication number
JP4860226B2
JP4860226B2 JP2005290331A JP2005290331A JP4860226B2 JP 4860226 B2 JP4860226 B2 JP 4860226B2 JP 2005290331 A JP2005290331 A JP 2005290331A JP 2005290331 A JP2005290331 A JP 2005290331A JP 4860226 B2 JP4860226 B2 JP 4860226B2
Authority
JP
Japan
Prior art keywords
partial oxidation
oxidation reforming
mass
catalyst
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005290331A
Other languages
Japanese (ja)
Other versions
JP2007098250A (en
Inventor
行寛 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2005290331A priority Critical patent/JP4860226B2/en
Publication of JP2007098250A publication Critical patent/JP2007098250A/en
Application granted granted Critical
Publication of JP4860226B2 publication Critical patent/JP4860226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、炭化水素化合物類の部分酸化改質触媒、特に硫黄を含有する炭化水素化合物類を部分酸化改質反応によって一酸化炭素および水素を含む混合ガスに変換するのに好適に用いられる硫黄被毒耐性に優れた部分酸化改質触媒及び部分酸化改質方法に関する。   The present invention relates to a partial oxidation reforming catalyst for hydrocarbon compounds, in particular, sulfur suitably used for converting hydrocarbon compounds containing sulfur into a mixed gas containing carbon monoxide and hydrogen by a partial oxidation reforming reaction. The present invention relates to a partial oxidation reforming catalyst and a partial oxidation reforming method excellent in poisoning resistance.

炭化水素化合物類の部分酸化改質技術は、水素製造プロセスにおいて、触媒の存在下、炭化水素化合物類を空気などの酸素含有ガスにより部分的に酸化して水素含有ガスを製造する方法である。部分酸化改質触媒は硫黄によって活性が著しく低下することはよく知られており、硫黄による触媒劣化を防ぐことを目的として、例えば、原料中の硫黄濃度を極限にまで低下させる方法が提案されている(特許文献1)。しかしこの方法は高度の脱硫工程を必要とするためコストがかかるなどの欠点を有していた。
特開平2−302303号公報
The partial oxidation reforming technique for hydrocarbon compounds is a method for producing a hydrogen-containing gas by partially oxidizing a hydrocarbon compound with an oxygen-containing gas such as air in the presence of a catalyst in a hydrogen production process. It is well known that the activity of a partial oxidation reforming catalyst is significantly reduced by sulfur. For the purpose of preventing catalyst deterioration due to sulfur, for example, a method for reducing the sulfur concentration in the raw material to the limit has been proposed. (Patent Document 1). However, this method has drawbacks such as high cost because it requires a high degree of desulfurization process.
JP-A-2-302303

本発明の目的は、原料の炭化水素化合物類が硫黄を一定濃度以上含有する場合においても部分酸化改質反応の活性が低下しない部分酸化改質触媒を提供するものである。
また本発明の目的は、原料の炭化水素化合物類が硫黄を一定濃度以上含有する場合においても長期間の安定性を有する、炭化水素化合物類から一酸化炭素および水素を含む混合ガスを製造する部分酸化改質方法を提供するものである。
An object of the present invention is to provide a partial oxidation reforming catalyst in which the activity of the partial oxidation reforming reaction does not decrease even when the hydrocarbon compound as a raw material contains sulfur at a certain concentration or more.
Another object of the present invention is to produce a mixed gas containing carbon monoxide and hydrogen from hydrocarbon compounds that has long-term stability even when the hydrocarbon compounds as raw materials contain sulfur at a certain concentration or more. An oxidation reforming method is provided.

本発明者らは、炭化水素化合物類の部分酸化改質反応により一酸化炭素および水素を含む混合ガスを製造する場合において、原料の炭化水素化合物類が硫黄を一定濃度以上含有する場合においても長期間の安定性が確保できる方法を鋭意研究した結果、特定の部分酸化改質触媒を用いることにより、長期間の触媒活性の安定性が確保されることを見出し、本発明を完成させたものである。   In the case of producing a mixed gas containing carbon monoxide and hydrogen by a partial oxidation reforming reaction of hydrocarbon compounds, the present inventors are long even when the raw hydrocarbon compounds contain a certain concentration of sulfur or more. As a result of diligent research on a method that can ensure the stability of the period, it was found that the stability of the long-term catalytic activity was ensured by using a specific partial oxidation reforming catalyst, and the present invention was completed. is there.

すなわち、本発明は、ロジウムと、ロジウム以外の周期律表第VIII族金属より選ばれる少なくとも1種の金属とを、アルミナとジルコニアを含む担体に担持させてなる硫黄を含有する炭化水素化合物類の部分酸化改質触媒に関する。   That is, the present invention relates to hydrocarbon compounds containing sulfur in which rhodium and at least one metal selected from Group VIII metals other than rhodium are supported on a carrier containing alumina and zirconia. The present invention relates to a partial oxidation reforming catalyst.

また本発明は、前記ロジウム以外の周期律表第VIII族金属より選ばれる金属が白金あるいはパラジウムであることを特徴とする前記部分酸化改質触媒に関する。
また本発明は、前記触媒中におけるロジウムの含有量が、0.05〜20質量%であることを特徴とする前記部分酸化改質触媒に関する。
また本発明は、前記触媒中におけるロジウム以外の第VIII族金属より選ばれる金属の含有量が、ロジウムの含有量の0.01〜10重量倍であることを特徴とする前記部分酸化改質触媒に関する。
The present invention also relates to the partial oxidation reforming catalyst, wherein the metal selected from Group VIII metals of the periodic table other than rhodium is platinum or palladium.
The present invention also relates to the partial oxidation reforming catalyst, wherein the rhodium content in the catalyst is 0.05 to 20% by mass.
Further, in the present invention, the partial oxidation reforming catalyst is characterized in that the content of a metal selected from Group VIII metals other than rhodium in the catalyst is 0.01 to 10 times the rhodium content. About.

また本発明は、前記いずれかの部分酸化改質触媒を用いて、硫黄を含有する炭化水素化合物類、水蒸気および空気を含む原料混合物から、一酸化炭素および水素を含む混合ガスを製造することを特徴とする部分酸化改質方法に関する。
また本発明は、前記硫黄を含有する炭化水素化合物類の硫黄含有量が、10質量ppb〜50質量ppmであることを特徴とする前記部分酸化改質方法に関する。
Further, the present invention uses any one of the partial oxidation reforming catalysts to produce a mixed gas containing carbon monoxide and hydrogen from a raw material mixture containing hydrocarbon compounds containing sulfur, water vapor and air. The present invention relates to a characteristic partial oxidation reforming method.
The present invention also relates to the partial oxidation reforming method, wherein the sulfur content of the hydrocarbon compound containing sulfur is 10 mass ppb to 50 mass ppm.

以下、本発明を詳細に説明する。
本発明における部分酸化改質反応とは、炭化水素化合物類を触媒の存在下に水蒸気および空気などの酸素含有ガスと反応させて、一酸化炭素および水素を含むリフォーミングガスに変換する反応のことを言う。
Hereinafter, the present invention will be described in detail.
The partial oxidation reforming reaction in the present invention is a reaction in which hydrocarbon compounds are reacted with an oxygen-containing gas such as water vapor and air in the presence of a catalyst to convert to a reforming gas containing carbon monoxide and hydrogen. Say.

原料となる炭化水素化合物類は、炭素数1〜40、好ましくは炭素数1〜30の有機化合物である。具体的には、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、芳香族炭化水素などを挙げることができ、また飽和脂肪族炭化水素、不飽和脂肪族炭化水素については、鎖状、環状を問わず使用できる。芳香族炭化水素についても単環、多環を問わず使用できる。このような炭化水素化合物類は置換基を含むことができる。置換基としては、鎖状、環状のどちらをも使用でき、例として、アルキル基、シクロアルキル基、アリール基、アルキルアリール基およびアラルキル基等を挙げることができる。また、これらの炭化水素化合物類はヒドロキシ基、アルコキシ基、ヒドロキシカルボニル基、アルコキシカルボニル基、ホルミル基などのヘテロ原子を含有する置換基により置換されていても良い。   The hydrocarbon compounds used as a raw material are organic compounds having 1 to 40 carbon atoms, preferably 1 to 30 carbon atoms. Specific examples include saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, etc. In addition, saturated aliphatic hydrocarbons and unsaturated aliphatic hydrocarbons are linear or cyclic. Can be used regardless. Aromatic hydrocarbons can be used regardless of whether they are monocyclic or polycyclic. Such hydrocarbon compounds can contain substituents. As the substituent, either a chain or a ring can be used, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an alkylaryl group, and an aralkyl group. These hydrocarbon compounds may be substituted with a substituent containing a hetero atom such as a hydroxy group, an alkoxy group, a hydroxycarbonyl group, an alkoxycarbonyl group, or a formyl group.

本発明に使用できる炭化水素化合物類の具体例としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサンなどの飽和脂肪族炭化水素、エチレン、プロピレン、ブテン、ペンテン、ヘキセンなどの不飽和脂肪族炭化水素、シクロペンタン、シクロヘキサンなど環状炭化水素、ベンゼン、トルエン、キシレン、ナフタレンなどの芳香族炭化水素を挙げることができる。また、これらの混合物も好適に使用でき、例えば、天然ガス、LPG、ナフサ、ガソリン、灯油、軽油など工業的に安価に入手できる材料を挙げることができる。またヘテロ原子を含む置換基を有する炭化水素化合物類の具体例としては、メタノール、エタノール、プロパノール、ブタノール、ジメチルエーテル、フェノール、アニソール、アセトアルデヒド、酢酸などを挙げることができる。   Specific examples of hydrocarbon compounds that can be used in the present invention include methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane. , Saturated aliphatic hydrocarbons such as eicosan, unsaturated aliphatic hydrocarbons such as ethylene, propylene, butene, pentene and hexene, cyclic hydrocarbons such as cyclopentane and cyclohexane, aromatic hydrocarbons such as benzene, toluene, xylene and naphthalene Can be mentioned. Moreover, these mixtures can also be used suitably, For example, the material which can be obtained cheaply industrially, such as natural gas, LPG, naphtha, gasoline, kerosene, and light oil, can be mentioned. Specific examples of the hydrocarbon compound having a substituent containing a hetero atom include methanol, ethanol, propanol, butanol, dimethyl ether, phenol, anisole, acetaldehyde, acetic acid and the like.

また、上記原料に水素、水、二酸化炭素、一酸化炭素などを含む原料も使用できる。例えば、原料の前処理として水素化脱硫を実施する場合、反応に用いた水素の残留分は特に分離することなくそのまま使用することが出来る。   Moreover, the raw material which contains hydrogen, water, a carbon dioxide, carbon monoxide etc. in the said raw material can also be used. For example, when hydrodesulfurization is carried out as a pretreatment of the raw material, the hydrogen residue used in the reaction can be used as it is without separation.

本発明に使用する原料の炭化水素化合物類には一定濃度以上の硫黄が含まれる。その濃度は、硫黄量が単独の原子として気化するとして体積を換算した場合、好ましくは1容量ppb以上であり、より好ましくは5容量ppb以上、さらに好ましくは10容量ppb以上である。一方、質量基準では、硫黄原子の質量として、好ましくは10質量ppb以上、より好ましくは50質量ppb以上、さらに好ましくは100質量ppb以上である。一方、原料中の硫黄濃度が高すぎる場合、本発明の触媒であっても不活性化する場合があり、好ましくは50質量ppm以下、より好ましくは20質量ppm以下である。このため、必要であれば前もって原料を一定濃度以下に脱硫することも好ましく行うことができる。この場合、出発原料中の硫黄濃度には特に制限はなく、脱硫工程において上記硫黄濃度に転換できるものであれば使用することができる。   The raw material hydrocarbon compounds used in the present invention contain sulfur at a certain concentration or higher. The concentration is preferably 1 capacity ppb or more, more preferably 5 capacity ppb or more, and still more preferably 10 capacity ppb or more when the volume is converted assuming that the sulfur amount is vaporized as a single atom. On the other hand, on the mass basis, the mass of the sulfur atom is preferably 10 mass ppb or more, more preferably 50 mass ppb or more, and still more preferably 100 mass ppb or more. On the other hand, when the sulfur concentration in the raw material is too high, even the catalyst of the present invention may be deactivated, preferably 50 ppm by mass or less, more preferably 20 ppm by mass or less. For this reason, if necessary, desulfurization of the raw material to a certain concentration or less can be preferably performed in advance. In this case, there is no restriction | limiting in particular in the sulfur concentration in a starting material, If it can convert into the said sulfur concentration in a desulfurization process, it can be used.

脱硫の方法にも特に制限はないが、適当な触媒と水素の存在下に水素化脱硫を行い、生成した硫化水素を酸化亜鉛などに吸収させる方法を一例として挙げることができる。この場合用いることができる触媒の例としては、ニッケル−モリブデン、コバルト−モリブデンなどを成分とする触媒を挙げることができる。一方、適当な収着剤の存在下、必要であれば水素の共存下に硫黄分を収着させる方法も採用できる。この場合用いることができる収着剤としては、例えば、特許第2654515号公報、特許第2688749号公報などに示されたような銅−亜鉛を主成分とする収着剤あるいはニッケル−亜鉛を主成分とする収着剤などを例示することができる。
脱硫工程の実施方法についても特に制限はなく、部分酸化改質反応器の直前に設置した脱硫プロセスにより実施しても良いし、独立の脱硫プロセスにおいて処理を行っても良い。
Although there is no particular limitation on the desulfurization method, a method in which hydrodesulfurization is performed in the presence of an appropriate catalyst and hydrogen and the generated hydrogen sulfide is absorbed by zinc oxide or the like can be given as an example. Examples of the catalyst that can be used in this case include catalysts containing nickel-molybdenum, cobalt-molybdenum, and the like as components. On the other hand, a method of sorbing a sulfur component in the presence of an appropriate sorbent and, if necessary, coexisting with hydrogen can also be employed. Examples of the sorbent that can be used in this case include a sorbent mainly composed of copper-zinc or nickel-zinc as a main component as disclosed in Japanese Patent No. 2654515, Japanese Patent No. 2688749, and the like. And so on.
There is no restriction | limiting in particular also about the implementation method of a desulfurization process, You may implement by the desulfurization process installed immediately before the partial oxidation reforming reactor, and you may process in an independent desulfurization process.

本発明の部分酸化改質触媒は、ロジウムと、ロジウム以外の周期律表第VIII族金属より選ばれる少なくとも1種の金属とを、担体に担持させたものである。
ロジウム以外の周期律表第VIII族金属としては、具体的には、ルテニウム、パラジウム、イリジウム、オスミウム、イリジウム、白金などの貴金属、鉄、コバルト、ニッケル等が挙げられる。これらのうちでも白金またはパラジウムが好ましく、特にパラジウムが好ましい。
The partial oxidation reforming catalyst of the present invention is a catalyst in which rhodium and at least one metal selected from Group VIII metals of the periodic table other than rhodium are supported on a carrier.
Specific examples of Group VIII metals other than rhodium include noble metals such as ruthenium, palladium, iridium, osmium, iridium, and platinum, iron, cobalt, nickel, and the like. Among these, platinum or palladium is preferable, and palladium is particularly preferable.

本発明の触媒中におけるロジウムの含有量は、ロジウム原子として0.05〜20質量%であることが好ましく、より好ましくは0.1〜10質量%、さらに好ましくは0.3〜5質量%である。ロジウムの含有量が20質量%より多い場合、活性金属の凝集が多くなり表面に出る金属の割合が極度に減少するため好ましくなく、一方、ロジウムの含有量が0.05質量%より少ない場合には十分な活性を示すことが出来ないため多量の担持触媒が必要となり、反応器を必要以上に大きくする必要があるなどの問題が生じるため好ましくない。
また、ロジウム以外の第VIII族金属の含有量は、ロジウムの含有量の0.01〜10重量倍であることが好ましく、より好ましくは0.05〜5重量倍、さらに好ましくは0.1〜3重量倍の範囲である。
The rhodium content in the catalyst of the present invention is preferably 0.05 to 20% by mass as rhodium atoms, more preferably 0.1 to 10% by mass, and still more preferably 0.3 to 5% by mass. is there. When the rhodium content is more than 20% by mass, the active metal agglomeration increases and the proportion of the metal that appears on the surface is extremely reduced. On the other hand, when the rhodium content is less than 0.05% by mass. Is not preferable because a large amount of a supported catalyst is required because the catalyst cannot exhibit sufficient activity, and problems such as the need to enlarge the reactor more than necessary arise.
Further, the content of the Group VIII metal other than rhodium is preferably 0.01 to 10 times by weight of the rhodium content, more preferably 0.05 to 5 times by weight, still more preferably 0.1 to 0.1 times. The range is 3 times the weight.

担体としては、アルミナとジルコニアを含む担体が用いられる。担体中のアルミナおよびジルコニアの混合比率は適宜決定することができるが、担体中のアルミナの含有量は70質量%以上であることが好ましく、より好ましくは75質量%以上、さらに好ましくは80質量%以上である。
ジルコニアの重量はアルミナ重量に対し、好ましくは1〜30質量%、より好ましくは1.5〜25質量%、さらに好ましくは2〜20質量%の範囲である。これより少ない場合には触媒寿命の長期化などジルコニアに期待される効果が少なくなり、一方、これより多い場合には触媒表面積が小さくなる、などのため好ましくない。
As the carrier, a carrier containing alumina and zirconia is used. The mixing ratio of alumina and zirconia in the support can be appropriately determined, but the content of alumina in the support is preferably 70% by mass or more, more preferably 75% by mass or more, and further preferably 80% by mass. That's it.
The weight of zirconia is preferably 1 to 30% by mass, more preferably 1.5 to 25% by mass, and still more preferably 2 to 20% by mass with respect to the alumina weight. If it is less than this, the effects expected of zirconia, such as prolonging the catalyst life, will be reduced. On the other hand, if it is more than this, the surface area of the catalyst will be small, which is not preferable.

アルミナとジルコニア以外の成分として、リチウム、ナトリウム、カリウム、セシウムのようなアルカリ金属の酸化物、マグネシウム、カルシウム、ストロンチウム、バリウムのようなアルカリ土類金属の酸化物、スカンジウム、イットリウムのような周期律表第IIIA族金属の酸化物、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムなどの希土類金属の酸化物、チタン、ハフニウムなどの周期律表第IVA族金属の酸化物、珪素の酸化物、などの単元系酸化物や、これらの酸化物の2種類以上を任意の比率で混合した混合酸化物も使用できる。   Components other than alumina and zirconia include oxides of alkali metals such as lithium, sodium, potassium and cesium, oxides of alkaline earth metals such as magnesium, calcium, strontium and barium, and periodic rules such as scandium and yttrium. Table IIIA Group oxides of metals, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and other rare earth metal oxides, titanium, hafnium, etc. Unitary oxides such as Group IVA metal oxides and silicon oxides, and mixed oxides in which two or more of these oxides are mixed in any ratio can also be used.

活性金属の担持方法に関して特に制限はなく、通常の含浸法など公知の方法を採用できる。通常、活性金属の塩もしくは錯体として、水、エタノールもしくはアセトンなどの溶媒に溶解させ、担体に含浸させる。担持させる金属塩もしくは金属錯体は、塩化物、硝酸塩、硫酸塩、酢酸塩、アセト酢酸塩などが好適に用いられ、具体的には、塩化ルテニウム、ルテニウムアセチルアセトネート、塩化ロジウム、硝酸ロジウム、塩化パラジウム、塩化オスミウム、塩化イリジウム、塩化白金酸、硝酸コバルト、硝酸鉄、硝酸ニッケル、塩化コバルト、塩化鉄、塩化ニッケル、酢酸コバルト、酢酸鉄、酢酸ニッケル、コバルトアセチルアセトネート、鉄アセチルアセトネート、ニッケルアセチルアセトネートのような化合物を挙げることができるがこれらに限定されるものではない。   There is no restriction | limiting in particular regarding the loading method of an active metal, Well-known methods, such as a normal impregnation method, are employable. Usually, as a salt or complex of an active metal, it is dissolved in a solvent such as water, ethanol or acetone and impregnated on a carrier. As the metal salt or metal complex to be supported, chloride, nitrate, sulfate, acetate, acetoacetate, etc. are preferably used. Specifically, ruthenium chloride, ruthenium acetylacetonate, rhodium chloride, rhodium nitrate, chloride Palladium, osmium chloride, iridium chloride, chloroplatinic acid, cobalt nitrate, iron nitrate, nickel nitrate, cobalt chloride, iron chloride, nickel chloride, cobalt acetate, iron acetate, nickel acetate, cobalt acetylacetonate, iron acetylacetonate, nickel A compound such as acetylacetonate can be mentioned, but is not limited thereto.

用いる触媒の形態については特に制限はない。例えば、打錠成形し粉砕後適当な範囲に整粒した触媒、押し出し成形した触媒、適当なバインダーを加え押し出し成形した触媒、粉末状触媒などを用いることができる。もしくは、打錠成形し粉砕後適当な範囲に整粒した担体、押し出し成形した担体、粉末あるいは球形、リング状、タブレット状、円筒状、フレーク状など適当な形に成形した担体などに活性金属を担持した触媒などを用いることができる。 また、触媒自体をモノリス状、ハニカム状などに成形した触媒、あるいは適当な素材を用いたモノリスやハニカムなどに触媒をコーティングしたものなどを用いることができる。   There is no restriction | limiting in particular about the form of the catalyst to be used. For example, it is possible to use a catalyst formed by tableting and pulverized to an appropriate range, an extruded catalyst, an extruded catalyst added with an appropriate binder, a powdered catalyst, and the like. Alternatively, the active metal is applied to a carrier formed by tableting and pulverizing to an appropriate range after being pulverized, an extruded carrier, a powder or a carrier shaped into a spherical shape, ring shape, tablet shape, cylindrical shape, flake shape, etc. A supported catalyst or the like can be used. Further, a catalyst obtained by forming the catalyst itself into a monolith shape, a honeycomb shape, or the like, or a monolith using a suitable material, a honeycomb coated with a catalyst, or the like can be used.

本発明の部分酸化改質反応において、反応系に導入するスチームの量は、原料炭化水素化合物類に含まれる炭素原子モル数に対する水分子モル数の比(スチーム/カーボン比)として定義される値が、好ましくは0.3〜10、より好ましくは0.5〜5、さらに好ましくは1〜3の範囲であることが望ましい。この値が上記範囲より小さい場合には触媒上にコークが析出しやすく、また水素分率を上げることが出来なくなり、一方、大きい場合には改質反応は進むがスチーム発生設備、スチーム回収設備の肥大化を招く恐れがある。導入の方法は特に制限はないが、反応帯域に原料炭化水素化合物類と同時に導入しても良いし、反応器帯域の別々の位置からあるいは何回かに分けるなどして一部ずつ導入しても良い。   In the partial oxidation reforming reaction of the present invention, the amount of steam introduced into the reaction system is a value defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms contained in the raw material hydrocarbon compounds (steam / carbon ratio). Is preferably in the range of 0.3 to 10, more preferably 0.5 to 5, and still more preferably 1 to 3. If this value is smaller than the above range, coke is liable to deposit on the catalyst and the hydrogen fraction cannot be increased. On the other hand, if it is larger, the reforming reaction proceeds but the steam generation facility and steam recovery facility May cause enlargement. The introduction method is not particularly limited, but may be introduced into the reaction zone at the same time as the raw material hydrocarbon compounds, or may be introduced one by one from separate positions in the reactor zone or divided into several times. Also good.

反応系に導入される酸素の量は、原料炭化水素化合物類に含まれる炭素原子モル数に対する酸素分子モル数の比(酸素/カーボン比)として定義される値が、好ましくは0.1〜1、より好ましくは0.2〜0.8、さらに好ましくは0.3〜0.6の範囲であることが望ましい。この値が上記範囲より小さい場合には炭化水素が完全に一酸化炭素および水素を含む混合ガスに変換されない恐れがあり、一方、大きい場合には部分酸化反応は進むが水素分率を上げることができなくなる。   The amount of oxygen introduced into the reaction system is preferably a value defined as a ratio (oxygen / carbon ratio) of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the raw material hydrocarbon compounds. More preferably, it is in the range of 0.2 to 0.8, and more preferably 0.3 to 0.6. If this value is smaller than the above range, the hydrocarbon may not be completely converted to a mixed gas containing carbon monoxide and hydrogen. On the other hand, if it is larger, the partial oxidation reaction proceeds but the hydrogen fraction can be increased. become unable.

反応器に導入される流通原料(原料+水蒸気+空気)の空間速度(GHSV)は、好ましくは100〜100,000h−1、より好ましくは300〜50,000h−1、さらに好ましくは500〜30,000h−1の範囲において、それぞれの目的に鑑み設定される。
反応温度は特に限定されるものではないが、好ましくは200〜1000℃、より好ましくは300〜900℃、さらに好ましくは500〜800℃の範囲である。
反応圧力についても特に限定されるものではなく、好ましくは大気圧〜20MPa、より好ましくは大気圧〜5MPa、さらに好ましくは大気圧〜1MPaの範囲で実施されるが、必要であれば大気圧以下で実施することも可能である。
The space velocity of the flow material introduced into the reactor (raw material + steam + air) (GHSV) is preferably 100~100,000H -1, more preferably 300~50,000H -1, more preferably 500-30 In the range of 1,000 h −1 , it is set in view of the respective purposes.
Although reaction temperature is not specifically limited, Preferably it is 200-1000 degreeC, More preferably, it is 300-900 degreeC, More preferably, it is the range of 500-800 degreeC.
The reaction pressure is not particularly limited and is preferably carried out in the range of atmospheric pressure to 20 MPa, more preferably atmospheric pressure to 5 MPa, and further preferably atmospheric pressure to 1 MPa. It is also possible to implement.

部分酸化改質反応に用いる反応器の形態としては、固定床流通式反応器が好ましく用いられる。反応器の形状としては、円筒状、平板状などそれぞれのプロセスの目的に応じた公知のいかなる形状を取ることができる。なお、流動床反応器を用いることも可能である。   As a form of the reactor used for the partial oxidation reforming reaction, a fixed bed flow type reactor is preferably used. The shape of the reactor may be any known shape depending on the purpose of each process, such as a cylindrical shape or a flat plate shape. A fluidized bed reactor can also be used.

本発明の部分酸化改質触媒を用いて部分酸化改質を行うことにより、硫黄を含有する炭化水素化合物類を部分酸化改質反応によって水素及び一酸化炭素を含む混合ガスに変換する際に、従来問題視されていた硫黄被毒安定性が改善されるため、安定な反応系を提供する事が出来る。これによって、水素及び一酸化炭素を含む混合ガスの安定した製造を達成することができ、硫黄を含有する炭化水素化合物類を燃料電池用燃料あるいはその原料として使用することができる。   When partial oxidation reforming is performed using the partial oxidation reforming catalyst of the present invention, hydrocarbon compounds containing sulfur are converted into a mixed gas containing hydrogen and carbon monoxide by a partial oxidation reforming reaction. Since the sulfur poisoning stability, which has been regarded as a problem in the past, is improved, a stable reaction system can be provided. As a result, stable production of a mixed gas containing hydrogen and carbon monoxide can be achieved, and hydrocarbon compounds containing sulfur can be used as fuel for fuel cells or a raw material thereof.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

[担体の調製]
(1)表面積165g/cmのγアルミナ成型体を担体1とする。
(2)表面積165g/cmのγアルミナ成型体に、担持ZrO量が12質量%になるように5Mの硝酸ジルコニウム水溶液を用いてincipient wetness法で担持し、120℃で12時間乾燥後、800℃で3時間空気焼成し、これを担体2とする。
[Preparation of carrier]
(1) A carrier 1 is a γ-alumina molded body having a surface area of 165 g / cm 2 .
(2) A γ-alumina molded body having a surface area of 165 g / cm 2 was supported by an incipient wetness method using a 5M zirconium nitrate aqueous solution so that the amount of supported ZrO 2 was 12% by mass, and dried at 120 ° C. for 12 hours. Air calcination at 800 ° C. for 3 hours is used as carrier 2.

[触媒の調製]
(A)上記担体1に、ロジウム金属としての担持量が2質量%になるように1Mの塩化ロジウム水溶液を用いてincipient wetness法で担持し、120℃で12時間乾燥後、800℃で3時間空気焼成し、触媒Aとする。
(B)上記担体1に、白金金属としての担持量が2質量%になるように1Mの塩化白金水溶液を用いてincipient wetness法で担持し、120℃で12時間乾燥後、800℃で3時間空気焼成し、触媒Bとする。
(C)上記担体2に、ロジウム金属としての担持量が2質量%になるように1Mの塩化ロジウム水溶液を用いてincipient wetness法で担持し、120℃で12時間乾燥後、800℃で3時間空気焼成し、触媒Cとする。
[Preparation of catalyst]
(A) The carrier 1 is supported by an incipient wetness method using a 1M aqueous rhodium chloride solution so that the supported amount as rhodium metal is 2% by mass, dried at 120 ° C. for 12 hours, and then at 800 ° C. for 3 hours. Air calcination is performed to obtain catalyst A.
(B) The carrier 1 is supported by an incipient wetness method using a 1M platinum chloride aqueous solution so that the supported amount as platinum metal is 2% by mass, dried at 120 ° C. for 12 hours, and then at 800 ° C. for 3 hours. Air calcination is performed to obtain catalyst B.
(C) The carrier 2 was supported by an incipient wetness method using a 1M aqueous rhodium chloride solution so that the supported amount as rhodium metal was 2% by mass, dried at 120 ° C. for 12 hours, and then at 800 ° C. for 3 hours. Air calcination is performed to obtain catalyst C.

(D)上記担体1に、ロジウム金属としての担持量が2質量%になるように計量した1Mの塩化ロジウム水溶液に、白金金属としての担持量が0.2質量%になるように1Mの塩化白金水溶液を加えた溶液を用いてincipient wetness法で活性金属を担持し、120℃で12時間乾燥後、800℃で3時間空気焼成し、触媒Dとする。
(E)上記担体1に、ロジウム金属としての担持量が2質量%になるように計量した1Mの塩化ロジウム水溶液に、パラジウム金属としての担持量が0.2質量%になるように1Mの硝酸パラジウム水溶液を加えた溶液を用いてincipient wetness法で活性金属を担持し、120℃で12時間乾燥後、800℃で3時間空気焼成し、触媒Eとする。
(D) A 1M aqueous solution of rhodium chloride weighed so that the supported amount as rhodium metal is 2% by mass on the carrier 1, and 1M chloride is added so that the supported amount as platinum metal is 0.2% by mass. An active metal is supported by an incipient wetness method using a solution to which an aqueous platinum solution is added, dried at 120 ° C. for 12 hours, and then air calcined at 800 ° C. for 3 hours to obtain catalyst D.
(E) 1M nitric acid so that the support amount as palladium metal becomes 0.2% by mass in the 1M rhodium chloride aqueous solution weighed so that the support amount as rhodium metal becomes 2% by mass on the carrier 1; An active metal is supported by an incipient wetness method using a solution to which an aqueous palladium solution is added, dried at 120 ° C. for 12 hours, and then air calcined at 800 ° C. for 3 hours to obtain catalyst E.

(F)上記担体2に、ロジウム金属としての担持量が2質量%になるように計量した1Mの塩化ロジウム水溶液に、白金金属としての担持量が0.2質量%になるように1Mの塩化白金水溶液を加えた溶液を用いてincipient wetness法で活性金属を担持し、120℃で12時間乾燥後、800℃で3時間空気焼成し、触媒Fとする。
(G)上記担体2に、ロジウム金属としての担持量が2質量%になるように計量した1Mの塩化ロジウム水溶液に、パラジウム金属としての担持量が0.2質量%になるように1Mの硝酸パラジウム水溶液を加えた溶液を用いてincipient wetness法で活性金属を担持し、120℃で12時間乾燥後、800℃で3時間空気焼成し、触媒Gとする。
(F) A 1M rhodium chloride solution weighed so that the supported amount as rhodium metal is 2% by mass on the carrier 2, and 1M chloride is added so that the supported amount as platinum metal is 0.2% by mass. An active metal is supported by an incipient wetness method using a solution to which an aqueous platinum solution is added, dried at 120 ° C. for 12 hours, and then air calcined at 800 ° C. for 3 hours to obtain catalyst F.
(G) A 1M aqueous solution of rhodium chloride weighed so that the supported amount as rhodium metal is 2% by mass on the carrier 2, and 1M nitric acid so that the supported amount as palladium metal is 0.2% by mass. An active metal is supported by an incipient wetness method using a solution to which an aqueous palladium solution is added, dried at 120 ° C. for 12 hours, and then air calcined at 800 ° C. for 3 hours to obtain catalyst G.

[比較例1]
触媒A20cmを固定床流通式反応器に充填し、一号灯油(硫黄分:硫黄原子として49質量ppm)とスチームと空気の混合ガスを原料として、GHSVが12000h−1、反応温度700℃の条件下に部分酸化改質反応を行った。反応条件を表1に示す。
[Comparative Example 1]
Catalyst A 20 cm 3 is charged into a fixed bed flow reactor, and a mixed gas of No. 1 kerosene (sulfur content: 49 mass ppm as sulfur atom) and steam and air is used as a raw material, GHSV is 12000 h −1 , reaction temperature is 700 ° C. A partial oxidation reforming reaction was performed under the conditions. The reaction conditions are shown in Table 1.

[比較例2〜5]
触媒Aの代わりに触媒B〜Eを用いた以外は比較例1と同様に反応を行った。
[Comparative Examples 2 to 5]
The reaction was performed in the same manner as in Comparative Example 1 except that the catalysts B to E were used instead of the catalyst A.

[実施例1〜2]
触媒Aの代わりに触媒F〜Gを用いた以外は比較例1と同様に反応を行った。
[Examples 1-2]
The reaction was performed in the same manner as in Comparative Example 1 except that the catalysts FG were used instead of the catalyst A.

[比較例6]
比較例1において、一号灯油(硫黄分:硫黄原子として49質量ppm)の代わりに一号灯油(硫黄分:硫黄原子として12質量ppm)を用いた以外は比較例1と同様にして部分酸化改質反応を行った。
[Comparative Example 6]
In Comparative Example 1, partial oxidation was performed in the same manner as Comparative Example 1 except that No. 1 kerosene (sulfur content: 12 mass ppm as sulfur atom) was used instead of No. 1 kerosene (sulfur content: 49 mass ppm as sulfur atom). A reforming reaction was performed.

[比較例7〜10]
触媒Aの代わりに触媒B〜Eを用いた以外は比較例6と同様に反応を行った。
[Comparative Examples 7 to 10]
The reaction was performed in the same manner as in Comparative Example 6 except that the catalysts B to E were used instead of the catalyst A.

[実施例3〜4]
触媒Aの代わりに触媒F〜Gを用いた以外は比較例6と同様に反応を行った。
[Examples 3 to 4]
The reaction was performed in the same manner as in Comparative Example 6 except that the catalysts F to G were used instead of the catalyst A.

触媒A、B、C、D、E、F及びGを用いた反応の経時劣化に関して、反応時間5時間後の転化率/反応時間30分後の転化率×100(劣化指数)で整理した結果を表2および表3に示す。ここで、転化率とは、(CO+CO+CHの炭素原子数)/(原料中の炭化水素の炭素原子数)×100で示される値である。 Results of the degradation over time of the reactions using the catalysts A, B, C, D, E, F and G, organized by conversion rate after 5 hours / conversion rate after 30 minutes × 100 (degradation index) Are shown in Table 2 and Table 3. Here, the conversion rate is a value represented by (CO + CO 2 + CH 4 carbon atoms) / (number of hydrocarbon carbon atoms in the raw material) × 100.

表2および表3から明らかなように、ロジウムに加え白金もしくはパラジウムをアルミナとジルコニウムを含む担体に担持することにより、劣化指数(反応時間5時間後の転化率/反応時間30分後の転化率)の値が大きくなっていることから、硫黄被毒による劣化が緩和されていることが分かる。   As is apparent from Tables 2 and 3, the deterioration index (conversion rate after 5 hours reaction time / conversion rate after 30 minutes reaction time) is obtained by supporting platinum or palladium in addition to rhodium on a support containing alumina and zirconium. ) Is large, it can be seen that the deterioration due to sulfur poisoning is alleviated.

Figure 0004860226
Figure 0004860226
Figure 0004860226
Figure 0004860226
Figure 0004860226
Figure 0004860226

Claims (6)

ロジウムと、白金あるいはパラジウムとを、アルミナとジルコニアからなる担体に担持させてなる硫黄を含有する炭化水素化合物類の部分酸化改質触媒。 Rhodium, platinum or palladium and the alumina and made of zirconia supported on a carrier containing sulfur comprising hydrocarbon compounds partial oxidation reforming catalyst. 担体中のアルミナとジルコニアの混合比率は、アルミナが70〜99質量%、ジルコニアが1〜30質量%であることを特徴とする請求項1記載の部分酸化改質触媒。The partial oxidation reforming catalyst according to claim 1, wherein the mixing ratio of alumina and zirconia in the support is 70 to 99 mass% for alumina and 1 to 30 mass% for zirconia. 触媒中におけるロジウムの含有量が、ロジウム原子として0.05〜20質量%であることを特徴とする請求項1記載の部分酸化改質触媒。   The partial oxidation reforming catalyst according to claim 1, wherein the rhodium content in the catalyst is 0.05 to 20% by mass as rhodium atoms. 触媒中における白金あるいはパラジウムの含有量が、ロジウムの含有量の0.01〜10重量倍であることを特徴とする請求項1記載の部分酸化改質触媒。 2. The partial oxidation reforming catalyst according to claim 1, wherein the content of platinum or palladium in the catalyst is 0.01 to 10 times the content of rhodium. 請求項1〜4のいずれかの項に記載の部分酸化改質触媒を用いて、硫黄を含有する炭化水素化合物類、水蒸気および空気を含む原料混合物から、一酸化炭素および水素を含む混合ガスを製造することを特徴とする部分酸化改質方法。   Using the partial oxidation reforming catalyst according to any one of claims 1 to 4, a mixed gas containing carbon monoxide and hydrogen is produced from a raw material mixture containing hydrocarbon compounds containing sulfur, steam and air. A partial oxidation reforming method characterized by manufacturing. 硫黄を含有する炭化水素化合物類の硫黄含有量が、硫黄原子として10質量ppb〜50質量ppmであることを特徴とする請求項5記載の部分酸化改質方法。   The partial oxidation reforming method according to claim 5, wherein the sulfur content of the hydrocarbon compound containing sulfur is 10 mass ppb to 50 mass ppm as a sulfur atom.
JP2005290331A 2005-10-03 2005-10-03 Partial oxidation reforming catalyst and partial oxidation reforming method Expired - Fee Related JP4860226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290331A JP4860226B2 (en) 2005-10-03 2005-10-03 Partial oxidation reforming catalyst and partial oxidation reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290331A JP4860226B2 (en) 2005-10-03 2005-10-03 Partial oxidation reforming catalyst and partial oxidation reforming method

Publications (2)

Publication Number Publication Date
JP2007098250A JP2007098250A (en) 2007-04-19
JP4860226B2 true JP4860226B2 (en) 2012-01-25

Family

ID=38025714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290331A Expired - Fee Related JP4860226B2 (en) 2005-10-03 2005-10-03 Partial oxidation reforming catalyst and partial oxidation reforming method

Country Status (1)

Country Link
JP (1) JP4860226B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012047864A1 (en) * 2010-10-05 2012-04-12 Pacific Industrial Development Corporation Sulfur-resistant catalyst support material
JP5827477B2 (en) * 2011-03-10 2015-12-02 株式会社エフ・シー・シー Catalyst production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168924A (en) * 1991-08-30 1993-07-02 Tonen Corp Steam reforming catalyst
US6436363B1 (en) * 2000-08-31 2002-08-20 Engelhard Corporation Process for generating hydrogen-rich gas
JP2002121006A (en) * 2000-10-12 2002-04-23 Matsushita Electric Ind Co Ltd Reforming catalyst and hydrogen generating device
JP2003103171A (en) * 2001-09-28 2003-04-08 Nippon Oil Corp Catalyst and method for auto thermal reforming, hydrogen producing device and fuel cell system
JP4875295B2 (en) * 2003-10-29 2012-02-15 株式会社日本触媒 Reforming catalyst for partial oxidation and reforming method
WO2005079978A1 (en) * 2004-02-19 2005-09-01 Idemitsu Kosan Co., Ltd. Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system

Also Published As

Publication number Publication date
JP2007098250A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5072841B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
CN103170335A (en) Effective carbon dioxide conversion catalyst and preparing method thereof
JP5378148B2 (en) Reforming catalyst, reformer, and hydrogen production device
JP5788348B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
JP5593106B2 (en) Hydrogen production method, hydrogen production apparatus and fuel cell system
JP4783240B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP4227779B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
JP4860226B2 (en) Partial oxidation reforming catalyst and partial oxidation reforming method
JP5603120B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
KR102186058B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
JP5759922B2 (en) Method for producing hydrogen
JP4942718B2 (en) Autothermal reforming catalyst
KR102186052B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
JP2009034659A (en) Catalyst for synthesizing hydrocarbons, method for manufacturing the same and method for producing hydrocarbons by using the same
JP5462685B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
KR101392996B1 (en) Preparation of Hydrogen Gas by Steam Reforming Reaction of Ethanol with Gel Catalyst with Medium Porous Nickel-Alumina-Zirconia Control
JP5107046B2 (en) Hydrocarbon steam reforming catalyst
JP5788352B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
JP5409484B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
WO2018092819A1 (en) Steam reforming catalyst
JP5351089B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
US11358128B2 (en) High activity reforming catalyst formulation and process for low temperature steam reforming of hydrocarbons to produce hydrogen
KR101795477B1 (en) A mesoporous nickel-copper-alumina-zirconia xerogel catalyst prepared by a single-step sol-gel method, preparation method thereof and production method of hydrogen gas by steam reforming of ethanol using said catalyst
JP2003103171A (en) Catalyst and method for auto thermal reforming, hydrogen producing device and fuel cell system
JP2003104704A (en) Method and apparatus for autothermal reforming, apparatus for producing hydrogen and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees