JP4851699B2 - Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same - Google Patents
Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same Download PDFInfo
- Publication number
- JP4851699B2 JP4851699B2 JP2004288793A JP2004288793A JP4851699B2 JP 4851699 B2 JP4851699 B2 JP 4851699B2 JP 2004288793 A JP2004288793 A JP 2004288793A JP 2004288793 A JP2004288793 A JP 2004288793A JP 4851699 B2 JP4851699 B2 JP 4851699B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- electrode active
- aqueous electrolyte
- electrochemical cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 47
- 239000006183 anode active material Substances 0.000 title claims 2
- 239000007773 negative electrode material Substances 0.000 claims description 105
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 104
- 239000011572 manganese Substances 0.000 claims description 71
- 229910052759 nickel Inorganic materials 0.000 claims description 39
- 229910052748 manganese Inorganic materials 0.000 claims description 37
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 25
- 238000002441 X-ray diffraction Methods 0.000 claims description 9
- 210000004027 cell Anatomy 0.000 description 31
- 229910052744 lithium Inorganic materials 0.000 description 25
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 229910000314 transition metal oxide Inorganic materials 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- -1 lithium transition metal Chemical class 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000000975 co-precipitation Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 230000002427 irreversible effect Effects 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- PMQJYWORJJEMQC-UHFFFAOYSA-N manganese;dihydrate Chemical compound O.O.[Mn] PMQJYWORJJEMQC-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910000480 nickel oxide Inorganic materials 0.000 description 6
- AIBQNUOBCRIENU-UHFFFAOYSA-N nickel;dihydrate Chemical compound O.O.[Ni] AIBQNUOBCRIENU-UHFFFAOYSA-N 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 229910000428 cobalt oxide Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910000733 Li alloy Inorganic materials 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000002848 electrochemical method Methods 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000001989 lithium alloy Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000003701 mechanical milling Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910003174 MnOOH Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 description 1
- BLYYANNQIHKJMU-UHFFFAOYSA-N manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Ni++] BLYYANNQIHKJMU-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010303 mechanochemical reaction Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000005385 peroxodisulfate group Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は非水電解質電気化学セル用負極活物質およびそれを用いた非水電解質電気化学セルに関するものである。 The present invention relates to a negative electrode active material for a non-aqueous electrolyte electrochemical cell and a non-aqueous electrolyte electrochemical cell using the same.
近年、携帯電話、ビデオカメラ等のポータブル電子機器の発展に伴い、高性能の電池の開発が望まれている。各種電池の中では、正極にリチウム遷移金属複合酸化物、負極に黒鉛や非晶質炭素を用いた、作動電圧が高く、エネルギー密度が高いリチウムイオン電池をはじめとする非水電解質二次電池が広く実用化されている。 In recent years, with the development of portable electronic devices such as mobile phones and video cameras, development of high-performance batteries is desired. Among the various types of batteries, non-aqueous electrolyte secondary batteries such as lithium ion batteries with high operating voltage and high energy density using lithium transition metal composite oxide for the positive electrode and graphite or amorphous carbon for the negative electrode are used. Widely used.
また、非水電解質二次電池の負極活物質として、炭素材料よりも大きい理論容量を持つ金属リチウムやリチウム合金を用いる研究が行われている。しかしながら、金属リチウムやリチウム合金は、充放電に伴いデンドライトが生成するため、充放電サイクル寿命および安全性の面で多くの問題点を有しているため、これらを負極活物質に用いた非水電解質二次電池はいまだ商品化されていない。 In addition, research has been conducted on the use of metallic lithium or lithium alloys having a theoretical capacity larger than that of carbon materials as a negative electrode active material for nonaqueous electrolyte secondary batteries. However, since metal dendrites and lithium alloys generate dendrites as they are charged and discharged, they have many problems in terms of charge / discharge cycle life and safety. Electrolyte secondary batteries have not yet been commercialized.
一方、遷移金属の酸化物は、従来から非水電解質二次電池の正極活物質として使用されているが、最近では負極活物質にも使用できることが報告されている。例えば、特許文献1には、FeO、Fe2O3、Fe3O4などの酸化鉄や、CoO、Co2O3、Co3O4などの酸化コバルトを負極活物質として用いる技術が開示されている。また、特許文献2には、非水電解質二次電池の負極活物質に、リチウムを含有するまたはリチウムを含有しない、種々の遷移金属の酸化物、例えばLixMqV1‐qOj(ただし、Mは遷移金属、0.17≦x≦11.25、0≦q≦0.7、1.3≦j≦4.1)で表されるリチウム含有遷移金属酸化物を用いる技術が開示されている。さらに、特許文献3には、非水電解質二次電池の負極活物質に遷移金属酸化物を用いた場合の、粒径や焼成条件および電気化学的にリチウムイオンを挿入する技術が公開されている。 On the other hand, transition metal oxides have been conventionally used as positive electrode active materials for non-aqueous electrolyte secondary batteries, but recently, it has been reported that they can also be used as negative electrode active materials. For example, Patent Document 1 discloses a technique using iron oxide such as FeO, Fe 2 O 3 , and Fe 3 O 4 and cobalt oxide such as CoO, Co 2 O 3 , and Co 3 O 4 as a negative electrode active material. ing. Further, Patent Document 2 discloses various transition metal oxides containing lithium or not containing lithium, such as Li x M q V 1 -q O j (non lithium electrolyte secondary battery). M is a transition metal, and a technique using a lithium-containing transition metal oxide represented by 0.17 ≦ x ≦ 11.25, 0 ≦ q ≦ 0.7, 1.3 ≦ j ≦ 4.1) is disclosed. Has been. Furthermore, Patent Document 3 discloses a technique for inserting lithium ions electrochemically when the transition metal oxide is used as the negative electrode active material of the nonaqueous electrolyte secondary battery. .
また、非特許文献1には、CoO、Co3O4、NiO、FeOおよびCu2O等の遷移金属酸化物の、非水電解質二次電池の負極活物質としての特性や反応メカニズムが開示されている。これらの酸化物は700mAh/g以上の放電容量を示し、充電に伴ってLi2Oやナノサイズの遷移金属が生成することが確認された。これらの遷移金属酸化物の中では、コバルト酸化物の充放電サイクル性能が良好であることが報告されている。 Non-Patent Document 1 discloses characteristics and reaction mechanisms of transition metal oxides such as CoO, Co 3 O 4 , NiO, FeO, and Cu 2 O as a negative electrode active material of a non-aqueous electrolyte secondary battery. ing. These oxides showed a discharge capacity of 700 mAh / g or more, and it was confirmed that Li 2 O and nano-sized transition metals were generated with charging. Among these transition metal oxides, cobalt oxide is reported to have good charge / discharge cycle performance.
非特許文献2では、メカニカルミリング法でリチウム含有遷移金属酸化物および硫化物を作製する技術が開示されており、得られた混合物の最大初期放電容量は600mAh/g以上であるが、充放電サイクル性能は劣ることが報告されている。非特許文献3には、、非水電解質二次電池の負極活物質としてリチウム含有ニッケル、コバルト、マンガン三元系遷移金属酸化物が報告され、これらの遷移金属酸化物は約700mAh/gの放電容量を示している。非特許文献4には、600℃で焼成したNi0.75Mn0.25O1.36岩塩系酸化物負極活物質が報告され、この酸化物が約700mAh/gの放電容量を示すことが報告されている。 Non-Patent Document 2 discloses a technique for producing lithium-containing transition metal oxides and sulfides by a mechanical milling method, and the maximum initial discharge capacity of the obtained mixture is 600 mAh / g or more. Inferior performance has been reported. Non-Patent Document 3 reports lithium-containing nickel, cobalt, and manganese ternary transition metal oxides as negative electrode active materials for nonaqueous electrolyte secondary batteries, and these transition metal oxides have a discharge of about 700 mAh / g. Indicates capacity. Non-Patent Document 4 reports a Ni 0.75 Mn 0.25 O 1.36 rock salt-based oxide negative electrode active material fired at 600 ° C., indicating that this oxide exhibits a discharge capacity of about 700 mAh / g. It has been reported.
上記の従来技術や報告によれば、非水電解質二次電池の負極活物質としては、コバルト酸化物(CoO)が優れた充放電サイクル性能を示すが、放電電位(vs.Li/Li+)が貴であるため高エネルギー密度電池とすることは困難であり、しかもコバルトの資源問題が存在するため、安価な負極活物質としての理想的な候補とはなりえない。 According to the above prior art and reports, cobalt oxide (CoO) exhibits excellent charge / discharge cycle performance as a negative electrode active material of a non-aqueous electrolyte secondary battery, but discharge potential (vs. Li / Li + ). Therefore, it is difficult to obtain a high energy density battery, and since there is a problem of cobalt resources, it cannot be an ideal candidate for an inexpensive negative electrode active material.
一方、酸化ニッケル(NiO)の充放電挙動はCoOと似ており、コバルトよりも安価であるが、充放電サイクル性能が劣るという問題があった。なお、マンガン酸化物を非水電解質二次電池の負極活物質に用いる報告は開示されていない。 On the other hand, the charge / discharge behavior of nickel oxide (NiO) is similar to that of CoO and is cheaper than cobalt, but there is a problem that the charge / discharge cycle performance is inferior. In addition, the report which uses a manganese oxide for the negative electrode active material of a nonaqueous electrolyte secondary battery is not disclosed.
そこで、本発明は、放電電位(vs.Li/Li+)が卑で、コストおよび充放電サイクル性能に優れた、非水電解質電気化学セル用負極活物質およびそれを用いた非水電解質電気化学セルを提供することを目的としている。 Therefore, the present invention provides a negative electrode active material for a non-aqueous electrolyte electrochemical cell having a low discharge potential (vs. Li / Li + ), excellent cost and charge / discharge cycle performance, and non-aqueous electrolyte electrochemical using the same. The purpose is to provide a cell.
請求項1の発明は、非水電解質電気化学セル用負極活物質として、一般式NixMnyOz(ただし、0.45≦x≦0.55、0.9≦x+y≦1.1、1.0≦z≦2.0)で表されるニッケルとマンガンを含む酸化物を用いることをことを特徴とする。(ただし、x/(x+y)=0.5であるものを除く。) The invention according to claim 1 is a general formula Ni x Mn y O z (where 0.45 ≦ x ≦ 0.55, 0.9 ≦ x + y ≦ 1.1, An oxide containing nickel and manganese represented by 1.0 ≦ z ≦ 2.0) is used. (However, the case where x / (x + y) = 0.5 is excluded.)
請求項2の発明は、上記非水電解質電気化学セル用負極活物質において、CuKα線を用いたX線回折法で、15°<2θ<20°および30°<2θ<45°に現れる回折ピ−クの半値幅が5°(2θ)以上であることを特徴とする。 According to a second aspect of the present invention, in the negative electrode active material for a non-aqueous electrolyte electrochemical cell, a diffraction peak appearing at 15 ° <2θ <20 ° and 30 ° <2θ <45 ° by X-ray diffraction using CuKα rays. -The half width of the square is 5 ° (2θ) or more.
請求項4の発明は、非水電解質電気化学セルに、請求項1〜3のいずれかに記載の負極活物質を用いたことを特徴とする。
The invention of claim 4 is characterized in that the negative electrode active material according to any one of claims 1 to 3 is used in a non-aqueous electrolyte electrochemical cell.
本発明の非水電解質電気化学セル用負極活物質は、資源が豊富でかつ低毒性なニッケルとマンガンを含む酸化物を用いることにより、安価で放電電位(vs.Li/Li+)が卑なニッケルとマンガンが原子レベルで混在する酸化物を得ることができる。 The negative electrode active material for a non-aqueous electrolyte electrochemical cell of the present invention is inexpensive and has a low discharge potential (vs. Li / Li + ) by using a resource-rich and low-toxic oxide containing nickel and manganese. An oxide in which nickel and manganese are mixed at the atomic level can be obtained.
また、本発明のニッケルとマンガンを含む酸化物を非水電解質電気化学セルの負極活物質に用いることにより、高エネルギー密度で、充放電サイクル性能に優れた非水電解質電気化学セルを得ることができる。 In addition, by using the oxide containing nickel and manganese of the present invention as the negative electrode active material of a non-aqueous electrolyte electrochemical cell, it is possible to obtain a non-aqueous electrolyte electrochemical cell with high energy density and excellent charge / discharge cycle performance. it can.
本発明は、非水電解質電気化学セル用負極活物質およびこの負極活物質を用いた非水電解質電気化学セルに関するものである。なお、本発明において「非水電解質電気化学セル」とは、非水電解質二次電池、電気化学キャパシタなどを意味するものとする。 The present invention relates to a negative electrode active material for a non-aqueous electrolyte electrochemical cell and a non-aqueous electrolyte electrochemical cell using the negative electrode active material. In the present invention, the “nonaqueous electrolyte electrochemical cell” means a nonaqueous electrolyte secondary battery, an electrochemical capacitor, or the like.
本発明者は、非水電解質電気化学セル用負極活物質として遷移金属酸化物に着目し、その中で、ニッケルとマンガンを含む酸化物が、放電電位が卑で、連続した放電電位を示し、優れた充放電サイクル性能を有していることを見出した。 The present inventors focused on transition metal oxides as negative electrode active materials for non-aqueous electrolyte electrochemical cells, in which an oxide containing nickel and manganese has a low discharge potential and a continuous discharge potential, It has been found that it has excellent charge / discharge cycle performance.
すなわち、本発明の非水電解質電気化学セル用負極活物質は、一般式NixMnyOz(ただし、0.45≦x≦0.55、0.9≦x+y≦1.1、1.0≦z≦2.0)で表されるニッケルとマンガンを含む酸化物である。 That is, the negative electrode active material for a non-aqueous electrolyte electrochemical cell of the present invention has a general formula Ni x Mn y O z (where 0.45 ≦ x ≦ 0.55, 0.9 ≦ x + y ≦ 1.1, 1. 0 ≦ z ≦ 2.0), which is an oxide containing nickel and manganese.
xの値が0.45よりも小さい場合には、マンガンの含有量が多くなって、充放電サイクル特性が劣るようになり、0.55よりも大きい場合には、ニッケルの含有量が多くなって、放電電位が貴となり、電池に用いた場合に放電電圧が低くなり、高エネルギー密度電池が得られず、また、コストが高くなる。 When the value of x is smaller than 0.45, the manganese content increases and the charge / discharge cycle characteristics become inferior. When the value of x is larger than 0.55, the nickel content increases. Thus, the discharge potential becomes noble, and when used in a battery, the discharge voltage becomes low, a high energy density battery cannot be obtained, and the cost increases.
(x+y)の値は、通常1.0に近い値であるが、1.0からずれて0.9〜1.1の間の値になった場合でも得られる特性は同じである。ただし、x+yの値がこの範囲を外れると、結晶構造が変化し、目的の特性が得られなくなる。 The value of (x + y) is usually a value close to 1.0, but the characteristics obtained are the same even when the value deviates from 1.0 and becomes a value between 0.9 and 1.1. However, if the value of x + y is out of this range, the crystal structure changes and the desired characteristics cannot be obtained.
zの値は、通常は1.5に近い値をとるが、酸素含有量はこれよりもやや少なくても、あるいはやや過剰でも、1.0≦z≦2.0の範囲であれば、得られる特性は同じである。zの値がこの範囲を外れると、結晶構造が変化し、充放電サイクル特性が劣るようになる。なお、zの値は加熱処理条件によって決まるが、厳密にコントロールすることは困難である。 The value of z usually takes a value close to 1.5. However, even if the oxygen content is slightly less than this or slightly more than this, if the range of 1.0 ≦ z ≦ 2.0 is obtained. The properties obtained are the same. When the value of z is out of this range, the crystal structure changes and the charge / discharge cycle characteristics become inferior. The value of z is determined by the heat treatment conditions, but it is difficult to strictly control.
本発明の非水電解質電気化学セル用負極活物質を製造する場合、ニッケル源としてはNiO、Ni(OH)2、NiOOHなどの化合物、マンガン源としてはMn(OH)2、MnO、MnO2、Mn2O3、Mn3O4、MnOOHなどの化合物を用いることができる。 When producing the negative electrode active material for a non-aqueous electrolyte electrochemical cell of the present invention, the nickel source is a compound such as NiO, Ni (OH) 2 , NiOOH, the manganese source is Mn (OH) 2 , MnO, MnO 2 , A compound such as Mn 2 O 3 , Mn 3 O 4 , or MnOOH can be used.
なお、本発明の非水電解質電気化学セル用負極活物質には、NiとMn以外に、Co、Ti、Fe、Zn、V、Cuなどの3d遷移金属やAl、Na、Mgなどの元素を含んでいてもよい。さらに、上記物質にN、P、F、Cl、Br、I、Sなどの典型非金属元素を含んでもよい。また、これらの遷移金属酸化物には、さらにLi含有しても良い。 In addition to the Ni and Mn, the negative electrode active material for the non-aqueous electrolyte electrochemical cell of the present invention includes 3d transition metals such as Co, Ti, Fe, Zn, V, and Cu, and elements such as Al, Na, and Mg. May be included. Furthermore, typical non-metallic elements such as N, P, F, Cl, Br, I, and S may be included in the above substance. Further, these transition metal oxides may further contain Li.
本発明の負極活物質の結晶構造としては、立方晶系スピネル構造のものから非晶質までのものが使用することができるが、高率放電には非晶質の方が好ましい。結晶構造が非晶質である本発明の負極活物質は、CuKα線を用いたX線回折法で、15°<2θ<20°および30°<2θ<45°に現れる回折ピ−クの半値幅が5°(2θ)以上である。 As the crystal structure of the negative electrode active material of the present invention, those having a cubic spinel structure to amorphous can be used, but amorphous is preferable for high rate discharge. The negative electrode active material of the present invention having an amorphous crystal structure is a half of the diffraction peak appearing at 15 ° <2θ <20 ° and 30 ° <2θ <45 ° by X-ray diffraction using CuKα rays. The value width is 5 ° (2θ) or more.
また、本発明の負極活物質の形状としては、粉末、膜、多孔体など、あらゆる形状のものを使用することができる。 Moreover, as a shape of the negative electrode active material of this invention, the thing of all shapes, such as a powder, a film | membrane, a porous body, can be used.
本発明の非水電解質電気化学セル用負極活物質の製造方法としては、ニッケル源化合物とマンガン源化合物とを混合し、焼成する方法を採用することもできるが、ニッケルとマンガンを原子レベルで固溶させるためには共沈法が好ましい。 As a method for producing a negative electrode active material for a non-aqueous electrolyte electrochemical cell according to the present invention, a method in which a nickel source compound and a manganese source compound are mixed and baked can be adopted. However, nickel and manganese are fixed at an atomic level. The coprecipitation method is preferable for dissolving the solution.
本発明の負極活物質の、共沈法による製造方法は以下の工程を経る。まず、平均酸化数が3未満であるニッケル化合物(例えば水酸化ニッケル)とマンガン化合物(例えば水酸化マンガン)とを、アルカリ性水溶液中に溶解・分散させる。 The manufacturing method by the coprecipitation method of the negative electrode active material of this invention passes through the following processes. First, a nickel compound (for example, nickel hydroxide) having an average oxidation number of less than 3 and a manganese compound (for example, manganese hydroxide) are dissolved and dispersed in an alkaline aqueous solution.
次に、この水溶液を、室温よりもやや高い温度(例えば50℃)にし、ニッケルとマンガンの平均酸化数が3以上になるまで酸化剤で酸化した後、沈殿を濾過、乾燥することにより、ニッケルとマンガンを含むオキシ水酸化物が得られる。この場合、マンガンが4価まで酸化されるのを防止するため、窒素やアルゴンガスなどの不活性なガスで保護しながら酸化処理することが望ましい。これによって「不活性な炭酸塩」の生成を避けることができる。 Next, the aqueous solution is brought to a temperature slightly higher than room temperature (for example, 50 ° C.), oxidized with an oxidizing agent until the average oxidation number of nickel and manganese becomes 3 or more, and then the precipitate is filtered and dried. An oxyhydroxide containing manganese and manganese is obtained. In this case, in order to prevent manganese from being oxidized to tetravalent, it is desirable to oxidize while protecting with an inert gas such as nitrogen or argon gas. This avoids the formation of “inert carbonates”.
酸化剤の種類は特に限定されない。酸化剤としては、好ましくは、酸素、オゾンまたはペルオキソ二硫酸塩、もしくは次亜塩素酸塩、過マンガン酸塩、二クロム酸塩、臭素、塩素から選択される少なくとも1種を用いることができる。また、酸化剤を用いる化学的な酸化方法以外に、電気化学的な手法を用いてもよい。 The kind of oxidizing agent is not particularly limited. As the oxidizing agent, preferably, at least one selected from oxygen, ozone or peroxodisulfate, or hypochlorite, permanganate, dichromate, bromine, and chlorine can be used. In addition to the chemical oxidation method using an oxidizing agent, an electrochemical method may be used.
次に、ニッケルとマンガンを含むオキシ水酸化物を、600℃以上の温度で加熱処理することにより、本発明の非水電解質電気化学セル用負極活物質を得ることができる。なお、熱処理温度の最適値はTG−DTAの測定結果を用いて定める。熱処理温度の下限の600℃は、結晶水および構造水が除去される温度である。また、熱処理の雰囲気として、窒素やアルゴンのような不活性ガスを用いた場合も、空気や酸素中で熱処理した場合と同様な効果が期待できる。 Next, the negative electrode active material for a non-aqueous electrolyte electrochemical cell of the present invention can be obtained by heat-treating an oxyhydroxide containing nickel and manganese at a temperature of 600 ° C. or higher. Note that the optimum value of the heat treatment temperature is determined using the measurement result of TG-DTA. The lower limit of the heat treatment temperature, 600 ° C., is a temperature at which crystal water and structural water are removed. Further, when an inert gas such as nitrogen or argon is used as the atmosphere for the heat treatment, the same effect as that obtained when heat treatment is performed in air or oxygen can be expected.
本発明のニッケルとマンガンを含むオキシ水酸化物は、炭素材料との複合体を形成して使用することができる。ニッケルとマンガンを含むオキシ水酸化物の表面を炭素材料で被覆したもの、ニッケルとマンガンを含むオキシ水酸化物を炭素材料とを混合して造粒したものを用いることができる。炭素材料で被覆する方法としては、ベンゼン、トルエン、キシレン、メタン、プロパン、ブタン、エチレンあるいはアセチレンなどを炭素源として気相中で分解し、ニッケルとマンガンを含むオキシ水酸化物粒子の表面に化学的に蒸着させるCVD方法、ピッチ、タールまたはフルフリルアルコールなどの熱可塑性樹脂とニッケルとマンガンを含むオキシ水酸化物とを混合した後に焼成する方法、またはメカノケミカル反応を用いた方法で製造することができる。これらの製造方法の中ではCVD法が望ましい。 The oxyhydroxide containing nickel and manganese of the present invention can be used by forming a composite with a carbon material. A material obtained by coating the surface of an oxyhydroxide containing nickel and manganese with a carbon material, or a material obtained by mixing and granulating an oxyhydroxide containing nickel and manganese with a carbon material can be used. As a method of coating with a carbon material, benzene, toluene, xylene, methane, propane, butane, ethylene or acetylene is decomposed in the gas phase using a carbon source, and the surface of oxyhydroxide particles containing nickel and manganese is chemically treated. To be produced by a chemical vapor deposition CVD method, a method in which a thermoplastic resin such as pitch, tar, or furfuryl alcohol is mixed with an oxyhydroxide containing nickel and manganese, followed by firing, or a method using a mechanochemical reaction. Can do. Among these manufacturing methods, the CVD method is desirable.
本発明の一般式NixMnyOz(ただし、0.45≦x≦0.55、0.9≦x+y≦1.1、1.0≦z≦2.0)で表されるニッケルとマンガンを含む酸化物は、そのまま非水電解質電気化学セルの負極活物質に使用することができる。しかし、この酸化物は、最初の充電容量と引き続く放電容量との間には差があり、この差を不可逆容量(=最初の充電容量−放電容量)とする。ここで「不可逆容量」とは、充電で酸化物中に吸蔵され、次の放電では放出されないリチウムの容量である。 Nickel represented by the general formula Ni x Mn y O z of the present invention (where 0.45 ≦ x ≦ 0.55, 0.9 ≦ x + y ≦ 1.1, 1.0 ≦ z ≦ 2.0) The oxide containing manganese can be used as it is for the negative electrode active material of the nonaqueous electrolyte electrochemical cell. However, this oxide has a difference between the initial charge capacity and the subsequent discharge capacity, and this difference is referred to as an irreversible capacity (= initial charge capacity−discharge capacity). Here, the “irreversible capacity” is the capacity of lithium that is occluded in the oxide by charge and is not released in the next discharge.
電池に組み立てる前に、この不可逆容量に相当するリチウムを、負極中に吸蔵させることにより、容量の大きい非水電解質電気化学セルを得ることができる。 By associating lithium corresponding to this irreversible capacity into the negative electrode before assembling the battery, a non-aqueous electrolyte electrochemical cell having a large capacity can be obtained.
その方法としては、(1)本発明の負極活物質と金属リチウムとを電解液中でショートさせる方法、(2)本発明の負極活物質と,リチウム合金粉末、リチウム含有遷移金属窒化物(例えばLi2.5Co0.5N粉末)と共に電極を作製し、有機電解液と接触させ、電池反応を起こしてリチウム含有遷移金属酸化物ナノ粒子を作成する方法、(3)本発明の負極活物質をリチウムの有機錯体たとえばブチルリチウムなどの有機溶液と接触させて反応させる方法、(4)本発明の負極活物質を含む電極を作製し、有機電解液中でリチウム基準の0.5V以下、0V以上の電位まで電気化学的に還元する方法、などがある。 The methods include (1) a method of short-circuiting the negative electrode active material of the present invention and metallic lithium in an electrolyte solution, and (2) a negative electrode active material of the present invention, lithium alloy powder, lithium-containing transition metal nitride (for example, Li 2.5 Co 0.5 N powder) and a method for producing a lithium-containing transition metal oxide nanoparticle by causing a battery reaction by contacting an electrode with an organic electrolyte, and (3) a negative electrode active of the present invention A method in which a substance is brought into contact with an organic solution such as an organic complex of lithium, for example, butyl lithium, and (4) an electrode including the negative electrode active material of the present invention is prepared, and 0.5 V or less based on lithium in the organic electrolyte, There is a method of electrochemical reduction to a potential of 0 V or more.
本発明の非水電解質電気化学セル用負極活物質を電極にする場合、導電材料として、Cu、Ni、Ti、Coなどの微粉末が使用できるが、アセチレンブラック、非晶質炭素、黒鉛粉末、カーボンナノチューブ、カーボンナノホンなどの炭素材料がもっと望ましい。導電材料と本発明の負極活物質とをよく混合させるためにはメカニカルミリング法が望ましい。 When the negative electrode active material for a non-aqueous electrolyte electrochemical cell of the present invention is used as an electrode, fine powders such as Cu, Ni, Ti, and Co can be used as a conductive material, but acetylene black, amorphous carbon, graphite powder, Carbon materials such as carbon nanotubes and carbon nanophones are more desirable. The mechanical milling method is desirable for mixing the conductive material and the negative electrode active material of the present invention well.
負極集電体材料としては、Cu、Ni、Ti、Al、ステンレスなどが使用できる。形態として、シートやメッシュおよび発泡体など三次元の構造体が挙げられる。 As the negative electrode current collector material, Cu, Ni, Ti, Al, stainless steel or the like can be used. Examples of the form include a three-dimensional structure such as a sheet, a mesh, and a foam.
本発明の非水電解質電池で用いられる正極材料としては、LiCoO2、LiNiO2、LiMn2O4等の組成式LixMO2またはLiyM2O4(ただし、Mは遷移金属、0≦x≦1、0≦y≦1)で表される複合酸化物やトンネル状の孔を有する酸化物、層状構造の金属カルコゲン化物等を用いることができる。また、5V級の活物質LiNi0.5Mn1.5O4およびオリビン材料であるLiFePO4などが使用できる。さらには、負極活物質としてリチウム含有ニッケルマンガン酸化物を用いた場合、正極にはリチウムソースのないTiS2、MoS2、V2O5、MnO2なども使用できる。 As the cathode material used in the nonaqueous electrolyte battery of the present invention, LiCoO 2, LiNiO 2, composition formula such as LiMn 2 O 4 Li x MO 2 or Li y M 2 O 4 (provided that, M is a transition metal, 0 ≦ A composite oxide represented by x ≦ 1, 0 ≦ y ≦ 1), an oxide having a tunnel-like hole, a metal chalcogenide having a layered structure, or the like can be used. Further, such LiFePO 4 as an active material LiNi 0.5 Mn 1.5 O 4 and olivine material 5V-class can be used. Furthermore, when lithium-containing nickel manganese oxide is used as the negative electrode active material, TiS 2 , MoS 2 , V 2 O 5 , MnO 2 or the like without a lithium source can be used for the positive electrode.
本発明の非水電解質電池で用いられる非水電解質としては、非水電解液であっても、ポリマー電解質、室温溶融塩またはイオン液体、固体電解質であっても構わない。非水電解液に用いられる溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒およびこれらの混合溶媒が例示される。 The nonaqueous electrolyte used in the nonaqueous electrolyte battery of the present invention may be a nonaqueous electrolyte solution, a polymer electrolyte, a room temperature molten salt or ionic liquid, or a solid electrolyte. Solvents used for the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane. And polar solvents such as 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane and methyl acetate, and mixed solvents thereof.
また、非水電解液の溶質としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiSCN、LiCF3CO2、LiCF3SO3、LiN(SO2CF3)2、LiN(SO2CF2CF3)2、LiN(COCF3)2およびLiN(COCF2CF3)2などの塩もしくはこれらの混合物が例示される。 Moreover, as a solute of the nonaqueous electrolytic solution, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSCN, LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2). Illustrative are salts such as CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof.
以下に、本発明の非水電解質電気化学セル用負極活物質の合成方法およびこの負極活物質を用いた非水電解質電気化学セルの例として非水電解質二次電池を、実施例に基づいて詳細に説明する。しかしながら、本発明は、以下の実施例によって限定されるものではない。 Hereinafter, a method for synthesizing a negative electrode active material for a nonaqueous electrolyte electrochemical cell of the present invention and a nonaqueous electrolyte secondary battery as an example of a nonaqueous electrolyte electrochemical cell using the negative electrode active material will be described in detail based on Examples. Explained. However, the present invention is not limited to the following examples.
[実施例1、2および比較例1、2]
[実施例1]
50℃のイオン交換水50mlを入れた反応容器を準備し、イオン交換水に窒素をバブリングさせて溶存酸素と置換し、さらに反応容器を窒素でパージした。次に、このイオン交換水に、水酸化ニッケル(Ni(OH)2)5.0gと水酸化マンガン(Mn(OH)2)4.8gとを(NiとMnのモル比1:1)溶解・分散させた後、1.2当量のNaClOを加え、50℃を保持しながら4時間攪拌し、酸化反応させた。続いて吸引濾過し、脱酸素したイオン交換水で3回洗浄し、さらに60℃で12時間乾燥することにより、共沈法によりニッケルとマンガンとを含むオキシ水酸化物(Ni0.5Mn0.5OOH)を得た。このオキシ水酸化物を環状電気炉(いすゞ製作所製、AT−E58)を用いて、空気中で800℃、16時間加熱処理を行い、本発明になる実施例1の負極活物質であるニッケルとマンガンを含む酸化物(Ni0.5Mn0.5O1.43)を得た。これを負極活物質A1とする。
[Examples 1 and 2 and Comparative Examples 1 and 2]
[Example 1]
A reaction vessel containing 50 ml of ion exchange water at 50 ° C. was prepared, nitrogen was bubbled through the ion exchange water to replace dissolved oxygen, and the reaction vessel was purged with nitrogen. Next, 5.0 g of nickel hydroxide (Ni (OH) 2 ) and 4.8 g of manganese hydroxide (Mn (OH) 2 ) are dissolved in this ion-exchanged water (a molar ratio of Ni and Mn is 1: 1). After dispersion, 1.2 equivalent of NaClO was added, and the mixture was stirred for 4 hours while maintaining 50 ° C. to cause an oxidation reaction. Subsequently, it is filtered by suction, washed three times with deoxygenated ion-exchanged water, and further dried at 60 ° C. for 12 hours, whereby an oxyhydroxide containing nickel and manganese (Ni 0.5 Mn 0 .5 OOH). This oxyhydroxide was subjected to a heat treatment in air at 800 ° C. for 16 hours using a ring electric furnace (manufactured by Isuzu Seisakusho, AT-E58). An oxide containing manganese (Ni 0.5 Mn 0.5 O 1.43 ) was obtained. This is designated as negative electrode active material A1.
90質量%の負極活物質A1と、導電材としてのアセチレンブラック7質量%、結着剤としてのポリ二フッ化ビニリデン3%とを混合し、n−メチル−2−ピロリドンを加えてドライルーム内で混合し、ペースト状にした後、厚さ350μmの集電体である発泡銅基板に塗布し、70℃で5時間真空乾燥し、ロールプレスすることにより、厚みが330μm、大きさが15mm×15mmの負極板を製作した。 90% by mass of the negative electrode active material A1, 7% by mass of acetylene black as a conductive material and 3% of polyvinylidene difluoride as a binder are mixed, and n-methyl-2-pyrrolidone is added to the inside of the dry room. The mixture is made into a paste and then applied to a foamed copper substrate which is a 350 μm-thick current collector, vacuum-dried at 70 ° C. for 5 hours, and roll-pressed to have a thickness of 330 μm and a size of 15 mm × A 15 mm negative electrode plate was produced.
[実施例2]
平均粒子径10μmのニッケル粉末1.00gと平均粒子径10μmのマンガン粉末0.94g(NiとMnのモル比1:1)とを乳鉢で混合し、実施例1で用いたのと同じ環状電気炉を用いて、空気中で10時間加熱処理を行うことにより、本発明になる実施例2の負極活物質であるニッケルとマンガンを含む酸化物(Ni0.5Mn0.5O1.43)を得た。これを負極活物質A2とする。この負極活物質A2を用いて、実施例1と同様にして、負極板を製作した。
[Example 2]
The same cyclic electricity as used in Example 1 was prepared by mixing 1.00 g of nickel powder having an average particle diameter of 10 μm and 0.94 g of manganese powder having an average particle diameter of 10 μm (a molar ratio of Ni and Mn of 1: 1) in a mortar. By performing a heat treatment in the air for 10 hours using a furnace, an oxide containing nickel and manganese (Ni 0.5 Mn 0.5 O 1.43) which is the negative electrode active material of Example 2 according to the present invention. ) This is designated as negative electrode active material A2. Using this negative electrode active material A2, a negative electrode plate was produced in the same manner as in Example 1.
[比較例1]
平均粒子径10μmのニッケル粉末1.00gを、実施例1で用いたのと同じ環状電気炉を用いて、空気中で10時間加熱処理を行うことにより、比較例1の負極活物質NiOを得た。これを負極活物質B1とする。この負極活物質B1を用いて、実施例1と同様にして、負極板を製作した。
[Comparative Example 1]
A negative electrode active material NiO of Comparative Example 1 is obtained by subjecting 1.00 g of nickel powder having an average particle diameter of 10 μm to heat treatment in air for 10 hours using the same annular electric furnace as used in Example 1. It was. This is designated as negative electrode active material B1. Using this negative electrode active material B1, a negative electrode plate was produced in the same manner as in Example 1.
[比較例2]
イオン交換水に、水酸化ニッケル(Ni(OH)2)7.5gと水酸化マンガン(Mn(OH)2)2.4gとを(NiとMnのモル比3:1)溶解・分散させたこと以外は実施例1と同様にして、比較例2の負極活物質Ni0.75Mn0.25O1.36を得た。これを負極活物質B2とする。この負極活物質B2を用いて、実施例1と同様にして、負極板を製作した。
[Comparative Example 2]
In ion-exchanged water, 7.5 g of nickel hydroxide (Ni (OH) 2 ) and 2.4 g of manganese hydroxide (Mn (OH) 2 ) (molar ratio of Ni and Mn 3: 1) were dissolved and dispersed. Except for this, the negative electrode active material Ni 0.75 Mn 0.25 O 1.36 of Comparative Example 2 was obtained in the same manner as Example 1. This is designated as a negative electrode active material B2. Using this negative electrode active material B2, a negative electrode plate was produced in the same manner as in Example 1.
実施例1、2および比較例1、2で得られた負極板1枚に対し、対極として20mm×20mmの金属リチウム板2枚、参照極として対極と同じ金属リチウム板を用い、電解液には1Mの過塩素酸リチウムを含むエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒50mlを用いて、試験用の電気化学セルを作製し、本発明による負極活物質電極の評価をおこなった。 For one negative electrode plate obtained in Examples 1 and 2 and Comparative Examples 1 and 2, two 20 mm × 20 mm metal lithium plates were used as the counter electrode, and the same metal lithium plate as the counter electrode was used as the reference electrode. A test electrochemical cell was prepared using 50 ml of a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) containing 1 M lithium perchlorate, and the negative electrode active material electrode according to the present invention was evaluated. .
充放電の条件は、リチウム基準(vs.Li/Li+)で0.2Vまで定電流0.25mA/cm2で充電し、放電は同じ電流密度で3.0Vまでとし、30サイクルの充放電をおこなった。測定結果を表1に示す。なお、表1において「容量維持率」は「1サイクル目の放電容量に対する30サイクル目の放電容量の比」で定義される。 The charge / discharge conditions are based on lithium standard (vs. Li / Li + ) and charged at a constant current of 0.25 mA / cm 2 up to 0.2V, and discharged at the same current density up to 3.0V. I did it. The measurement results are shown in Table 1. In Table 1, “capacity maintenance ratio” is defined as “ratio of discharge capacity at 30th cycle to discharge capacity at 1st cycle”.
表1から、本発明の実施例1および2の負極活物質は、平均放電電位が1.50V(vs.Li/Li+)以下で、容量維持率は85%以上となり、平均放電電位が卑であるために高エネルギー密度電池が得られ、充放電サイクル特性も優れていることがわかった。 From Table 1, the negative electrode active materials of Examples 1 and 2 of the present invention have an average discharge potential of 1.50 V (vs. Li / Li + ) or less, a capacity retention rate of 85% or more, and an average discharge potential of low. Therefore, it was found that a high energy density battery was obtained and charge / discharge cycle characteristics were excellent.
一方、比較例1および2の負極活物質は、容量維持率が約90%と充放電サイクル特性は優れていたが、平均放電電位が貴であり、高エネルギー密度電池とすることが困難であることがわかった。 On the other hand, the negative electrode active materials of Comparative Examples 1 and 2 had a capacity retention rate of about 90% and excellent charge / discharge cycle characteristics, but the average discharge potential was noble and it was difficult to obtain a high energy density battery. I understood it.
[実施例3〜5および比較例3〜5]
[実施例3]
実施例1の共沈法によって得られたオキシ水酸化物(Ni0.5Mn0.5OOH)を、600℃で加熱処理を行った以外は実施例1と同様にして、本発明になる実施例3の負極活物質Ni0.5Mn0.5O1.43を得た。これを負極活物質A3とする。
[Examples 3 to 5 and Comparative Examples 3 to 5]
[Example 3]
Oxyhydroxide obtained by coprecipitation (Ni 0.5 Mn 0.5 OOH) of Example 1, in the same manner as in Example 1 except that heat treatment was carried out at 600 ° C., to the present invention The negative electrode active material Ni 0.5 Mn 0.5 O 1.43 of Example 3 was obtained. This is designated as negative electrode active material A3.
[実施例4]
実施例1の共沈法によって得られたオキシ水酸化物(Ni0.5Mn0.5OOH)を、1000℃で加熱処理を行った以外は実施例1と同様にして、本発明になる実施例4の負極活物質Ni0.5Mn0.5O1.43を得た。これを負極活物質A4とする。
[Example 4]
The oxyhydroxide (Ni 0.5 Mn 0.5 OOH) obtained by the coprecipitation method of Example 1 is subjected to the present invention in the same manner as Example 1 except that the heat treatment is performed at 1000 ° C. The negative electrode active material Ni 0.5 Mn 0.5 O 1.43 of Example 4 was obtained. This is designated as a negative electrode active material A4.
[実施例5]
実施例1の共沈法によって得られたオキシ水酸化物(Ni0.5Mn0.5OOH)を、1200℃で加熱処理を行った以外は実施例1と同様にして、本発明になる実施例5の負極活物質Ni0.5Mn0.5O1.43を得た。これを負極活物質A5とする。
[Example 5]
Oxyhydroxide obtained by coprecipitation (Ni 0.5 Mn 0.5 OOH) of Example 1, except that heat treatment was performed at 1200 ° C. in the same manner as in Example 1, the present invention The negative electrode active material Ni 0.5 Mn 0.5 O 1.43 of Example 5 was obtained. This is designated as negative electrode active material A5.
[比較例3]
実施例1の共沈法によって得られたオキシ水酸化物(Ni0.5Mn0.5OOH)を、加熱処理なしで、そのまま負極活物質とした。これを負極活物質B3とする。
[Comparative Example 3]
The oxyhydroxide (Ni 0.5 Mn 0.5 OOH) obtained by the coprecipitation method of Example 1 was directly used as a negative electrode active material without heat treatment. This is designated as a negative electrode active material B3.
[比較例4]
実施例1の共沈法によって得られたオキシ水酸化物(Ni0.5Mn0.5OOH)を、150℃で加熱処理を行った以外は実施例1と同様にして、比較例4の負極活物質を得た。これを負極活物質B4とする。
[Comparative Example 4]
The oxyhydroxide (Ni 0.5 Mn 0.5 OOH) obtained by the coprecipitation method of Example 1 was subjected to heat treatment at 150 ° C. in the same manner as in Example 1, except that Comparative Example 4 A negative electrode active material was obtained. This is designated as a negative electrode active material B4.
[比較例5]
実施例1の共沈法によって得られたオキシ水酸化物(Ni0.5Mn0.5OOH)を、350℃で加熱処理を行った以外は実施例1と同様にして、比較例5の負極活物質を得た。これを負極活物質B5とする。
[Comparative Example 5]
The oxyhydroxide (Ni 0.5 Mn 0.5 OOH) obtained by the coprecipitation method of Example 1 was subjected to heat treatment at 350 ° C. in the same manner as in Example 1, except that Comparative Example 5 A negative electrode active material was obtained. This is designated as a negative electrode active material B5.
実施例3〜5の負極活物質A3〜A5および比較例3〜5の負極活物質B3〜B5を用いて、実施例1と同様にして、負極板を製作した。この負極板を用いて、実施例1と同様の条件で30サイクルの充放電をおこなった。測定結果を表2に示す。なお、表2には、比較のため、実施例1の結果も示した。 A negative electrode plate was produced in the same manner as in Example 1 using the negative electrode active materials A3 to A5 of Examples 3 to 5 and the negative electrode active materials B3 to B5 of Comparative Examples 3 to 5. Using this negative electrode plate, 30 cycles of charge and discharge were performed under the same conditions as in Example 1. The measurement results are shown in Table 2. Table 2 also shows the results of Example 1 for comparison.
表2からわかるように、オキシ水酸化物(Ni0.5Mn0.5OOH)を加熱処理なしでそのまま負極活物質とした比較例3では、平均放電電位が1.5Vよりも貴であり、容量維持率はきわめて小さく、充放電サイクル性能が劣ることがわかった。これはオキシ水酸化物中に存在する吸着水および結晶水によるものと考えられる。 As can be seen from Table 2, in Comparative Example 3 in which oxyhydroxide (Ni 0.5 Mn 0.5 OOH) was used as the negative electrode active material without any heat treatment, the average discharge potential was more noble than 1.5V. It was found that the capacity retention rate was extremely small and the charge / discharge cycle performance was inferior. This is thought to be due to adsorbed water and crystal water present in the oxyhydroxide.
また、オキシ水酸化物を150℃で加熱処理した比較例4や350℃で処理した比較例5の場合も、平均放電電位が1.6Vよりも貴であり、容量維持率は49%や63%充放電サイクル性能が劣っていることがわかった。これらの負極活物質では、加熱処理温度が低いために、オキシ水酸化物の水素や、吸着水および結晶水などが完全に除去されておらず、Ni0.5Mn0.5O1.43が得られていないことによるものと考えられる。 Further, in Comparative Example 4 in which the oxyhydroxide was heat-treated at 150 ° C. and Comparative Example 5 in which the oxyhydroxide was treated at 350 ° C., the average discharge potential was nobler than 1.6 V, and the capacity retention rate was 49% or 63 % Charge / discharge cycle performance was found to be inferior. In these negative electrode active materials, since the heat treatment temperature is low, hydrogen of oxyhydroxide, adsorbed water, crystal water and the like are not completely removed, and Ni 0.5 Mn 0.5 O 1.43 This is probably due to the fact that
これに対して、オキシ水酸化物の加熱処理温度を600℃以上とした実施例3、1、4および5の場合には、平均放電電位が1.5Vよりも卑となり、容量維持率は80%以上と、優れた充放電サイクル性能を示した。このように、オキシ水酸化物を600℃以上で加熱処理することで、水素や吸着水および結晶水などを含まないNi0.5Mn0.5O1.43が得られることがわかった。 On the other hand, in Examples 3, 1, 4 and 5 in which the heat treatment temperature of the oxyhydroxide was 600 ° C. or higher, the average discharge potential was lower than 1.5 V, and the capacity retention rate was 80 %, Excellent charge / discharge cycle performance was exhibited. Thus, it was found that Ni 0.5 Mn 0.5 O 1.43 free of hydrogen, adsorbed water, crystal water and the like can be obtained by heat-treating the oxyhydroxide at 600 ° C. or higher.
なお、実施例3、1、4および5の負極活物質のように、相対的に卑な電位を有する負極と正極活物質とを組み合わせた場合には、より高いエネルギー密度の非水電気化学セルが得られるものである。 In addition, when a negative electrode having a relatively base potential and a positive electrode active material are combined as in the negative electrode active materials of Examples 3, 1, 4, and 5, a non-aqueous electrochemical cell having a higher energy density is combined. Is obtained.
[実施例6、7および比較例6、7]
[実施例6]
イオン交換水に、水酸化ニッケル(Ni(OH)2)4.50gと水酸化マンガン(Mn(OH)2)5.28gとを(NiとMnのモル比0.45:0.55)溶解・分散させたこと以外は実施例1と同様にして、本発明になる実施例7の負極活物質Ni0.45Mn0.55O1.43を得た。これを負極活物質A6とする。
[Examples 6 and 7 and Comparative Examples 6 and 7]
[Example 6]
In ion-exchanged water, 4.50 g of nickel hydroxide (Ni (OH) 2 ) and 5.28 g of manganese hydroxide (Mn (OH) 2 ) (Ni / Mn molar ratio 0.45: 0.55) were dissolved. - except that dispersed in the same manner as in example 1 to obtain a negative electrode active material Ni 0.45 Mn 0.55 O 1.43 example 7 according to the present invention. This is designated as negative electrode active material A6.
[実施例7]
イオン交換水に、水酸化ニッケル(Ni(OH)2)5.50gと水酸化マンガン(Mn(OH)2)4.32gとを(NiとMnのモル比0.55:0.45)溶解・分散させたこと以外は実施例1と同様にして、本発明になる実施例6の負極活物質Ni0.55Mn0.45O1.43を得た。これを負極活物質A7とする。
[Example 7]
In ion-exchanged water, 5.50 g of nickel hydroxide (Ni (OH) 2 ) and 4.32 g of manganese hydroxide (Mn (OH) 2 ) (Ni / Mn molar ratio 0.55: 0.45) were dissolved. - except that dispersed in the same manner as in example 1 to obtain a negative electrode active material Ni 0.55 Mn 0.45 O 1.43 example 6 according to the present invention. This is designated as negative electrode active material A7.
[比較例6]
イオン交換水に、水酸化ニッケル(Ni(OH)2)4.00gと水酸化マンガン(Mn(OH)2)5.78gとを(NiとMnのモル比0.40:0.60)溶解・分散させたこと以外は実施例1と同様にして、本発明になる比較例6の負極活物質Ni0.40Mn0.60O1.43を得た。これを負極活物質B6とする。
[Comparative Example 6]
In ion-exchanged water, 4.00 g of nickel hydroxide (Ni (OH) 2 ) and 5.78 g of manganese hydroxide (Mn (OH) 2 ) are dissolved (molar ratio of Ni and Mn 0.40: 0.60). - except that dispersed in the same manner as in example 1 to obtain a negative electrode active material Ni 0.40 Mn 0.60 O 1.43 Comparative example 6 according to the present invention. This is designated as a negative electrode active material B6.
[比較例7]
イオン交換水に、水酸化ニッケル(Ni(OH)2)6.00gと水酸化マンガン(Mn(OH)2)3.84gとを(NiとMnのモル比0.60:0.40)溶解・分散させたこと以外は実施例1と同様にして、本発明になる比較例7の負極活物質Ni0.60Mn0.40O1.43を得た。これを負極活物質B7とする。
[Comparative Example 7]
Dissolve 6.00 g of nickel hydroxide (Ni (OH) 2 ) and 3.84 g of manganese hydroxide (Mn (OH) 2 ) in ion-exchanged water (molar ratio of Ni and Mn: 0.60: 0.40) - except that dispersed in the same manner as in example 1 to obtain a negative electrode active material Ni 0.60 Mn 0.40 O 1.43 Comparative example 7 according to the present invention. This is designated as a negative electrode active material B7.
実施例3〜5の負極活物質A3〜A5および比較例3〜5の負極活物質B3〜B5を用いて、実施例1と同様にして、負極板を製作した。この負極板を用いて、実施例1と同様の条件で30サイクルの充放電をおこなった。測定結果を表3に示す。なお、表3には、比較のため、実施例1の結果も示した。 A negative electrode plate was produced in the same manner as in Example 1 using the negative electrode active materials A3 to A5 of Examples 3 to 5 and the negative electrode active materials B3 to B5 of Comparative Examples 3 to 5. Using this negative electrode plate, 30 cycles of charge and discharge were performed under the same conditions as in Example 1. Table 3 shows the measurement results. Table 3 also shows the results of Example 1 for comparison.
表3の結果から、平均放電電位と容量維持率は、負極活物質であるニッケルとマンガンを含む酸化物に含まれるニッケルとマンガンの組成に関係し、ニッケルの含有量が少なくなるにしたがって平均放電電位は卑となり、マンガンの含有量が少なくなるにしたがって容量維持率は大きくなることがわかった。そして、平均放電電位が1.50V(2Vvs.Li/Li+)以下と、容量維持率が80%以上となるのは、実施例6、1、7の場合であった。 From the results in Table 3, the average discharge potential and capacity retention ratio are related to the composition of nickel and manganese contained in the oxide containing nickel and manganese, which are negative electrode active materials, and the average discharge is reduced as the nickel content decreases. It was found that the potential became lower and the capacity retention ratio increased as the manganese content decreased. In Examples 6 , 1 and 7, the average discharge potential was 1.50 V ( 2 V vs. Li / Li + ) or less and the capacity retention rate was 80% or more.
このように、本発明になる一般式NixMnyOz(ただし、0.45≦x≦0.55、0.9≦x+y≦1.1、1.0≦z≦2.0)で表されるニッケルとマンガンを含む酸化物を非水電解質電気化学セル用負極活物質とすることにより、高エネルギー密度で、充放電サイクル性能に優れた非水電解質電気化学セルを得ることができる。 Thus, the general formula Ni x Mn y O z according to the present invention (where 0.45 ≦ x ≦ 0.55, 0.9 ≦ x + y ≦ 1.1, 1.0 ≦ z ≦ 2.0). By using the oxide containing nickel and manganese as a negative electrode active material for a non-aqueous electrolyte electrochemical cell, a non-aqueous electrolyte electrochemical cell having high energy density and excellent charge / discharge cycle performance can be obtained.
[実施例8]
実施例1で用いた負極活物質Ni0.5Mn0.5O1.43を用いて、実施例1と同様にして負極板を作製した。この負極板を用いて、実施例1と同様の試験用の電気化学セルを作製し、負極活物質Ni0.5Mn0.5O1.43をさらに電気化学的に還元、酸化処理をおこなった。電気化学的還元は、定電流0.25mA/cm2で0.2V(vs.Li/Li+)まで還元した後、3.0V(vs.Li/Li+)まで放電をおこない、得られた負極活物質をA8とする。
[Example 8]
Using the negative electrode active material Ni 0.5 Mn 0.5 O 1.43 used in Example 1, a negative electrode plate was produced in the same manner as in Example 1. Using this negative electrode plate, a test electrochemical cell similar to that of Example 1 was prepared, and the negative electrode active material Ni 0.5 Mn 0.5 O 1.43 was further electrochemically reduced and oxidized. It was. Electrochemical reduction was obtained by reducing to 0.2 V (vs. Li / Li + ) at a constant current of 0.25 mA / cm 2 and then discharging to 3.0 V (vs. Li / Li + ). The negative electrode active material is A8.
負極活物質A8を含む電極を、実施例1と同様の試験用の電気化学セルに組み込み、実施例1と同様の条件で充放電サイクル試験を行い、実施例1の特性との比較をおこなった。 The electrode containing the negative electrode active material A8 was incorporated into an electrochemical cell for testing similar to that in Example 1, a charge / discharge cycle test was performed under the same conditions as in Example 1, and the characteristics of Example 1 were compared. .
実施例1の初期充放電曲線を図1に、また、実施例8の初期充放電曲線を図2に示す。 The initial charge / discharge curve of Example 1 is shown in FIG. 1, and the initial charge / discharge curve of Example 8 is shown in FIG.
図1に示した実施例1の場合には、1サイクル目の不可逆容量は大きかったが、2サイクル目からは不可逆容量はほぼゼロとなり、ほぼ可逆的な充放電ができることがわかった。そして、この充放電曲線は、従来の文献で示されている遷移金属酸化物の、負極活物質としての放電曲線とは異なり、直線的な放電電位を示していることがわかった。 In the case of Example 1 shown in FIG. 1, the irreversible capacity in the first cycle was large, but from the second cycle, the irreversible capacity became almost zero, and it was found that almost reversible charge / discharge was possible. And it turned out that this charging / discharging curve has shown the linear discharge electric potential unlike the discharge curve as a negative electrode active material of the transition metal oxide shown by the conventional literature.
このように、実施例1で用いた負極活物質A1の放電挙動は、例えば活性炭のような容量性の電極と類似しており、高率充放電および放電深度の制御がしやすい材料でもあるため、高率放電用の非水電解質電気化学セルの電極としても適していることがわかった。また、この放電挙動は、ニッケル酸化物およびマンガン酸化物の単一品の放電挙動とは異なり、ニッケルとマンガンが固溶したことによる相乗効果が見られたものと考えられる。 Thus, the discharge behavior of the negative electrode active material A1 used in Example 1 is similar to that of a capacitive electrode such as activated carbon, and is also a material that can be easily controlled for high rate charge / discharge and discharge depth. It was also found that it is suitable as an electrode for a non-aqueous electrolyte electrochemical cell for high rate discharge. In addition, this discharge behavior is different from the discharge behavior of a single product of nickel oxide and manganese oxide, and it is considered that a synergistic effect due to the solid solution of nickel and manganese was observed.
一方、図2に示した実施例8の場合には、1サイクル目から不可逆容量はほとんどない活物質であることがわかった。 On the other hand, in the case of Example 8 shown in FIG. 2, it was found that the active material had almost no irreversible capacity from the first cycle.
次に、実施例1で用いた負極活物質A1と実施例8で用いた負極活物質A8の、CuKα線を用いたX線回折パターンを図3に示す。図3において、aは負極活物質A1のX線回折パターンを示し、bは負極活物質A8のX線回折パターンを示す。 Next, FIG. 3 shows X-ray diffraction patterns of the negative electrode active material A1 used in Example 1 and the negative electrode active material A8 used in Example 8 using CuKα rays. In FIG. 3, a shows the X-ray diffraction pattern of the negative electrode active material A1, and b shows the X-ray diffraction pattern of the negative electrode active material A8.
図3から明らかなように、負極活物質A1は立方晶スピネル構造を有するものであるのに対し、負極活物質A8のX線回折パターンでは、負極活物質A1で見られた10°<2θ<70°の範囲の回折ピークが完全に消えていた。また、負極活物質A8のX線回折パターンでは、15°<2θ<20°および30°<2θ<45°に現れる回折ピークの半値幅が、集電体Cuおよびポリプロピレンによるピークを除けば、5°(2θ)以上であった。この結果、負極活物質A8はアモルファス化していることがわった。 As is clear from FIG. 3, the negative electrode active material A1 has a cubic spinel structure, whereas the X-ray diffraction pattern of the negative electrode active material A8 shows 10 ° <2θ < The diffraction peak in the range of 70 ° completely disappeared. Further, in the X-ray diffraction pattern of the negative electrode active material A8, the half width of the diffraction peak appearing at 15 ° <2θ <20 ° and 30 ° <2θ <45 ° is 5 except for the peak due to the current collector Cu and polypropylene. It was at least (2θ). As a result, the negative electrode active material A8 was found to be amorphous.
このように、電気化学的に還元、酸化プロセスを経て作製された負極活物質A8は、初期の不可逆容量がほとんどなく、理想的な放電状態の負極活物質であることがわかった。すなわち、本発明の負極活物質であるニッケルとマンガンを含む酸化物を、リチウムイオン含有する有機電解液中で電気化学的に還元処理をおこなうことにより、負極にリチウムを導入することができ、リチウム源のないMnO2やV2O5などの正極活物質と組み合わせた非水電気化学セルを作製することができる。また、負極活物質にあらかじめ部分的にリチウム導入して、電池を組む時に、大きな不可逆容量を相殺させることができる。 Thus, it was found that the negative electrode active material A8 produced through an electrochemical reduction and oxidation process has almost no initial irreversible capacity and is an ideal negative electrode active material in a discharged state. That is, lithium can be introduced into the negative electrode by electrochemically reducing the oxide containing nickel and manganese, which is the negative electrode active material of the present invention, in an organic electrolyte containing lithium ions. A non-aqueous electrochemical cell combined with a positive electrode active material such as MnO 2 or V 2 O 5 without a source can be produced. In addition, when a battery is assembled by partially introducing lithium into the negative electrode active material in advance, a large irreversible capacity can be offset.
なお、ここでは、アモルファス化あるいはナノサイズ化されたニッケルとマンガンを含む酸化物の作製方法として電気化学的な手法を例示したが、電気化学的方法以外にも、リチウムを含む有機錯体で還元し、有機溶剤によってリチウムを吸蔵させる化学法を用いることも可能である。 Note that here, an electrochemical method is exemplified as a method for manufacturing an amorphous or nanosized oxide containing nickel and manganese, but in addition to the electrochemical method, reduction with an organic complex containing lithium is also possible. It is also possible to use a chemical method in which lithium is occluded by an organic solvent.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004288793A JP4851699B2 (en) | 2004-09-30 | 2004-09-30 | Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004288793A JP4851699B2 (en) | 2004-09-30 | 2004-09-30 | Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006107760A JP2006107760A (en) | 2006-04-20 |
JP4851699B2 true JP4851699B2 (en) | 2012-01-11 |
Family
ID=36377227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004288793A Expired - Fee Related JP4851699B2 (en) | 2004-09-30 | 2004-09-30 | Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4851699B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5045044B2 (en) * | 2006-09-21 | 2012-10-10 | パナソニック株式会社 | Method and apparatus for occluding lithium ion in negative electrode precursor for non-aqueous electrolyte secondary battery |
JP5720899B2 (en) * | 2011-03-31 | 2015-05-20 | 戸田工業株式会社 | Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
KR102757522B1 (en) | 2021-03-30 | 2025-01-21 | 가부시키가이샤 프로테리아루 | Method for manufacturing positive electrode active material for lithium ion secondary battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005302619A (en) * | 2004-04-15 | 2005-10-27 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte electrochemical cell |
JP2005353330A (en) * | 2004-06-09 | 2005-12-22 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte electrochemical cell |
-
2004
- 2004-09-30 JP JP2004288793A patent/JP4851699B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006107760A (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3719883B1 (en) | Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery, and lithium secondary battery including the same | |
KR100542184B1 (en) | Battery active material and its manufacturing method | |
KR100797099B1 (en) | Cathode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising same | |
JP5114998B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
KR20130108620A (en) | Lithium ion batteries with supplemental lithium | |
JP4879226B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
JP4655599B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP2007299668A (en) | Cathode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same | |
JP5516463B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery | |
CN109964345B (en) | Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP6294219B2 (en) | Method for producing lithium cobalt composite oxide | |
JP2005158737A (en) | Positive electrode for lithium secondary battery and lithium secondary battery | |
JP2006147500A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this | |
JP6799551B2 (en) | Manufacturing method of positive electrode active material for lithium secondary battery | |
JP6362033B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2008103181A (en) | Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this | |
JP4851699B2 (en) | Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same | |
KR20140096295A (en) | High capacity lithium-ion electrochemical cells and methods of making same | |
JP2005353330A (en) | Nonaqueous electrolyte electrochemical cell | |
JP3495639B2 (en) | Lithium-manganese composite oxide, method for producing the same, and lithium secondary battery using the composite oxide | |
JP5003030B2 (en) | Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery including the same | |
JP2005302619A (en) | Nonaqueous electrolyte electrochemical cell | |
JP7192397B2 (en) | Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same | |
JP5036174B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2005317277A (en) | Nonaqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051221 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070927 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4851699 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |