[go: up one dir, main page]

JP4843549B2 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP4843549B2
JP4843549B2 JP2007098367A JP2007098367A JP4843549B2 JP 4843549 B2 JP4843549 B2 JP 4843549B2 JP 2007098367 A JP2007098367 A JP 2007098367A JP 2007098367 A JP2007098367 A JP 2007098367A JP 4843549 B2 JP4843549 B2 JP 4843549B2
Authority
JP
Japan
Prior art keywords
weight
parts
rubber
integer
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007098367A
Other languages
Japanese (ja)
Other versions
JP2008255212A (en
Inventor
憲市 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2007098367A priority Critical patent/JP4843549B2/en
Publication of JP2008255212A publication Critical patent/JP2008255212A/en
Application granted granted Critical
Publication of JP4843549B2 publication Critical patent/JP4843549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Description

本発明は、ゴム組成物に関し、とくにタイヤ用ゴム組成物に関する。 The present invention relates to a rubber composition, and more particularly to a rubber composition for a tire.

従来、タイヤの転がり抵抗を低減させ(転がり抵抗性能の向上)、車輌の低燃費化が行われてきた。近年、低燃費化への要求が強くなってきており、タイヤ部材の中でもタイヤに占める占有比率の高いトレッドを製造するためのゴム組成物に対して、優れた低発熱性が要求されている。 Conventionally, rolling resistance of tires has been reduced (improvement of rolling resistance performance), and vehicle fuel efficiency has been reduced. In recent years, there has been a strong demand for low fuel consumption, and excellent low heat build-up is required for rubber compositions for producing treads having a high occupation ratio among tire members.

ゴム組成物を低発熱化させる方法として、補強用充填材の配合量を低減する方法が知られているが、補強用充填材の配合量を低減すると、ゴム組成物の高度が低下するためにタイヤが軟化し、車輌の操縦安定性やタイヤのウエットスキッド性能が低下するという問題があった。これらの問題を解決するために、充填材としてシリカなどが一般に使用されており、同時にシランカップリング剤も併用されている(特許文献1)。シランカップリング剤としては、ビス−(3−トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィドシランが使用されているが、加工中に粘度上昇が発生するという問題があった。 As a method of reducing the heat generation of the rubber composition, a method of reducing the amount of the reinforcing filler is known. However, if the amount of the reinforcing filler is reduced, the height of the rubber composition decreases. There is a problem that the tire is softened and the steering stability of the vehicle and the wet skid performance of the tire are lowered. In order to solve these problems, silica or the like is generally used as a filler, and at the same time, a silane coupling agent is also used (Patent Document 1). As the silane coupling agent, polysulfide silane such as bis- (3-triethoxysilylpropyl) tetrasulfide is used, but there is a problem that viscosity increase occurs during processing.

一方で、シリカは加硫促進剤を吸収し、結果的に加硫速度を遅延させてしまうので、加硫系にも問題があった。 On the other hand, since silica absorbs the vulcanization accelerator and consequently delays the vulcanization speed, there is a problem in the vulcanization system.

特開2002−363346JP 2002-363346 A

発明の目的は、優れた低発熱性能を有し、車輌の低燃費化を達成できるタイヤを製造するためのゴム組成物を提供することである。 An object of the invention is to provide a rubber composition for producing a tire having excellent low heat generation performance and capable of achieving low fuel consumption of a vehicle.

すなわち、本発明は、ゴム成分100重量部に対してシリカを15〜150重量部、下記一般式(1): That is, in the present invention, 15 to 150 parts by weight of silica with respect to 100 parts by weight of the rubber component, the following general formula (1):

(CH2p+1O)Si−C2q−S−CO−C2k+1 (1) (C p H 2p + 1 O ) 3 Si-C q H 2q -S-CO-C k H 2k + 1 (1)

(式中、pは1〜3の整数、qは1〜5の整数、kは5〜12の整数である。)、または下記一般式(2): (Wherein p is an integer of 1 to 3, q is an integer of 1 to 5, and k is an integer of 5 to 12), or the following general formula (2):

(C2x)(CH2p+1O)Si−C2q−S−CO−C2k+1 (2) (C x H 2x O 2) (C p H 2p + 1 O) Si-C q H 2q -S-CO-C k H 2k + 1 (2)

(式中、pは1〜3の整数、qは1〜5の整数、kは5〜12の整数、xは3〜6の整数である。)
で表されるシランカップリング剤をシリカ100重量部に対して0.1〜20重量部、および
下記一般式(3):
(In the formula, p is an integer of 1 to 3, q is an integer of 1 to 5, k is an integer of 5 to 12, and x is an integer of 3 to 6. )
0.1 to 20 parts by weight of the silane coupling agent represented by the following formula (3):

(C−CHN−(C=S)−S−(C=S)−N(CH−C(3) (C 6 H 5 -CH 2) 2 N- (C = S) -S y - (C = S) -N (CH 2 -C 6 H 5) 2 (3)

(式中、yは1〜8の整数である。)
で表される加硫促進剤をゴム成分100重量部に対して0.1〜5重量部含有するゴム組成物に関する。
(In the formula, y is an integer of 1 to 8.)
It is related with the rubber composition which contains 0.1-5 weight part of vulcanization accelerators represented by these with respect to 100 weight part of rubber components.

ゴム成分100重量部に対して、平均一次粒子径が20nm以上のシリカを10重量部以上、および平均一次粒子径が20nm未満のシリカを5重量部以上含有することが好ましい。 It is preferable to contain 10 parts by weight or more of silica having an average primary particle diameter of 20 nm or more and 5 parts by weight or more of silica having an average primary particle diameter of less than 20 nm with respect to 100 parts by weight of the rubber component.

また、本発明は、前記ゴム組成物から形成されたトレッドを有するタイヤに関する。 The present invention also relates to a tire having a tread formed from the rubber composition.

本発明のゴム組成物によれば、優れた低発熱性能を有し、車輌の低燃費化を達成できるタイヤを提供することができる。 According to the rubber composition of the present invention, it is possible to provide a tire that has excellent low heat generation performance and can achieve low fuel consumption of a vehicle.

本発明のゴム組成物は、ゴム成分100重量部に対してシリカを15〜150重量部、特定のシランカップリング剤をシリカ100重量部に対して0.1〜20重量部、および特定の加硫促進剤をゴム成分100重量部に対して0.1〜5重量部含有する。 The rubber composition of the present invention comprises 15 to 150 parts by weight of silica with respect to 100 parts by weight of the rubber component, 0.1 to 20 parts by weight of a specific silane coupling agent with respect to 100 parts by weight of silica, and a specific additive. The sulfur accelerator is contained in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of the rubber component.

本発明に使用されるゴム成分は、天然ゴム(NR)および/またはジエン系合成ゴムである。ジエン系合成ゴムとしては、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−ブタジエンゴム(SIBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、エチレン−プロピレン−ジエンゴム(EPDM)、クロロプレンゴム(CR)、ブチルゴム(IIR)、アクリロニトリル−ブタジエンゴム(NBR)などがあげられ、本発明に使用されるゴム成分中に1種類または2種類以上含まれていてもよい。転がり抵抗とウエットスキッド性能のバランスから、とくにSBRが好ましい。 The rubber component used in the present invention is natural rubber (NR) and / or a diene synthetic rubber. Diene-based synthetic rubbers include styrene-butadiene rubber (SBR), styrene-isoprene-butadiene rubber (SIBR), butadiene rubber (BR), isoprene rubber (IR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR ), Butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR) and the like, and may be contained in one or more kinds in the rubber component used in the present invention. SBR is particularly preferable from the balance of rolling resistance and wet skid performance.

本発明に使用されるシリカは、とくに限定されるものではなく、乾式法シリカ、湿式法シリカがあげられ、湿式法シリカが好ましい。シリカの配合量は、前記ゴム成分100重量部に対して、15〜150重量部である。シリカの配合量が15重量部未満では、耐摩耗性が低下し、150重量部をこえると、シリカのゴムへの分散が困難になり、加工性が低下する。低発熱性、作業性の面から、シリカ配合量の上限は、120重量部が好ましく、100重量部がより好ましく、下限は30重量部が好ましく、40重量部がより好ましい。 The silica used in the present invention is not particularly limited, and examples thereof include dry method silica and wet method silica, and wet method silica is preferable. The compounding quantity of a silica is 15-150 weight part with respect to 100 weight part of said rubber components. When the amount of silica is less than 15 parts by weight, the wear resistance is lowered, and when it exceeds 150 parts by weight, it is difficult to disperse the silica into the rubber and the workability is lowered. From the viewpoint of low heat build-up and workability, the upper limit of the amount of silica is preferably 120 parts by weight, more preferably 100 parts by weight, and the lower limit is preferably 30 parts by weight, more preferably 40 parts by weight.

シリカは、前記ゴム成分100重量部に対して、平均一次粒子径が20nm以上の大粒径シリカ(1)を10重量部以上、および平均一次粒子径が20nm未満の小粒径シリカ(2)を5重量部以上含有することが好ましい。平均一次粒子径が20nm以上のシリカが10重量部未満、または平均一次粒子径が20nm未満のシリカが5重量部未満では、2種類のシリカを併用する効果が得られなくなる傾向がある。平均一次粒子径が20nm以上の大粒径シリカ(1)の配合量の上限は、40重量部が好ましく、30重量部がより好ましく、下限は10重量部が好ましく、15重量部がより好ましい一方、平均一次粒子径が20nm未満の小粒径シリカ(2)の配合量の上限は、80重量部が好ましく、70重量部がより好ましく、下限は20重量部が好ましく、30重量部がより好ましい。 Silica is 10 parts by weight or more of large particle size silica (1) having an average primary particle size of 20 nm or more and small particle size silica (2) having an average primary particle size of less than 20 nm with respect to 100 parts by weight of the rubber component. It is preferable to contain 5 parts by weight or more. If the silica having an average primary particle diameter of 20 nm or more is less than 10 parts by weight, or if the silica having an average primary particle diameter of less than 20 nm is less than 5 parts by weight, the effect of using two types of silica tends not to be obtained. The upper limit of the amount of the large particle size silica (1) having an average primary particle size of 20 nm or more is preferably 40 parts by weight, more preferably 30 parts by weight, and the lower limit is preferably 10 parts by weight, more preferably 15 parts by weight. The upper limit of the amount of the small particle size silica (2) having an average primary particle size of less than 20 nm is preferably 80 parts by weight, more preferably 70 parts by weight, and the lower limit is preferably 20 parts by weight, more preferably 30 parts by weight. .

大粒径シリカ(1)の平均一次粒子径は、20nm以上であるが、25nm以上が好ましい。20nm未満では、転がり抵抗が増大する傾向にある。小粒径シリカ(2)の平均一次粒子径は、20nm以下であるが、18nm以下が好ましい。20nmをこえると、ゴム強度が不十分で耐摩耗性が低下する傾向にある。 The average primary particle size of the large particle size silica (1) is 20 nm or more, preferably 25 nm or more. If it is less than 20 nm, the rolling resistance tends to increase. The average primary particle size of the small particle size silica (2) is 20 nm or less, preferably 18 nm or less. If it exceeds 20 nm, the rubber strength is insufficient and the wear resistance tends to decrease.

本発明で使用するシランカップリング剤は、下記一般式(1)または(2)で表されるものである。 The silane coupling agent used in the present invention is represented by the following general formula (1) or (2).

(CH2p+1O)Si−C2q−S−CO−C2k+1 (1) (C p H 2p + 1 O ) 3 Si-C q H 2q -S-CO-C k H 2k + 1 (1)

(C2x)(CH2p+1O)Si−C2q−S−CO−C2k+1 (2) (C x H 2x O 2) (C p H 2p + 1 O) Si-C q H 2q -S-CO-C k H 2k + 1 (2)

式中、pは1〜3の整数であるが、2が好ましい。pが4以上ではカップリング反応が遅くなる傾向がある。qは1〜5の整数であるが、3が好ましい。qが0または6以上では合成が困難である。kは5〜12の整数であるが、7〜12の整数であることが好ましい。kが4以下では臭気が強く、作業性が悪化する傾向にあり、逆に13以上ではコストが高くなる傾向にある。シランカップリング剤としては、1種類のみを用いても良く、2種以上を併用してもよい。一般式(2)で表されるシランカップリング剤は、(C2x)の部分がSiとともに環を形成した環状構造を有し、合計3つのSiO結合を有している。とくに、一般式(2)で表されるシランカップリング剤では、シリカと反応する際に、アルコールの発生を抑制することができる。 In the formula, p is an integer of 1 to 3, but 2 is preferable. When p is 4 or more, the coupling reaction tends to be slow. q is an integer of 1 to 5, but 3 is preferable. When q is 0 or 6 or more, synthesis is difficult. k is an integer of 5 to 12, but is preferably an integer of 7 to 12. If k is 4 or less, the odor is strong and the workability tends to deteriorate. Conversely, if k is 13 or more, the cost tends to increase. As a silane coupling agent, only 1 type may be used and 2 or more types may be used together. The silane coupling agent represented by the general formula (2) has a cyclic structure in which a part of (C x H 2x O 2 ) forms a ring with Si, and has a total of three SiO bonds. In particular, the silane coupling agent represented by the general formula (2) can suppress the generation of alcohol when reacting with silica.

シランカップリング剤の配合量は、シリカ100重量部に対して、0.1〜20重量部である。シリカの配合量が0.1重量部未満では、転がり抵抗が増大する傾向にあり、20重量部をこえると、性能の向上効果が小さく非経済である。シランカップリング剤の配合量の上限は、16重量部が好ましく、下限は2重量部が好ましく、4重量部がより好ましい。 The compounding quantity of a silane coupling agent is 0.1-20 weight part with respect to 100 weight part of silica. If the amount of silica is less than 0.1 parts by weight, the rolling resistance tends to increase, and if it exceeds 20 parts by weight, the performance improvement effect is small and uneconomical. The upper limit of the amount of the silane coupling agent is preferably 16 parts by weight, and the lower limit is preferably 2 parts by weight, more preferably 4 parts by weight.

本発明のゴム組成物は、充填剤としてカーボンブラックを含むこともできる。使用することのできるカーボンブラックの例としては、HAF、ISAF、SAF、FEF、GPFなどがあげられるが、とくに限定されるものではない。 The rubber composition of the present invention can also contain carbon black as a filler. Examples of carbon black that can be used include HAF, ISAF, SAF, FEF, and GPF, but are not particularly limited.

本発明で使用する加硫促進剤は、下記一般式(3)で表されるものである。 The vulcanization accelerator used in the present invention is represented by the following general formula (3).

(C−CHN−(C=S)−S−(C=S)−N(CH−C(3) (C 6 H 5 -CH 2) 2 N- (C = S) -S y - (C = S) -N (CH 2 -C 6 H 5) 2 (3)

式中、yは1〜8の整数であるが、2がより好ましい。yが9以上では合成が困難である。 In the formula, y is an integer of 1 to 8, and 2 is more preferable. If y is 9 or more, synthesis is difficult.

前記加硫促進剤の配合量は、前記ゴム成分100重量部に対して、0.1〜5重量部である。加硫促進剤の配合量が0.1重量部未満では、加硫を促進する効果が得られず、5重量部をこえると、ブルーミングが生じる。加硫促進剤の配合量の上限は、4重量部が好ましく、3重量部がより好ましく、下限は0.2重量部が好ましい。 The amount of the vulcanization accelerator is 0.1 to 5 parts by weight with respect to 100 parts by weight of the rubber component. If the blending amount of the vulcanization accelerator is less than 0.1 parts by weight, the effect of promoting vulcanization cannot be obtained, and if it exceeds 5 parts by weight, blooming occurs. The upper limit of the amount of the vulcanization accelerator is preferably 4 parts by weight, more preferably 3 parts by weight, and the lower limit is preferably 0.2 parts by weight.

前記加硫促進剤は、他の加硫促進剤と併用することもできる。他の加硫促進剤としては、グアニジン系加硫促進剤、スルフェンアミド系加硫促進剤などがあげられる。 The vulcanization accelerator can be used in combination with other vulcanization accelerators. Examples of other vulcanization accelerators include guanidine vulcanization accelerators and sulfenamide vulcanization accelerators.

グアニジン系加硫促進剤としては、例えば、ジフェニルグアニジン、ジオルトトリグアニジン、トリフェニルグアニジン、オルトトリルビグアニド、ジフェニルグアニジンフタレートなどがあげられる。併用する場合のグアニジン系加硫促進剤の含有量は、ゴム成分100重量部に対して、0.1重量部以上、好ましくは0.5重量部以上である。グアニジン系加硫促進剤の含有量が0.1重量部未満では、加硫速度を速める効果が不充分である。また、グアニジン系加硫促進剤の含有量は、ゴム成分100重量部に対して、4重量部以下、好ましくは3重量部以下である。グアニジン系加硫促進剤の含有量が4重量部をこえると、ゴム中への溶解限度をこえ、ゴム表面にブルーム(析出)してくる。 Examples of the guanidine vulcanization accelerator include diphenyl guanidine, diort triguanidine, triphenyl guanidine, orthotolyl biguanide, diphenyl guanidine phthalate and the like. When used in combination, the content of the guanidine vulcanization accelerator is 0.1 parts by weight or more, preferably 0.5 parts by weight or more with respect to 100 parts by weight of the rubber component. When the content of the guanidine vulcanization accelerator is less than 0.1 parts by weight, the effect of increasing the vulcanization speed is insufficient. The content of the guanidine vulcanization accelerator is 4 parts by weight or less, preferably 3 parts by weight or less with respect to 100 parts by weight of the rubber component. When the content of the guanidine vulcanization accelerator exceeds 4 parts by weight, it exceeds the solubility limit in rubber and blooms (deposits) on the rubber surface.

スルフェンアミド系加硫促進剤は、一般式(1)で表される。 The sulfenamide vulcanization accelerator is represented by the general formula (1).

Figure 0004843549
Figure 0004843549

一般式(1)中において、Rは、炭素数1〜18の直鎖アルキル基または分岐鎖アルキル基を示す。Rはとくに分岐鎖アルキル基が好ましい。 In General formula (1), R shows a C1-C18 linear alkyl group or branched alkyl group. R is particularly preferably a branched alkyl group.

スルフェンアミド系加硫促進剤としては、具体的に、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(TBBS)、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)などがあげられる。なかでも、ゴム中への分散性、加硫物性の安定性がよいという効果が得られることから、スルフェンアミド系加硫促進剤(C)としては、TBBSが好ましい。 Specific examples of the sulfenamide vulcanization accelerator include N-tert-butyl-2-benzothiazolylsulfenamide (TBBS) and N-cyclohexyl-2-benzothiazolylsulfenamide (CBS). can give. Of these, TBBS is preferred as the sulfenamide-based vulcanization accelerator (C) because the effect of good dispersibility in rubber and stability of vulcanized physical properties can be obtained.

併用する場合のスルフェンアミド系加硫促進剤の含有量は、ゴム成分100重量部に対して、0.1重量部以上、好ましくは0.5重量部以上である。スルフェンアミド系加硫促進剤の含有量が0.1重量部未満では、架橋が十分でなくなるため、ゴム物性に劣る。また、スルフェンアミド系加硫促進剤の含有量は、ゴム成分100重量部に対して、4重量部以下、好ましくは3重量部以下である。スルフェンアミド系加硫促進剤の含有量が4重量部をこえると、ゴム中への限界溶解度をこえ、表面へ析出する。 When used in combination, the content of the sulfenamide vulcanization accelerator is at least 0.1 part by weight, preferably at least 0.5 part by weight, based on 100 parts by weight of the rubber component. When the content of the sulfenamide-based vulcanization accelerator is less than 0.1 parts by weight, the crosslinking becomes insufficient and the rubber properties are inferior. Further, the content of the sulfenamide vulcanization accelerator is 4 parts by weight or less, preferably 3 parts by weight or less with respect to 100 parts by weight of the rubber component. When the content of the sulfenamide vulcanization accelerator exceeds 4 parts by weight, it exceeds the limit solubility in rubber and precipitates on the surface.

なお、本発明のゴム組成物には、前記ゴム成分、シリカ、シランカップリング剤、カーボンブラック、加硫促進剤のほかに、必要に応じて、クレー、水酸化アルミニウム、炭酸カルシウムなどの無機充填剤、プロセスオイル、軟化剤、老化防止剤、加硫剤、加硫促進助剤などの通常のゴム工業で使用される配合剤を適宜配合することができる。 In addition to the rubber component, silica, silane coupling agent, carbon black, and vulcanization accelerator, the rubber composition of the present invention includes inorganic filler such as clay, aluminum hydroxide, and calcium carbonate as necessary. A compounding agent used in a normal rubber industry such as an agent, a process oil, a softening agent, an anti-aging agent, a vulcanizing agent, and a vulcanization accelerating aid can be appropriately blended.

本発明のゴム組成物は、タイヤトレッド、カーカス、ベルト、サイドウォール、ビードなどのタイヤ部材、防振ゴム、ベルト、ホース、その他の各種産業ゴムなどに好適に使用することができる。タイヤ部材の中でも、ウエット性能と転がり抵抗性の両立、および摩耗性能という観点から、タイヤトレッドに使用することが好ましい。 The rubber composition of the present invention can be suitably used for tire members such as tire treads, carcass, belts, sidewalls and beads, anti-vibration rubbers, belts, hoses, and other various industrial rubbers. Among tire members, it is preferable to use the tire tread from the viewpoints of both wet performance and rolling resistance and wear performance.

本発明のタイヤは、バンバリーミキサー、オープンロールなどのゴム混練機を用いて混練して得られた前記ゴム組成物に、必要に応じて各種添加剤を混練し、得られた未加硫ゴム組成物を、タイヤのトレッドの形状に合わせて押し出し加工し、タイヤ成型機上にて未加硫タイヤを形成し、さらに、この未加硫タイヤを加硫機中で加熱加圧することで製造される。ここで、トレッドへの加工は、シート状にしたものを所定の形状に張り合わせる方法、または2本以上の押出機に装入して押出機のヘッド出口で2層に形成する方法により作成することができる。 The tire of the present invention is obtained by kneading various additives as necessary to the rubber composition obtained by kneading using a rubber kneader such as a Banbury mixer or an open roll, and obtaining the unvulcanized rubber composition It is manufactured by extruding an object according to the shape of the tire tread, forming an unvulcanized tire on a tire molding machine, and further heating and pressurizing the unvulcanized tire in a vulcanizer. . Here, the processing into the tread is created by a method of pasting the sheet into a predetermined shape, or a method of charging two or more extruders and forming them in two layers at the head outlet of the extruder. be able to.

実験例以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明を限定するものではない。 Experimental Examples Hereinafter, the present invention will be specifically described based on examples, but these do not limit the present invention.

以下に、実施例および比較例で用いた各種薬品および試験方法を記載する。 The various chemicals and test methods used in the examples and comparative examples are described below.

<各種薬品>
ジエン系ゴム:旭化成(株)製のE15(スチレン−ブタジエン共重合体)
シリカ(1):デグサ(株)製のウルトラシルU360、平均1次粒子径28nm)
シリカ(2):デグサ(株)製のウルトラシルVN3、平均1次粒子径15nm)
カップリング剤:デグサ(株)製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
カップリング剤A:GE東芝シリコーン(株)製のNXT
(CH2p+1O)Si−C2q−S−CO−C2k+1
(p=2、q=3、k=7)
カップリング剤B:GE東芝シリコーン(株)製のNXT−LV
(CHO)(CH2p+1O)Si−C2q−S−CO−C2k+1
(p=2、q=3、k=7)
酸化亜鉛:三井金属鉱業(株)亜鉛華1号
ステアリン酸:日本油脂(株)製の「椿」
アロマチックオイル:出光興産(株)製のダイアナプロセスAH−24
老化防止剤:住友化学(株)製のアンチゲン6C
ワックス:大内新興化学工業(株)製のサンノックN
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤CZ:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤DPG:大内新興化学工業(株)製のノクセラーD(ジフェニルグアニジン)
加硫促進剤α:大内新興化学工業(株)製のノクセラーTBzTD
<Various chemicals>
Diene rubber: E15 (styrene-butadiene copolymer) manufactured by Asahi Kasei Corporation
Silica (1): Ultrasil U360 manufactured by Degussa Co., Ltd., average primary particle size 28 nm)
Silica (2): Ultrasil VN3 manufactured by Degussa Co., Ltd., average primary particle size 15 nm)
Coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa Co., Ltd.
Coupling agent A: NXT manufactured by GE Toshiba Silicone Co., Ltd.
(C p H 2p + 1 O ) 3 Si-C q H 2q -S-CO-C k H 2k + 1
(P = 2, q = 3, k = 7)
Coupling agent B: NXT-LV manufactured by GE Toshiba Silicone Co., Ltd.
(C 2 H 4 O 2) (C p H 2p + 1 O) 3 Si-C q H 2q -S-CO-C k H 2k + 1
(P = 2, q = 3, k = 7)
Zinc oxide: Mitsui Kinzoku Mining Co., Ltd.
Aromatic oil: Diana Process AH-24 manufactured by Idemitsu Kosan Co., Ltd.
Anti-aging agent: Antigen 6C manufactured by Sumitomo Chemical Co., Ltd.
Wax: Sunnock N manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Sulfur: Powder sulfur vulcanization accelerator manufactured by Karuizawa Sulfur Co., Ltd. CZ: Noxeller CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical
Vulcanization accelerator DPG: Noxeller D (diphenylguanidine) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Vulcanization accelerator α: Noxeller TBzTD made by Ouchi Shinsei Chemical Co., Ltd.

(C−CHN−(C=S)−S−(C=S)−N(CH−C (C 6 H 5 -CH 2) 2 N- (C = S) -S 2 - (C = S) -N (CH 2 -C 6 H 5) 2

(加工性)
JIS K6300に定められたムーニー粘度の測定法に従い、前記未加硫ゴム組成物のムーニー粘度を100℃で測定した。比較例1のムーニー粘度(ML1+4)を100とし、下記計算式で指数表示した。指数が大きいほど、ムーニー粘度が低く、加工性に優れている。
(Processability)
The Mooney viscosity of the unvulcanized rubber composition was measured at 100 ° C. according to the Mooney viscosity measurement method defined in JIS K6300. The Mooney viscosity (ML 1 + 4 ) of Comparative Example 1 was set to 100, and indexed by the following calculation formula. The larger the index, the lower the Mooney viscosity and the better the processability.

(ムーニー粘度指数) =(比較例1のML1+4)/(各配合のML1+4)× 100 (Mooney viscosity index) = (ML 1 + 4 of Comparative Example 1) / (ML 1 + 4 of each formulation) × 100

また、JIS K 6300に記載されている振動式加硫試験機(キュラストメーター)を用い、測定温度160℃で加硫試験を行なって、時間とトルクとをプロットした加硫速度曲線を得た。加硫速度曲線のトルクの最小値をML、最大値をMH、その差(MH−ML)をMEとしたとき、ML+0.95MEに到達する時間T95(分)を読み取った。 Further, a vulcanization test was performed at a measurement temperature of 160 ° C. using a vibration type vulcanization tester (curast meter) described in JIS K 6300 to obtain a vulcanization rate curve in which time and torque were plotted. . When the minimum value of the torque of the vulcanization speed curve is ML, the maximum value is MH, and the difference (MH−ML) is ME, time T 95 (minute) to reach ML + 0.95ME was read.

(転がり抵抗指数)
転がり抵抗試験機を用い、試供タイヤをリム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例1を100としたときの指数で表示した。指数が大きいほど、良好である。
(Rolling resistance index)
A rolling resistance tester was used to measure the rolling resistance when the sample tire was run at a rim (15 × 6JJ), internal pressure (230 kPa), load (3.43 kN), speed (80 km / h), and Comparative Example 1 Is expressed as an index when the value is 100. The larger the index, the better.

(ウエットスキッド性能)
湿潤アスファルト路面において、初速度100km/hからの制動距離を求め、下記式にしたがって計算して指数で表示した。指数が大きいほど、ウエットスキッド性能が良好である。
(Wet skid performance)
On the wet asphalt road surface, the braking distance from the initial speed of 100 km / h was obtained, calculated according to the following formula, and displayed as an index. The larger the index, the better the wet skid performance.

(ウエットスキッド性能)=(比較例1の制動距離)÷(各十指令の制動距離)×100 (Wet skid performance) = (braking distance of comparative example 1) ÷ (braking distance of 10 commands) × 100

(耐摩耗性能)
試供タイヤを実車走行させ、30000km走行前後のパターン溝深さの変化を求め、比較例1を100としたときの指数で表示した。指数が大きいほど、摩耗特性が良好である。
(Abrasion resistance)
The sample tire was run on a real vehicle, the change in pattern groove depth before and after running 30000 km was determined, and displayed as an index when Comparative Example 1 was taken as 100. The higher the index, the better the wear characteristics.

(操縦安定性)
試供タイヤを車輌(国産FF車2000cc)の全輪に装着してテストコースを実車走行し、ドライバーの官能評価により操縦安定性を評価した。評価は10点を満点とし、比較例1を6点として相対評価を行った。評点は大きいほうが良好である。
(Maneuvering stability)
The test tires were mounted on all wheels of a vehicle (domestic FF car 2000cc) and the vehicle was run on the test course, and the driving stability was evaluated by sensory evaluation of the driver. Evaluation was made relative with 10 points being the perfect score and Comparative Example 1 being 6 points. The higher the score, the better.

実施例1〜4および比較例1〜4
下記の表1に示す配合処方に従って、SBR、シリカ、シランカップリング剤、アロマチックオイル、酸化亜鉛、ステアリン酸、老化防止剤、ワックスをバンバリー型ミキサーで3分間混練した。得られたゴム組成物に、硫黄、加硫促進剤をロールで練り込み、未加硫ゴム組成物を得た。
Examples 1-4 and Comparative Examples 1-4
In accordance with the formulation shown in Table 1 below, SBR, silica, silane coupling agent, aromatic oil, zinc oxide, stearic acid, antioxidant, and wax were kneaded for 3 minutes with a Banbury mixer. Sulfur and a vulcanization accelerator were kneaded with a roll into the obtained rubber composition to obtain an unvulcanized rubber composition.

得られた未加硫ゴム組成物をトレッド形状に成形して、他のタイヤ部材と貼りあわせ、175℃および20kgfの条件にて12分間加硫することにより、乗用車用タイヤ(タイヤサイズ:195/65R15)を製造し、試験に用いた。 The obtained unvulcanized rubber composition was molded into a tread shape, bonded to another tire member, and vulcanized for 12 minutes under the conditions of 175 ° C. and 20 kgf, whereby a tire for a passenger car (tire size: 195 / 65R15) was manufactured and used for testing.

Figure 0004843549
Figure 0004843549

Figure 0004843549
Figure 0004843549

表1および2の結果から明らかなように、特定のシランカップリング剤と特定の加硫促進剤を配合したゴム組成物から得られたタイヤでは、加工性に優れるとともに、転がり抵抗指数、ウエットスキッド性能、耐摩耗性能、操縦安定性のバランスに優れ、車輌の低燃費化を達成できることがわかる。 As is apparent from the results of Tables 1 and 2, the tire obtained from the rubber composition containing a specific silane coupling agent and a specific vulcanization accelerator has excellent processability, rolling resistance index, and wet skid. It can be seen that it has a good balance of performance, wear resistance, and steering stability, and can achieve low fuel consumption of the vehicle.

Claims (4)

ゴム成分100重量部に対してシリカを15〜150重量部、下記一般式(1):
(C2p+1O)Si−C2q−S−CO−C2k+1 (1)
(式中、pは1〜3の整数、qは1〜5の整数、kは5〜12の整数である。)、または下記一般式(2):
(C2x)(C2p+1O)Si−C2q−S−CO−C2k+1 (2)
(式中、pは1〜3の整数、qは1〜5の整数、kは5〜12の整数、xは3〜6の整数である。)
で表されるシランカップリング剤をシリカ100重量部に対して0.1〜20重量部、および
下記一般式(3):
(C−CHN−(C=S)−S−(C=S)−N(CH−C(3)
(式中、yは1〜8の整数である。)
で表される加硫促進剤をゴム成分100重量部に対して0.1〜5重量部含有するゴム組成物であって、
前記ゴム成分100重量部に対して、平均一次粒子径が20nm以上のシリカを10重量部以上、および平均一次粒子径が20nm未満のシリカを5重量部以上含有するゴム組成物
15 to 150 parts by weight of silica per 100 parts by weight of the rubber component, the following general formula (1):
(C p H 2p + 1 O ) 3 Si-C q H 2q -S-CO-C k H 2k + 1 (1)
(Wherein p is an integer of 1 to 3, q is an integer of 1 to 5, and k is an integer of 5 to 12), or the following general formula (2):
(C x H 2x O 2) (C p H 2p + 1 O) Si-C q H 2q -S-CO-C k H 2k + 1 (2)
(In the formula, p is an integer of 1 to 3, q is an integer of 1 to 5, k is an integer of 5 to 12, and x is an integer of 3 to 6.)
0.1 to 20 parts by weight of the silane coupling agent represented by the following formula (3):
(C 6 H 5 -CH 2) 2 N- (C = S) -S y - (C = S) -N (CH 2 -C 6 H 5) 2 (3)
(In the formula, y is an integer of 1 to 8.)
In the vulcanization accelerator represented by a rubber composition containing 0.1 to 5 parts by weight per 100 parts by weight of the rubber component,
A rubber composition containing 10 parts by weight or more of silica having an average primary particle diameter of 20 nm or more and 5 parts by weight or more of silica having an average primary particle diameter of less than 20 nm with respect to 100 parts by weight of the rubber component .
前記ゴム成分がスチレン−ブタジエンゴムを含有する請求項1記載のゴム組成物。The rubber composition according to claim 1, wherein the rubber component contains styrene-butadiene rubber. 前記ゴム成分100重量部に対して、グアニジン系加硫促進剤を0.1〜4重量部、スルフェンアミド系加硫促進剤を0.1〜4重量部含有する請求項1または2記載のゴム組成物。The guanidine vulcanization accelerator is contained in 0.1 to 4 parts by weight and the sulfenamide vulcanization accelerator is contained in 0.1 to 4 parts by weight with respect to 100 parts by weight of the rubber component. Rubber composition. 請求項1〜3のいずれかに記載のゴム組成物から形成されたトレッドを有するタイヤ。 A tire having a tread formed from the rubber composition according to any one of claims 1 to 3 .
JP2007098367A 2007-04-04 2007-04-04 Rubber composition Active JP4843549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098367A JP4843549B2 (en) 2007-04-04 2007-04-04 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098367A JP4843549B2 (en) 2007-04-04 2007-04-04 Rubber composition

Publications (2)

Publication Number Publication Date
JP2008255212A JP2008255212A (en) 2008-10-23
JP4843549B2 true JP4843549B2 (en) 2011-12-21

Family

ID=39979118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098367A Active JP4843549B2 (en) 2007-04-04 2007-04-04 Rubber composition

Country Status (1)

Country Link
JP (1) JP4843549B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294047B2 (en) * 2007-10-18 2013-09-18 住友ゴム工業株式会社 Rubber composition for tread, tread and tire
JP6228201B2 (en) * 2013-06-27 2017-11-08 住友ゴム工業株式会社 Pneumatic tire
JP6173078B2 (en) * 2013-07-08 2017-08-02 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376585C (en) * 1997-08-21 2008-03-26 通用电气公司 Blocked mercaptosilane coupling agent for filled rubber
JP3384794B2 (en) * 2001-06-05 2003-03-10 住友ゴム工業株式会社 Rubber composition for tire tread and pneumatic tire using the same
CN101880415B (en) * 2002-07-09 2013-05-22 莫门蒂夫性能材料股份有限公司 Silica-rubber mixtures having improved hardness
WO2005049493A1 (en) * 2003-11-18 2005-06-02 The Yokohama Rubber Co., Ltd. Silica treated with silane coupling agent and rubber composition containing same
JP2005281621A (en) * 2004-03-30 2005-10-13 Toyo Tire & Rubber Co Ltd Rubber composition for pneumatic tire and pneumatic tire
WO2006028254A1 (en) * 2004-09-10 2006-03-16 The Yokohama Rubber Co., Ltd. Rubber composition for tires
JP4566888B2 (en) * 2005-01-28 2010-10-20 住友ゴム工業株式会社 Rubber composition and tire having tread using the same
DE102005038791A1 (en) * 2005-08-17 2007-02-22 Degussa Ag New organosilicon compounds based on triethanolamine, useful as components of rubber mixtures for making e.g. tires, tubes and cable coatings
JP2007154130A (en) * 2005-12-08 2007-06-21 Yokohama Rubber Co Ltd:The Rubber composition for tire and its manufacturing method
JP2007238803A (en) * 2006-03-09 2007-09-20 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and method for producing the same
DE102006027235A1 (en) * 2006-06-09 2008-01-17 Evonik Degussa Gmbh rubber compounds

Also Published As

Publication number Publication date
JP2008255212A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5074077B2 (en) Rubber composition
JP5006617B2 (en) Rubber composition and tire having tread using the same
JP4823846B2 (en) Rubber composition and tire having tread and sidewall using the same
JP4663687B2 (en) Rubber composition and tire having tread and / or sidewall using the same
US8293833B2 (en) Rubber composition and tire having tread and/or sidewall using same
EP1803770B1 (en) Rubber composition and tire using the same
JP5154071B2 (en) Rubber composition and tire using the same
JP2009120819A (en) Rubber composition and pneumatic tire using it
JP5281109B2 (en) Rubber composition for cap tread and studless tire
US20130281610A1 (en) Rubber composition for tread and pneumatic tire using the same for tread
JP5117035B2 (en) Rubber composition for tire and tire having tread using the same
JP5658098B2 (en) Rubber composition for tread and pneumatic tire
JP2011099057A (en) Rubber composition for cap tread and studless tire
JP6152397B2 (en) Rubber composition and tire
JP6888286B2 (en) Pneumatic tires
US8039538B2 (en) Rubber composition for a tire and tire having a tread using the same
JP4843549B2 (en) Rubber composition
JP6152396B2 (en) Rubber composition and tire
JP3384793B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP5144137B2 (en) Rubber composition for tread and tire having tread using the same
JP2005213353A (en) Manufacturing method of rubber composition, rubber composition and pneumatic tire
JP2017101208A (en) tire
JP5214130B2 (en) Rubber composition and tire having tread using the same
JP5686588B2 (en) Rubber composition for tire and pneumatic tire
JP4472606B2 (en) Rubber composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent or registration of utility model

Ref document number: 4843549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250