[go: up one dir, main page]

JP4841458B2 - Crystal sample shape evaluation method, shape evaluation apparatus, and program - Google Patents

Crystal sample shape evaluation method, shape evaluation apparatus, and program Download PDF

Info

Publication number
JP4841458B2
JP4841458B2 JP2007042653A JP2007042653A JP4841458B2 JP 4841458 B2 JP4841458 B2 JP 4841458B2 JP 2007042653 A JP2007042653 A JP 2007042653A JP 2007042653 A JP2007042653 A JP 2007042653A JP 4841458 B2 JP4841458 B2 JP 4841458B2
Authority
JP
Japan
Prior art keywords
crystal sample
crystal
ray
shape
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007042653A
Other languages
Japanese (ja)
Other versions
JP2008203212A (en
Inventor
健二 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007042653A priority Critical patent/JP4841458B2/en
Publication of JP2008203212A publication Critical patent/JP2008203212A/en
Application granted granted Critical
Publication of JP4841458B2 publication Critical patent/JP4841458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

本発明は、結晶試料の形状評価方法と形状評価装置に関し、特にパッケージに封入されて外部から観察できない結晶試料の形状も評価できる評価方法と評価装置に関する。   The present invention relates to a crystal sample shape evaluation method and a shape evaluation device, and more particularly to an evaluation method and an evaluation device that can also evaluate the shape of a crystal sample that is enclosed in a package and cannot be observed from the outside.

従来、結晶の形状を高精度で測定する方法として、表面粗さ計が広く用いられてきた。特許第2964317号は、試料表面の凹凸を検出する触針と、触針の変位を光学的に拡大して検出する、半導体レーザ、レンズ、光検出素子を含む変位検出手段と、試料と触針を一定の距離に制御する微動機構と、触針と試料の相対的位置を制御するモーター駆動型Zステージと、モーター駆動型XYステージと、全体を制御するコンピュータを有する表面粗さ計を提案している。   Conventionally, a surface roughness meter has been widely used as a method for measuring the shape of a crystal with high accuracy. Japanese Patent No. 2964317 discloses a stylus for detecting irregularities on a sample surface, a displacement detection means including a semiconductor laser, a lens, and a light detection element for optically enlarging and detecting displacement of the stylus, and a sample and a stylus. We propose a surface roughness meter that has a fine movement mechanism that controls the distance to a certain distance, a motor-driven Z stage that controls the relative position of the stylus and the sample, a motor-driven XY stage, and a computer that controls the whole. ing.

特許第2964317号公報 LSI等の半導体装置の製造工程においては、表面粗さ計でウエハの表面形状を測定できるが、半導体チップをエポキシモールド等のパッケージに封入した後は、結晶表面に触針を当接することができず、結晶の表面形状を測定することができなくなる。LSIチップをLSIパッケージに封入した後、素子不良が発生する場合がある。原因の1つとして、パッケージングによる応力の発生によって半導体チップが変形する現象がある。しかし、パッケージを除去すると、変形も元に戻る可能性が高い。パッケージされた半導体チップの形状をそのまま測定するニーズが高まっている。In the manufacturing process of a semiconductor device such as an LSI, the surface shape of a wafer can be measured with a surface roughness meter. After a semiconductor chip is sealed in a package such as an epoxy mold, a stylus is placed on the crystal surface. The contact cannot be made, and the surface shape of the crystal cannot be measured. An element defect may occur after the LSI chip is sealed in the LSI package. One of the causes is a phenomenon that the semiconductor chip is deformed by the generation of stress due to packaging. However, if the package is removed, the deformation is likely to return to its original state. There is an increasing need to measure the shape of a packaged semiconductor chip as it is.

本発明の目的は、パッケージに封入された結晶試料の形状も評価できる形状評価技術を提供することである。   An object of the present invention is to provide a shape evaluation technique that can also evaluate the shape of a crystal sample enclosed in a package.

本発明の他の目的は、パッケージに封入された結晶試料の形状を非破壊で評価できる形状評価技術を提供することである。   Another object of the present invention is to provide a shape evaluation technique capable of nondestructively evaluating the shape of a crystal sample enclosed in a package.

本発明の1観点によれば、
(a)仮想xyz直交座標系を有する空間の、xy面上に結晶試料を配置し、xz面に平行にX線を結晶試料上に照射し、前記結晶試料の所定結晶面からxz面に平行に回折されるX線を検出するように、X線ソース、X線検出器を配置し、y軸回りのωスキャンを行なって回折X線強度が最大となる角度ωを、前記結晶試料面内の位置の関数として検出する工程と、
(b)回折X線強度が最大となる角度ωを前記結晶試料のx軸方向に積分し、前記結晶試料のx軸方向の形状を評価する工程と、
を含む結晶試料の形状評価方法
が提供される。
According to one aspect of the present invention,
(A) A crystal sample is arranged on an xy plane in a space having a virtual xyz orthogonal coordinate system, X-rays are irradiated on the crystal sample in parallel to the xz plane, and parallel to the xz plane from a predetermined crystal plane of the crystal sample. An X-ray source and an X-ray detector are arranged so as to detect X-rays diffracted in the same direction, and an ω scan around the y-axis is performed to determine an angle ω that maximizes the diffracted X-ray intensity in the crystal sample plane. Detecting as a function of the position of
(B) integrating the angle ω at which the diffracted X-ray intensity is maximum in the x-axis direction of the crystal sample, and evaluating the shape of the crystal sample in the x-axis direction;
A method for evaluating the shape of a crystal sample containing

本発明の他の観点によれば、
上記結晶試料の形状評価方法をコンピュータを介して実行するプログラム
が提供される。
According to another aspect of the invention,
A program for executing the above-described crystal sample shape evaluation method via a computer is provided.

本発明のさらに他の観点によれば、
上記プログラムを搭載したX線回折装置を含む結晶試料の形状評価装置
が提供される。
According to yet another aspect of the invention,
A crystal sample shape evaluation apparatus including an X-ray diffractometer equipped with the above program is provided.

パッケージに封入された結晶試料であっても、パッケージがX線を透過させる材料であれば、非破壊で結晶試料の形状を評価できる。   Even if the crystal sample is enclosed in a package, the shape of the crystal sample can be evaluated nondestructively if the package is a material that transmits X-rays.

以下、図面を参照して、本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1A,1BはX線回折装置の構成を概略的に示す断面図、図1C,1Dはωスキャン、χスキャンを示すダイアグラム、図1Eは結晶試料のある結晶面によるX線回折を示すダイアグラムである。   1A and 1B are cross-sectional views schematically showing the configuration of an X-ray diffractometer, FIGS. 1C and 1D are diagrams showing ω scan and χ scan, and FIG. 1E is a diagram showing X-ray diffraction by a crystal plane of a crystal sample. is there.

図1Aに示すように、X線回折装置の試料ステージ10は、回転軸11の上に、面内並進ステージ12,13、鉛直並進ステージ14が載っている構造を有する。図中に示すように、空間に仮想直交座標x、y、zを取り、試料ステージに直交座標x、y、zを取る。回転軸11はz軸回りにφ回転を行い、並進ステージ12はx方向に並進するステージを構成し、並進ステージ13はy方向に並進するステージを構成し、鉛直並進ステージ14はz方向に並進するステージを構成する。図示の配置では、x、y.zはそれぞれ、x、y、z軸に平行であるが、φを90度回転すれば、x、y.zはそれぞれ、y、−x、z軸に平行になる。なお、試料ステージ10は、φ回転、3次元並進機能を有すれば、各ステージ11〜14の上下関係を変更してもよい。 As shown in FIG. 1A, the sample stage 10 of the X-ray diffractometer has a structure in which in-plane translation stages 12 and 13 and a vertical translation stage 14 are mounted on a rotating shaft 11. As shown in the figure, virtual orthogonal coordinates x 0 , y 0 , z 0 are taken in the space, and orthogonal coordinates x 1 , y 1 , z 1 are taken in the sample stage. Rotary shaft 11 performs a rotation φ to z 1 axis, translation stage 12 constitutes a stage for translating the x 1 direction, the translation stage 13 constitutes a stage for translating the y 1 direction, vertical translation stage 14 z A stage that translates in one direction is formed. In the illustrated arrangement, x 1 , y 1 . z 1 is parallel to the x 0 , y 0 , and z 0 axes, respectively, but if φ is rotated by 90 degrees, x 1 , y 1 . z 1 is parallel to the y 0 , −x 0 , and z 0 axes, respectively. In addition, if the sample stage 10 has a φ rotation and a three-dimensional translation function, the vertical relationship between the stages 11 to 14 may be changed.

ステージ10は、その上に結晶試料18を載置し、結晶試料18をφ回転、およびx、y、z方向に並進することができる。X線ソースからX線を結晶試料18上に照射し、回折X線をX線検出器で検出する。 The stage 10 mounts the crystal sample 18 thereon, and can translate the crystal sample 18 in φ rotation and in the x 1 , y 1 , and z 1 directions. The crystal sample 18 is irradiated with X-rays from an X-ray source, and diffracted X-rays are detected with an X-ray detector.

図1Bに示すように、X線ソース15、X線検出器16がx面内に配置され、回折角度2θを調整できる。回折角度が0の時は、X線ソース15、X線検出器16は水平面上で互いに対向する。さらに、X線ソース15、X線検出器16は、回折角度2θを固定した状態で、x面内でy軸回りのω回転、y面内でx軸回りのχ回転をすることができる。 As shown in FIG. 1B, the X-ray source 15 and the X-ray detector 16 are arranged in the x 0 z 0 plane, and the diffraction angle 2θ can be adjusted. When the diffraction angle is 0, the X-ray source 15 and the X-ray detector 16 face each other on the horizontal plane. Furthermore, X-rays source 15, X-rays detector 16 is in a state of fixing the diffraction angle 2 [Theta], x 0 z 0 plane at y 0 around the axis ω rotation, with y 0 z 0 plane x 0 axis about χ rotation is possible.

図1C,1Dは、x面内のωスキャン、y面内のχスキャンを概略的に示すダイアグラムである。 Figure 1C, 1D are x 0 z 0 plane of ω scan, y 0 z 0 diagram schematically showing the χ scan in plane.

なお、ωスキャン、χスキャンはX線と結晶試料との間の角度の走査であり、X線ソース15、X線検出器16を回転する代わりに、ステージ10を回転するようにしてもよい。   The ω scan and χ scan are scans of an angle between the X-ray and the crystal sample, and the stage 10 may be rotated instead of rotating the X-ray source 15 and the X-ray detector 16.

図1Eは、結晶試料のある結晶面による回折を示すダイアグラムである。たとえば、Si基板を用いたMOSLSIの場合、Si基板は通常(001)基板18であり、基板表面に平行に(00n)結晶面19が存在する。X線の波長をλ、所定の結晶面19の間隔をdとすると、λ = 2d*sinθ の関係を満たす時、X線の回折が生じる。入射X線がx面内を進行する時、結晶面の法線もx面内になくてはならない。χスキャンによってこの角度を調整できる。また。入射X線と回折X線は、結晶面の法線に対して対称な角度でなくてはならない。ωスキャンによって、この角度を調整できる。λ = 2d*sinθ の関係を満たす時、回折X線強度は最大となる。結晶面が傾くと回折X線強度は低下する。 FIG. 1E is a diagram showing diffraction by a crystal plane of a crystal sample. For example, in the case of MOS LSI using a Si substrate, the Si substrate is usually a (001) substrate 18, and a (00n) crystal plane 19 exists in parallel to the substrate surface. Assuming that the wavelength of the X-ray is λ and the interval between the predetermined crystal planes 19 is d, X-ray diffraction occurs when the relationship of λ = 2d * sin θ is satisfied. When incident X-rays travel in the x 0 z 0 plane, the normal of the crystal plane must also be in the x 0 z 0 plane. This angle can be adjusted by χ scan. Also. Incident X-rays and diffracted X-rays must be symmetric with respect to the normal of the crystal plane. This angle can be adjusted by ω scanning. When the relationship of λ = 2d * sin θ is satisfied, the diffracted X-ray intensity is maximized. When the crystal plane is tilted, the diffracted X-ray intensity decreases.

逆に言うと、ωスキャン、χスキャンを行なって、回折X線強度が最大になるω、χを求めると、X線が照射している面の結晶面の傾きを知ることができる。   In other words, by performing ω scan and χ scan to obtain ω and χ that maximize the diffracted X-ray intensity, the inclination of the crystal plane of the surface irradiated with the X-ray can be known.

図2A,2Bは、結晶試料の表面が平坦である時のωスキャンを示す断面図とグラフ、図2C,2Dは、結晶面が上方に凸の場合のωスキャンを示す断面図とグラフである。   2A and 2B are cross-sectional views and graphs showing ω scan when the surface of the crystal sample is flat, and FIGS. 2C and 2D are cross-sectional views and graphs showing ω scan when the crystal surface is convex upward. .

図2Aに示すように、結晶試料18の表面が平坦な場合、表面と平行な結晶面も平坦である。x方向に沿って少しずつ位置を変えながらωスキャンを行なうと、どのx位置でも回折X線の強度が最大になる角度ωは一定である。この角度を、角度0とする。 As shown in FIG. 2A, when the surface of the crystal sample 18 is flat, the crystal plane parallel to the surface is also flat. Performing ω scan while changing the position slightly along the x 0 direction, the intensity of the diffracted X-rays at any x 0 position is constant ω angle becomes maximum. This angle is defined as angle 0.

図2Bは、結晶試料のx方向位置に対する角度ωの変化を示すグラフである。全ての位置で角度ωは0である。結晶試料表面のx方向形状は、角度ωの積分によって与えられる。ω = 0(または一定値) であれば、結晶試料表面のx方向形状は平坦であることがわかる。 Figure 2B is a graph showing changes in the angle ω with respect to x 0 direction position of the crystal sample. The angle ω is 0 at all positions. X 0 direction shape of the crystal sample surface is given by the integral of the angle omega. If omega = 0 (or a predetermined value), x 0 direction shape of the crystal sample surface is found to be flat.

図2Cに示すように、結晶試料18の表面が曲がっていると、異なる位置でωスキャンを行なった時、回折X線強度が最大となる角度ωは位置によって異なる。図示のように結晶表面が上方に凸の場合、左から右に向かうと回折X線強度が最大となる角度ωは次第に減少する。   As shown in FIG. 2C, when the surface of the crystal sample 18 is bent, when the ω scan is performed at different positions, the angle ω at which the diffracted X-ray intensity becomes maximum varies depending on the position. As shown in the figure, when the crystal surface is convex upward, the angle ω at which the diffraction X-ray intensity becomes maximum gradually decreases from left to right.

図2Dは、結晶試料のx方向位置に対する角度ωの変化を示すグラフである。角度ωはxの増加と共に正から負に減少する。この角度ωを積分すると、増加率が次第に減少し、飽和した後、減少率が次第に増大して、上方に凸の結晶形状が評価できる。 Figure 2D is a graph showing changes in the angle ω with respect to x 0 direction position of the crystal sample. The angle ω decreases from positive to negative with the increase of x 0. When this angle ω is integrated, the rate of increase gradually decreases, and after saturation, the rate of decrease gradually increases, and an upwardly convex crystal shape can be evaluated.

このように、結晶面上で、X線の進行方向に沿って、位置を変えつつωスキャンを行ない、回折X線強度が最大となる角度ωを検出し、順次積分すれば、X線進行方向に沿う結晶表面の形状を評価することができる。   As described above, if the ω scan is performed while changing the position along the X-ray traveling direction on the crystal plane, and the angle ω at which the diffracted X-ray intensity becomes maximum is detected and sequentially integrated, the X-ray traveling direction is obtained. The shape of the crystal surface along the line can be evaluated.

エポキシモールドされたLSI装置の場合、半導体基板であるSi結晶はエポキシモールドに覆われており、目視することはできない。Si結晶を適切に配置するには、準備作業を行なう方がよい。   In the case of an epoxy-molded LSI device, the Si crystal as a semiconductor substrate is covered with the epoxy mold and cannot be visually observed. In order to appropriately arrange the Si crystal, it is better to perform a preparation work.

図3は、準備工程を示すフローチャートである。ステップST11で、結晶試料18を封止したパッケージ1を、試料ステージ10上中央付近に設置(固定)する。ステップST12で、X線回折角2θを0とし、zステージを下げて、X線がそのままX線検出器に入射する位置関係とする。zステージを上方に走査して、X線強度が約半分になる位置を検出する。この位置で、X線の約半分がパッケージに遮蔽されたことになる(X線の半割)。パッケージ1内の結晶試料18は、パッケージ表面から設計上決められた所定距離下方にある。ステップST13で、この所定距離分zステージを上げる。結晶表面は、X線の中心と高さを合わせるであろう(結晶によるX線の半割)。結晶の高さ調整が行なわれたことになる。 FIG. 3 is a flowchart showing the preparation process. In step ST11, the package 1 in which the crystal sample 18 is sealed is placed (fixed) near the center on the sample stage 10. In step ST12, the X-ray diffraction angle 2θ is 0, lower the z 1 stage, the positional relationship in which the X-ray is incident on the X-ray detector as it is. The z 1 stage is scanned upward to detect a position where the X-ray intensity becomes approximately half. At this position, about half of the X-rays are shielded by the package (half of the X-rays). The crystal sample 18 in the package 1 is below a predetermined distance determined by design from the package surface. In step ST13, increasing the predetermined distance z 1 stage. The crystal surface will be flush with the center of the X-ray (half of the X-ray by the crystal). The crystal height has been adjusted.

ステップST14で、測定対象の結晶面の面間隔により決まる回折角に合わせて、2θを設定する。ここでは、Siの(0020)面を測定対象とし,2θ=131.93°になるように、X線ソース15、X線検出器16の角度を設定した。結晶面が水平であれば、回折X線が生じるが、結晶面が傾いていると回折X線は生じない。ステップST15でωスキャン。χスキャンを行い、結晶からの回折X線を探す。ステップST16で、回折X線が見つかったら、さらにωスキャン、χスキャンを行い、回折X線強度が最大になる角度にする。結晶表面を水平に配置できたことになる。当初パッケージないし結晶の表面が傾いている状態で、X線の半割を行った場合、結晶面の傾きを調整すると、結晶表面によるX線の半割条件がずれることもあり得る。必要に応じてステップST12に戻り、再度ステップST12〜ST16を行なってもよい。このようにして、準備工程を終了する。   In step ST14, 2θ is set in accordance with the diffraction angle determined by the surface spacing of the crystal plane to be measured. Here, the angles of the X-ray source 15 and the X-ray detector 16 were set so that the (0020) plane of Si was measured and 2θ = 131.93 °. If the crystal plane is horizontal, diffracted X-rays are generated, but if the crystal plane is tilted, no diffracted X-rays are generated. Ω scan at step ST15. Perform χ scan to find the diffracted X-rays from the crystal. If a diffracted X-ray is found in step ST16, ω scan and χ scan are further performed to obtain an angle at which the diffracted X-ray intensity becomes maximum. This means that the crystal surface can be arranged horizontally. If X-ray halving is performed while the surface of the package or crystal is initially tilted, the X-ray halving conditions depending on the crystal surface may be shifted if the tilt of the crystal plane is adjusted. If necessary, the process may return to step ST12 and perform steps ST12 to ST16 again. In this way, the preparation process is completed.

図4は、結晶試料の形状評価工程を示すフローチャートである。図1Bに示すX線検出器16としてシンチレーションカウンタを用いた。X線ソース15から出射するX線のエネルギは、エポキシモールドのパッケージを透過して回折測定が行なえるよう、25keVを用いた。測定する結晶試料のサイズは数mm平方程度である。結晶表面でX線を走査し、位置に依存した結晶表面の形状を測定するため、X線のビームサイズを結晶試料のサイズより十分小さい100μm平方程度にした。   FIG. 4 is a flowchart showing a crystal sample shape evaluation step. A scintillation counter was used as the X-ray detector 16 shown in FIG. 1B. The energy of X-rays emitted from the X-ray source 15 was 25 keV so that diffraction measurement could be performed through the epoxy mold package. The size of the crystal sample to be measured is about several mm square. In order to scan the X-ray on the crystal surface and measure the shape of the crystal surface depending on the position, the X-ray beam size was set to about 100 μm square which is sufficiently smaller than the size of the crystal sample.

ステップST21で、(結晶試料中央付近で)ωスキャンを行い、X線回折強度が最大となる角度ωを測定する。この角度ωを基準とする。ステップST22でパッケージのx方向移動を行なう。結晶試料が変形していても、結晶面の傾きが僅かしか変わらない程度の移動距離にする。ステップST23で、新たな位置でのωスキャンを行い、X線回折強度が最大となる角度ωを測定する。角度ωの変化により、位置の変化による結晶面の傾きの変化がわかる。X線の回折強度がある程度あれば、ステップST24から、ステップST22に戻り、ステップST22のx方向移動、ステップST23のωスキャンを繰り返す。X線の照射位置が結晶端部まで達するないし結晶を外れると、X線の回折強度が大きく減少する、ないしはなくなる。この時は、ステップST24からNOの矢印に従い、ステップST25に進み、パッケージのx方向位置を最初の位置に戻す。結晶のどの位置から測定を始めたか不明なので、逆方向の走査を行なうため、元の位置に戻すのである。ステップST26でωスキャンを行い、X線回折強度が最大となる角度ωを測定する。基準とした角度ωの確認であるが、このステップは省略してもよい。ステップST27でパッケージの逆方向のx方向移動を行なう。ステップST28で、新たな位置でのωスキャンを行い、X線回折強度が最大となる角度ωを測定する。角度ωの変化により、逆方向の位置の変化による結晶面の傾きの変化がわかる。X線の回折強度がある程度あれば、ステップST29から、ステップST27に戻り、ステップST27の逆方向のx方向移動、ステップST28のωスキャンを繰り返す。X線の照射位置が結晶端部まで達するないし結晶を外れると、X線の回折強度が大きく減少する、ないしはなくなる。この時、x方向の走査が完了したことになる。ステップST30で測定終了としてもよい。ステップST40で、得られた角度ωの積分を行い、結晶の表面形状を評価する。 In step ST21, a ω scan is performed (near the center of the crystal sample), and the angle ω at which the X-ray diffraction intensity is maximum is measured. This angle ω is used as a reference. Performing x 0 movement of the package in step ST22. Even if the crystal sample is deformed, the moving distance is set such that the inclination of the crystal plane changes only slightly. In step ST23, a ω scan at a new position is performed, and the angle ω at which the X-ray diffraction intensity is maximized is measured. From the change in the angle ω, the change in the tilt of the crystal plane due to the change in position can be seen. If the diffraction intensity of X-rays to some extent, from the step ST24, the process returns to step ST22, x 0 movement of the step ST22, and repeats the ω scan step ST23. When the X-ray irradiation position reaches the end of the crystal or deviates from the crystal, the X-ray diffraction intensity greatly decreases or disappears. At this time, in accordance with a NO arrow from step ST24, the process proceeds to step ST25, returns the x 0 direction position of the package in the first position. Since it is unclear from which position on the crystal the measurement was started, it is returned to its original position in order to scan in the reverse direction. In step ST26, the ω scan is performed, and the angle ω at which the X-ray diffraction intensity is maximized is measured. Although the reference angle ω is confirmed, this step may be omitted. Performing x 0 direction movement backward of the package in step ST27. In step ST28, a ω scan at a new position is performed, and the angle ω at which the X-ray diffraction intensity is maximized is measured. From the change in the angle ω, the change in the tilt of the crystal plane due to the change in the position in the reverse direction can be seen. If the diffraction intensity of X-rays to some extent, from the step ST29, the process returns to step ST27, reverse x 0 movement of the step ST27, and repeats the ω scan step ST28. When the X-ray irradiation position reaches the end of the crystal or deviates from the crystal, the X-ray diffraction intensity greatly decreases or disappears. In this case, so that the x 0 direction of the scan is complete. The measurement may be terminated at step ST30. In step ST40, the obtained angle ω is integrated to evaluate the surface shape of the crystal.

図5A−5B、5C−5D,5E−5F,5G−5Hは、4つのサンプルの回折X線強度が最大となる角度ωのx方向位置依存性を示すグラフと、この角度ωを積分して得た結晶表面形状を示す斜視図である。 Figure 5A-5B, 5C-5D, 5E-5F, 5G-5H is a graph diffracted X-ray intensity of four sample indicates the x 0 direction position dependent angle ω which is a maximum, integrates the angle ω It is a perspective view which shows the crystal surface shape obtained in this way.

図5A,5C,5E,5Gが、試料A,B,C.Dの角度ωのx方向位置依存性を示す。図5B,5D,5F,5Hが、試料A,B,C.Dの角度ωのx方向位置依存性を積分して得た形状変化を示す。エポキシにモールドされ、隠れている結晶の形状を、非破壊で測定評価することができた。変形が大きい時は、大きな歪が発生している可能性があり、LSIの性能劣化の原因となっていることが考えられる。 5A, 5C, 5E, 5G are samples A, B, C.I. It shows the x 0 direction position dependence of the angle ω of D. 5B, 5D, 5F, and 5H show Samples A, B, C.I. It shows the shape changes obtained by integrating the x 0 direction position dependence of the angle ω of D. It was possible to measure and evaluate the shape of the crystal molded and hidden in the epoxy in a non-destructive manner. When the deformation is large, there is a possibility that a large distortion has occurred, which is considered to be a cause of performance degradation of the LSI.

なお、以上のステップは結晶の1方向に沿った形状を測定した。直交方向の測定も行ない、結晶面全体の変形をチェックすることが望まれる場合も多い。その場合は、ステップST30で、試料ステージを90度φ回転し、ステージのy方向をx方向に平行にする。走査していない結晶のy方向が、X線の進行方向であるx方向に沿うようになる。その後、ステップST21に戻り、結晶のy1方向に沿う角度ωの測定を行なう。ステップST30でNOとなったら、測定は終了する。結晶のx方向、y方向のω分布が測定されたので、ステップST40でωを積分して結晶面の形状をシミュレートすると、直交方向での結晶の形状を評価できる。なお、結晶のx方向、y方向に沿う、それぞれストライプ状の対象領域の形状を評価したが、結晶試料全面をそれぞれ走査してもよい。全面を走査する場合に適した第2の実施例を以下に説明する。 In the above steps, the shape along one direction of the crystal was measured. In many cases, it is desirable to perform orthogonal measurement and check the deformation of the entire crystal plane. In that case, in step ST30, the sample stage is rotated 90 degrees phi, to collimate the y 1 direction of the stage in the x 0 direction. Y 1 direction of the scanning and non crystals, so along the x 0 direction which is the traveling direction of the X-ray. Thereafter, the process returns to step ST21, and the angle ω along the y1 direction of the crystal is measured. If NO in step ST30, the measurement ends. X 1 direction of the crystal, because y 1 direction ω distributions were measured and by integrating ω in step ST40 to simulate the shape of the crystal plane can be evaluated crystal shape in the orthogonal direction. Incidentally, x 1 direction of the crystal, along the y 1 direction, has been evaluated the shape of the stripe-shaped target regions, respectively, may be scanned a crystal sample entire respectively. A second embodiment suitable for scanning the entire surface will be described below.

図6Aは、y方向に長いストライプ領域を照射し、X線照射された結晶面の各y方向位置での傾きを同時に測定するX線ソース25、X線検出器26を示す概略平面図、図6B,6Cは、結晶試料18のx方向をX線進行方向であるx方向に平行にした走査、結晶試料18のy方向をX線進行方向であるx方向に平行にした走査を概略的に示すダイアグラムである。 6A is irradiated with a long stripe region y 0 direction, schematic plan view illustrating the same time the X-ray source 25, the X-ray detector 26 for measuring the slope at each y 0 direction position of the X-ray irradiated crystal surface FIG 6B, 6C has a x 1 direction of the crystal sample 18 scans were parallel to the x 0 direction is an X-ray traveling direction, parallel to y 1 direction of the crystal sample 18 in the x 0 direction is an X-ray traveling direction 2 is a diagram schematically illustrating the scan performed.

図6Aに示すように、X線検出器26は、多数の測定チャンネルをy方向に沿って配置している。X線ソース25は、X線検出器26の各測定チャンネルに回折X線を供給できるように、y方向に長いX線ビームを供給する。 As shown in FIG. 6A, X-ray detector 26 are arranged along a number of measurement channels in the y 0 direction. X-ray source 25, as can be supplied diffracted X-ray in each measurement channel of the X-ray detector 26, and supplies the long X-ray beam in the y 0 direction.

図6Bに示すように、y方向に長いX線ビーム28を結晶試料18に照射し、x方向に移動させ、各x位置でωスキャンを行なう。比較のため、第1の実施例のスポット状のX線を破線で示す。第2の実施例では、y方向に沿って、結晶試料18を横断するストライプ状X線ビーム28を照射し、x方向に走査することにより、結晶の全面の測定を容易にする。各測定チャンネルは、回折条件に合致した時、回折X線強度が最大となる。y方向に長いストライプ状領域が1回のωスキャンで測定できる。 As shown in FIG. 6B, irradiated with long X-ray beam 28 in the y 0 direction crystal sample 18 is moved in the x 0 direction, perform ω scanning in the x 0 position. For comparison, the spot-like X-ray of the first embodiment is indicated by a broken line. In the second embodiment, along the y 0 direction, by irradiating the stripes X-ray beam 28 that traverses the crystal sample 18, by scanning in the x 0 direction, to facilitate the measurement of the crystal of the entire surface. Each measurement channel has the maximum diffracted X-ray intensity when the diffraction conditions are met. long stripe region y 1 direction can be measured in a single ω scan.

図6Cに示すように、x方向の走査を終了したら、結晶のy方向をx方向と平行にし、結晶のy方向の走査を行なう。ωスキャン自身は図6Bの場合と同様である。測定手順としては、ストライプ状領域にX線を照射し、多数測定チャンネルでストライプ状領域の各点の測定を並列に行なう点以外は、図4の測定手順と同様である。なお、X線ビーム28は、必ずしも結晶試料18を横断する長さでなくてもよい。複数チャンネルで同時測定を行なうことにより、測定手順は簡略化される。さらに測定手順の簡略化される第3の実施例を以下に説明する。 As shown in FIG. 6C, when finished the x 0 direction of the scanning, the y 1 direction of the crystal is parallel to the x 0 direction, it performs y 1 direction of the scan of the crystals. The ω scan itself is the same as in FIG. 6B. The measurement procedure is the same as the measurement procedure of FIG. 4 except that the stripe region is irradiated with X-rays and each point of the stripe region is measured in parallel using a large number of measurement channels. Note that the X-ray beam 28 does not necessarily have a length that crosses the crystal sample 18. By performing simultaneous measurement on multiple channels, the measurement procedure is simplified. Further, a third embodiment in which the measurement procedure is simplified will be described below.

図7Aは、2次元X線検出器36と対応するX線ソース35、および結晶試料18を示す概略斜視図、図7B,7Cは、測定された表面形状を示すダイアグラムである。   FIG. 7A is a schematic perspective view showing the X-ray source 35 corresponding to the two-dimensional X-ray detector 36 and the crystal sample 18, and FIGS. 7B and 7C are diagrams showing the measured surface shapes.

図7Aに示すように、X線ソース35は、結晶試料18全面に面状のX線ビーム38を照射する。2次元X線検出器36は、たとえばX線CCDカメラで構成され、結晶試料18全面から回折されるX線を検出できる大きさを有する。結晶の各位置から回折されるX線は、2次元X線検出器の対応する異なる位置で測定される。1回のωスキャンを行なうと、結晶全面の測定ができる。結晶を面内で90度回転して直交方向のωスキャンを行なえば、結晶全面の直交方向の測定を終了できる。   As shown in FIG. 7A, the X-ray source 35 irradiates the entire surface of the crystal sample 18 with a planar X-ray beam 38. The two-dimensional X-ray detector 36 is composed of, for example, an X-ray CCD camera and has a size capable of detecting X-rays diffracted from the entire surface of the crystal sample 18. X-rays diffracted from each position of the crystal are measured at corresponding different positions of the two-dimensional X-ray detector. When one ω scan is performed, the entire crystal surface can be measured. If the crystal is rotated 90 degrees in the plane and the orthogonal ω scan is performed, the measurement in the orthogonal direction on the entire crystal surface can be completed.

図7B,7Cはこのようにして得た、ω分布を直交方向でそれぞれ積分して得た結晶面の形状を示す。   7B and 7C show the shape of the crystal plane obtained by integrating the ω distribution obtained in this way in the orthogonal direction.

なお、必ずしも結晶全面の測定を1回で行なわなくてもよい。2次元検出器を用いることで面の測定を一度に行なえる。   Note that the measurement of the entire crystal surface is not necessarily performed once. By using a two-dimensional detector, the surface can be measured at a time.

以上、実施例に沿って本発明を説明したが、本発明はこれらに限られるものではない。例えば、種々の変更、置換、改良、組み合わせなどが可能なことは当業者に自明であろう。   As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to these. It will be apparent to those skilled in the art that various modifications, substitutions, improvements, combinations, and the like can be made.

図1A,1BはX線回折装置の構成を概略的に示す断面図、図1C,1Dはωスキャン、χスキャンを示すダイアグラム、図1Eは結晶試料のある結晶面によるX線回折を示すダイアグラムである。1A and 1B are cross-sectional views schematically showing the configuration of an X-ray diffractometer, FIGS. 1C and 1D are diagrams showing ω scan and χ scan, and FIG. 1E is a diagram showing X-ray diffraction by a crystal plane of a crystal sample. is there. 図2A,2Bは、結晶試料の表面が平坦である時のωスキャンを示す断面図とグラフ、図2C,2Dは、結晶面が上方に凸の場合のωスキャンを示す断面図とグラフである。2A and 2B are cross-sectional views and graphs showing ω scan when the surface of the crystal sample is flat, and FIGS. 2C and 2D are cross-sectional views and graphs showing ω scan when the crystal surface is convex upward. . 図3は、準備工程を示すフローチャートである。FIG. 3 is a flowchart showing the preparation process. 図4は、結晶試料の形状評価工程を示すフローチャートである。FIG. 4 is a flowchart showing a crystal sample shape evaluation step. 図5A−5B、5C−5D,5E−5F,5G−5Hは、4つのサンプルの回折X線強度が最大となる角度ωのx方向位置依存性を示すグラフと、この角度ωを積分して得た結晶表面形状を示す斜視図である。Figure 5A-5B, 5C-5D, 5E-5F, 5G-5H is a graph diffracted X-ray intensity of four sample indicates the x 0 direction position dependent angle ω which is a maximum, integrates the angle ω It is a perspective view which shows the crystal surface shape obtained in this way. 図6Aは、y方向に沿うストライプ領域を照射し、各y方向位置での結晶面の傾きを同時に測定するX線ソース25、X線検出器26を示す概略平面図、図6B,6Cは、結晶のx方向をX線進行方向であるx方向に平行にした走査、結晶のy方向をX線進行方向であるx方向に平行にした走査を概略的に示すダイアグラムである。Figure 6A, y 0 irradiating a stripe region along the direction, schematic plan view showing an X-ray source 25, the X-ray detector 26 for simultaneously measuring the inclination of the crystal planes in the respective y 0 direction position, FIG. 6B, 6C the scan was parallel to x 1 direction of the crystal in the x 0 direction is an X-ray traveling direction, the scanning which is parallel to y 1 direction of the crystal in the x 0 direction is an X-ray traveling direction in the diagram schematically illustrating is there. 図7Aは、2次元X線検出器36と対応するX線ソース35、および結晶試料18を示す概略斜視図、図7B,7Cは、測定された表面形状を示すダイアグラムである。FIG. 7A is a schematic perspective view showing the X-ray source 35 corresponding to the two-dimensional X-ray detector 36 and the crystal sample 18, and FIGS. 7B and 7C are diagrams showing the measured surface shapes.

符号の説明Explanation of symbols

1 パッケージ、
10 試料ステージ、
11 回転軸(φ軸)、
12,13,14 並進ステージ、
15,25,35 X線ソース
16,26,36 X線検出器
18 結晶試料
1 package,
10 Sample stage,
11 Rotation axis (φ axis),
12, 13, 14 Translation stage,
15, 25, 35 X-ray source 16, 26, 36 X-ray detector
18 Crystal sample

Claims (7)

(a)仮想xyz直交座標系を有する空間の、xy面上に結晶試料を配置し、xz面に平行にX線を結晶試料上に照射し、前記結晶試料の所定結晶面からxz面に平行に回折されるX線を検出するように、X線ソース、X線検出器を配置し、y軸回りのωスキャンを行なって回折X線強度が最大となる角度ωを、前記結晶試料面内の位置の関数として検出する工程と、
(b)回折X線強度が最大となる角度ωを前記結晶試料のx軸方向に積分し、前記結晶試料のx軸方向の形状を評価する工程と、
を含む結晶試料の形状評価方法。
(A) A crystal sample is arranged on an xy plane in a space having a virtual xyz orthogonal coordinate system, X-rays are irradiated on the crystal sample in parallel to the xz plane, and parallel to the xz plane from a predetermined crystal plane of the crystal sample. An X-ray source and an X-ray detector are arranged so as to detect X-rays diffracted in the same direction, and an ω scan around the y-axis is performed to determine an angle ω that maximizes the diffracted X-ray intensity in the crystal sample plane. Detecting as a function of the position of
(B) integrating the angle ω at which the diffracted X-ray intensity is maximum in the x-axis direction of the crystal sample, and evaluating the shape of the crystal sample in the x-axis direction;
Method for evaluating shape of crystal sample including
前記工程(a)が、
(a−1)結晶試料のあるx位置でωスキャンを行い、回折X線強度が最大となる角度ωを検出する工程と、
(a−2)結晶試料をx方向に並進する工程と、
(a−3)工程(a−1)、(a−2)を繰り返す工程と、
を含む請求項1記載の結晶試料の形状評価方法。
The step (a)
(A-1) performing a ω scan at an x position of the crystal sample to detect an angle ω at which the diffracted X-ray intensity is maximum;
(A-2) translating the crystal sample in the x direction;
(A-3) repeating steps (a-1) and (a-2);
The method for evaluating the shape of a crystal sample according to claim 1, comprising:
前記工程(a)において、前記X線ソースが前記結晶試料上にy方向に長いストライプ状X線ビームを照射し、前記X線検出器がy方向に併設された多数の検出チャンネルを有する請求項2記載の結晶試料の形状評価方法。   In the step (a), the X-ray source irradiates a striped X-ray beam long in the y direction on the crystal sample, and the X-ray detector has a large number of detection channels arranged in the y direction. 2. The method for evaluating the shape of a crystal sample according to 2. 前記工程(a)において、前記X線ソースが前記結晶試料上に面状のX線ビームを照射し、前記X線検出器が2次元X線検出器である請求項1記載の結晶試料の形状評価方法。   The shape of the crystal sample according to claim 1, wherein, in the step (a), the X-ray source irradiates a planar X-ray beam onto the crystal sample, and the X-ray detector is a two-dimensional X-ray detector. Evaluation methods. 前記工程(a)が、さらに前記結晶試料をxy面内で90度回転し、ωスキャンを行ない、回折X線強度が最大となる角度ωを、前記結晶試料面内の位置の関数として検出する工程を含む請求項1〜4のいずれか1項記載の結晶試料の形状評価方法。   In the step (a), the crystal sample is further rotated 90 degrees in the xy plane, ω scan is performed, and the angle ω at which the diffracted X-ray intensity is maximum is detected as a function of the position in the crystal sample surface. The method for evaluating the shape of a crystal sample according to claim 1, comprising a step. 請求項1〜5のいずれか1項記載の結晶試料の形状評価方法をコンピュータを介して実行するプログラム。   The program which performs the shape evaluation method of the crystal sample of any one of Claims 1-5 via a computer. 請求項6記載のプログラムを搭載したX線回折装置を含む結晶試料の形状評価装置。   A crystal sample shape evaluation apparatus including an X-ray diffractometer equipped with the program according to claim 6.
JP2007042653A 2007-02-22 2007-02-22 Crystal sample shape evaluation method, shape evaluation apparatus, and program Expired - Fee Related JP4841458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042653A JP4841458B2 (en) 2007-02-22 2007-02-22 Crystal sample shape evaluation method, shape evaluation apparatus, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042653A JP4841458B2 (en) 2007-02-22 2007-02-22 Crystal sample shape evaluation method, shape evaluation apparatus, and program

Publications (2)

Publication Number Publication Date
JP2008203212A JP2008203212A (en) 2008-09-04
JP4841458B2 true JP4841458B2 (en) 2011-12-21

Family

ID=39780869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042653A Expired - Fee Related JP4841458B2 (en) 2007-02-22 2007-02-22 Crystal sample shape evaluation method, shape evaluation apparatus, and program

Country Status (1)

Country Link
JP (1) JP4841458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007645A (en) * 2009-06-26 2011-01-13 Nec Corp Method, apparatus and program for measuring nondestructive single-crystal substrate stress

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359165B2 (en) * 2008-10-07 2013-12-04 日本電気株式会社 Nondestructive warpage measuring method and measuring apparatus for single crystal substrate
JP5321815B2 (en) * 2009-03-19 2013-10-23 日本電気株式会社 Nondestructive single crystal substrate warpage measuring method and measuring device
JP2023041434A (en) * 2021-09-13 2023-03-24 一般財団法人ファインセラミックスセンター Method and device for evaluating shape of crystal plane of semiconductor substrate, and computer program for evaluating shape of crystal plane of semiconductor substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107203A (en) * 1991-10-15 1993-04-27 Jeol Ltd X-ray apparatus for evaluating surface condition of sample
JP2964317B2 (en) * 1996-08-26 1999-10-18 セイコーインスツルメンツ株式会社 Atomic force microscope type surface roughness meter
JP2006177842A (en) * 2004-12-24 2006-07-06 Pioneer Electronic Corp Cut face inspection device and cut face inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007645A (en) * 2009-06-26 2011-01-13 Nec Corp Method, apparatus and program for measuring nondestructive single-crystal substrate stress

Also Published As

Publication number Publication date
JP2008203212A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
KR102828411B1 (en) Method for cross-sectional imaging of the inspection volume of a wafer
TWI806285B (en) Metrology systems and methods
JP7001846B2 (en) X-ray weighing method
KR102363266B1 (en) X-ray scatterometry metrology for high aspect ratio structures
JP2020522883A (en) Process monitoring of deep structure by X-ray scatterometry
TWI449904B (en) X-ray scattering measurement device and x-ray scattering measurement method
KR20190058672A (en) Total beam measurement for X-ray scattering measurement systems
JP2021519428A (en) Multi-layer target for calibration and alignment of X-ray reliance measurement system
CN102047405A (en) Method to create three-dimensional images of semiconductor structures using a focused ion beam device and a scanning electron microscope
CN109416330B (en) Hybrid inspection system
KR20180008577A (en) Defect determination method, and X-ray inspection apparatus
JP4841458B2 (en) Crystal sample shape evaluation method, shape evaluation apparatus, and program
KR102786722B1 (en) System and method for searching integrated circuits based on x-ray
JP2011203061A (en) Pattern measuring method and pattern measuring apparatus
CN113686907A (en) High aspect ratio structure stack shift and tilt transmission X-ray critical dimension characterization
KR101231731B1 (en) Multifunction x-ray analysis system
US7525089B2 (en) Method of measuring a critical dimension of a semiconductor device and a related apparatus
CN220084691U (en) Optical measuring device
JP2015004670A (en) Substrate measurement device and substrate measurement method
KR20200052521A (en) A Method for Selecting a Investigating Part in a High Density Object and an Apparatus for the Same
EP4531073A2 (en) Beam angle rotation and sample rotation
CN119833433A (en) Single crystal semiconductor wafer measurement system and method
KR20220082801A (en) A Method for Selecting a Investigating Part in a High Density Object and an Apparatus for the Same
KR20150110887A (en) Semiconductor inspecting apparatus and method of inspecting semiconductor device using the same
JP2006090918A (en) Bump inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees