JP4840907B2 - Method for producing organic sulfur compound adsorbent - Google Patents
Method for producing organic sulfur compound adsorbent Download PDFInfo
- Publication number
- JP4840907B2 JP4840907B2 JP2005328092A JP2005328092A JP4840907B2 JP 4840907 B2 JP4840907 B2 JP 4840907B2 JP 2005328092 A JP2005328092 A JP 2005328092A JP 2005328092 A JP2005328092 A JP 2005328092A JP 4840907 B2 JP4840907 B2 JP 4840907B2
- Authority
- JP
- Japan
- Prior art keywords
- cerium
- zeolite
- ammonium
- organic sulfur
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、有機イオウ含有炭化水素油、例えばガソリン、軽油等から、環境汚染の原因及び排気ガス浄化触媒等の劣化原因となる有機イオウを効率よく除去するための吸着剤の製造方法に関するものである。 The present invention relates to a method for producing an adsorbent for efficiently removing organic sulfur, which causes environmental pollution and causes deterioration of exhaust gas purification catalysts, from organic sulfur-containing hydrocarbon oils such as gasoline and light oil. is there.
これまで有機イオウを選択的に除去できる吸着剤としては、ニッケル系吸着剤(特許文献1)、銅成分担持アルミナ(特許文献2)、銅・パラジウム担持アルミナ(特許文献3)、リチウム・ナトリウム・カルシウム・ストロンチウム・セリウム担持Y型ゼオライト(特許文献4)などが知られている。これらは、いずれも良好な有機イオウ吸着性能を示すが、極低濃度のイオウ化合物の除去、吸着容量などの点で必ずしも満足できる性能までに至っていない。 Conventional adsorbents that can selectively remove organic sulfur include nickel-based adsorbent (Patent Document 1), copper component-supported alumina (Patent Document 2), copper / palladium-supported alumina (Patent Document 3), lithium / sodium / Calcium / strontium / cerium-supported Y-type zeolite (Patent Document 4) is known. All of these exhibit good organic sulfur adsorption performance, but have not yet achieved satisfactory performance in terms of removal of sulfur compounds at extremely low concentrations and adsorption capacity.
また、セリウム塩の溶液中でのイオン交換反応によりYゼオライトにセリウムを担持させ、次いで、大気中でこれを加熱して得られる吸着剤も知られている(非特許文献1)。このようにして得られるセリウム担持Yゼオライトは、有機イオウに対する選択性にすぐれた吸着剤であるが、吸着容量が小さいという問題があった。この点について、Yゼオライトに、イオン交換反応によりセリウムイオンを担持させる際に、カリウムイオンを共存させたり、イオン交換反応を繰り返し行うことにより、セリウム担持量を増大させる改良を行い、吸着容量の大きなセリウム担持Yゼオライトが合成されている(非特許文献2)。しかし、その有機イオウ吸着容量は十分なものではなかった。 Further, an adsorbent obtained by supporting cerium on Y zeolite by an ion exchange reaction in a cerium salt solution and then heating it in the air is also known (Non-patent Document 1). The cerium-supported Y zeolite thus obtained is an adsorbent with excellent selectivity to organic sulfur, but has a problem that the adsorption capacity is small. In this regard, when Y zeolite is loaded with cerium ions by an ion exchange reaction, it is improved by increasing the amount of cerium supported by allowing potassium ions to coexist or repeatedly performing the ion exchange reaction. Cerium-supported Y zeolite has been synthesized (Non-patent Document 2). However, its organic sulfur adsorption capacity was not sufficient.
また、上記のように、従来のセリウム担持ゼオライトの製造方法においては、イオン交換反応の交換平衡に達するまでに24時間近くの長時間を要すること、液相反応・固液分離・乾燥・焼成という4つの工程が必要になることが、工業化する際の障害の1つになっていた。
係る状況の下、本発明は、従来のセリウム担持ゼオライトと比較して、セリウム担持量が大きく、有機イオウ吸着剤として吸着容量が大きいセリウム担持ゼオライトを提供することを目的とする。 Under such circumstances, an object of the present invention is to provide a cerium-supported zeolite that has a large cerium-supported amount and a large adsorption capacity as an organic sulfur adsorbent compared to conventional cerium-supported zeolite.
また、本発明は、従来のセリウム担持ゼオライトの製造方法と比較して、短時間で、かつ1段の工程でセリウム担持ゼオライトを製造する方法を提供することを目的としてなされたものである。 In addition, the present invention has been made for the purpose of providing a method for producing a cerium-supported zeolite in a short time and in a single step as compared with a conventional method for producing a cerium-supported zeolite.
本発明者らは、セリウム担持ゼオライトの製造の改良法について種々研究を重ねた結果、セリウム塩を加熱分解した際に生成される活性の高いセリウム酸化物とアンモニウム型ゼオライトとを反応させることにより、セリウムがゼオライト中のアンモニウムと交換反応を起こすことを見出し、本発明をなすに至った。 As a result of various studies on improved methods for producing cerium-supported zeolite, the present inventors have reacted cerium oxide with high activity produced when pyrolyzing cerium salt with ammonium-type zeolite. It has been found that cerium causes an exchange reaction with ammonium in zeolite, and has led to the present invention.
すなわち、本発明は、以下の項1〜4に記載の有機イオウ化合物吸着剤の製造方法を提供する:
項1.アンモニウム型ゼオライトとセリウム塩とを、大気中、200〜600℃で加熱反応させセリウム担持ゼオライトを生成することを特徴とする有機イオウ化合物吸着剤の製造方法;
項2.前記アンモニウム型ゼオライトが、アンモニウム型Yゼオライトである、請求項1に記載の方法;
項3.前記セリウム塩が、硝酸セリウム、塩化セリウム、シュウ化セリウム、ヨウ化セリウム、亜硝酸セリウム、炭酸セリウム及び酢酸セリウムからなる群より選択される少なくとも1つである、請求項1または2に記載の方法;
項4.前記アンモニウム型ゼオライトとセリウム塩との使用割合が、該アンモニウム型ゼオライト中のアンモニウムに対するセリウムのモル比として、0.4〜1.2である、請求項1〜3のいずれか一項に記載の方法。
That is, this invention provides the manufacturing method of the organic sulfur compound adsorption agent of the following items 1-4:
Item 1. A method for producing an adsorbent for organic sulfur compounds, characterized in that ammonium-type zeolite and a cerium salt are heated and reacted in the atmosphere at 200 to 600 ° C. to produce a cerium-supported zeolite;
Item 2. The process according to claim 1, wherein the ammonium-type zeolite is an ammonium-type Y zeolite;
Item 3. The method according to claim 1 or 2, wherein the cerium salt is at least one selected from the group consisting of cerium nitrate, cerium chloride, cerium oxalate, cerium iodide, cerium nitrite, cerium carbonate, and cerium acetate. ;
Item 4. The use ratio of the ammonium type zeolite and the cerium salt is 0.4 to 1.2 as a molar ratio of cerium to ammonium in the ammonium type zeolite, according to any one of claims 1 to 3. Method.
本発明において製造される、有機イオウ化合物吸着剤とは、セリウム担持ゼオライトのことをいう。 The organic sulfur compound adsorbent produced in the present invention refers to cerium-supported zeolite.
本発明方法において一方の原料に用いられるアンモニウム型ゼオライトとは、ゼオライト中のナトリウムがアンモニウムで置換されたゼオライトをいう。アンモニウム型ゼオライトとしては、例えば、アンモニウム型Xゼオライト、アンモニウム型Yゼオライト等が挙げられる。アンモニウム型Yゼオライトが好ましい。 The ammonium-type zeolite used as one raw material in the method of the present invention refers to a zeolite in which sodium in the zeolite is replaced with ammonium. Examples of the ammonium type zeolite include ammonium type X zeolite and ammonium type Y zeolite. Ammonium type Y zeolite is preferred.
他方の原料に用いられるセリウム塩としては、硝酸セリウム、塩化セリウム、シュウ化セリウム、ヨウ化セリウム、亜硝酸セリウム、炭酸セリウム、酢酸セリウム等が挙げられる。 Examples of the cerium salt used for the other raw material include cerium nitrate, cerium chloride, cerium oxalate, cerium iodide, cerium nitrite, cerium carbonate, and cerium acetate.
これらのセリウム塩は、1種単独で用いても、2種以上を混合して用いてもよい。 These cerium salts may be used alone or in combination of two or more.
硝酸セリウムとしては、例えば、化学式Ce(NO3)3・6H2Oで表わされる六水和物を用いることができる。 As cerium nitrate, for example, hexahydrate represented by the chemical formula Ce (NO 3 ) 3 .6H 2 O can be used.
塩化セリウムとしては、例えば、六水和物、七水和物、n水和物などを用いることができるが、化学式CeCl3・6H2Oで表わされる六水和物を用いることが好ましい。 As cerium chloride, for example, hexahydrate, heptahydrate, n-hydrate and the like can be used, but hexahydrate represented by the chemical formula CeCl 3 · 6H 2 O is preferably used.
アンモニウム型ゼオライトとセリウム塩との混合割合は、アンモニウム型ゼオライトにおけるアンモニウムに対するセリウムのモル比(Ce/NH4モル比)として、通常、約0.4〜1.2、好ましくは、約0.5〜0.8とする。上記割合でアンモニウム型ゼオライトとセリウム塩とを反応させることによって、有機イオウ吸着容量の大きいセリウム担持ゼオライトを得ることができ、かつ添加されたセリウムのほとんど全てがゼオライトの構造に取り込まれるため、セリウムのロスを抑えることができる。 The mixing ratio of the ammonium type zeolite and the cerium salt is usually about 0.4 to 1.2, preferably about 0.5, as the molar ratio of cerium to ammonium (Ce / NH 4 molar ratio) in the ammonium type zeolite. -0.8. By reacting ammonium-type zeolite and cerium salt in the above proportion, a cerium-supporting zeolite having a large organic sulfur adsorption capacity can be obtained, and almost all of the added cerium is incorporated into the structure of the zeolite. Loss can be suppressed.
上記のアンモニウム型ゼオライトとセリウム塩との混合物を、大気中、約200〜600℃、好ましくは約250〜450℃で、1〜8時間加熱反応させることにより、セリウム担持ゼオライトを製造できる。 A cerium-supported zeolite can be produced by subjecting the mixture of the above ammonium-type zeolite and cerium salt to a reaction in the atmosphere at about 200 to 600 ° C., preferably about 250 to 450 ° C. for 1 to 8 hours.
より具体的には、まず、セリウム塩は、加熱分解によってセリウム酸化物となる。 More specifically, first, the cerium salt becomes cerium oxide by thermal decomposition.
例えば、セリウム塩が硝酸セリウム六水和物である場合、これは、加熱の過程で150℃から結晶水を失って無水物に変わり、さらに加熱を続けると、200℃で分解し、活性の高いセリウム酸化物が生成する。また、セリウム塩が、塩化セリウム六水和物である場合においても、同様に加熱により活性の高いセリウム酸化物が生成する。 For example, when the cerium salt is cerium nitrate hexahydrate, it loses water of crystallization from 150 ° C. in the course of heating and turns into an anhydride, and when further heated, it decomposes at 200 ° C. and is highly active. Cerium oxide is formed. Similarly, when the cerium salt is cerium chloride hexahydrate, a highly active cerium oxide is similarly produced by heating.
引き続き、この活性なセリウム酸化物は結晶成長することなく、ゼオライト中のアンモニウムイオンと反応し、アンモニウムイオンとセリウムイオンとが交換反応を起こして、セリウム担持ゼオライトが生成される。この固相での交換反応は、従来行われていた液相からのイオン交換反応に比して高い反応温度で行われるため、すみやかに進行する。また、原料に用いるセリウム塩のセリウムの原子価は通常三価であり、酸素の存在下例えば大気中で焼成して酸化することによって、有機イオウ吸着性にすぐれた四価に変換する。尚、焼成温度が600℃を越えると焼結反応が進行し、比表面積が減少するので好ましくない。 Subsequently, this active cerium oxide reacts with the ammonium ions in the zeolite without crystal growth, and the ammonium ions and the cerium ions undergo an exchange reaction to produce a cerium-supported zeolite. The exchange reaction in the solid phase proceeds promptly because it is performed at a higher reaction temperature than the ion exchange reaction from the liquid phase that has been conventionally performed. Further, the valence of cerium of the cerium salt used as a raw material is usually trivalent, and is converted to tetravalent with excellent organic sulfur adsorption property by baking and oxidizing in the presence of oxygen, for example, in the atmosphere. Note that if the firing temperature exceeds 600 ° C., the sintering reaction proceeds and the specific surface area decreases, which is not preferable.
本発明方法によれば、原料のアンモニウム型ゼオライトもセリウム塩も共に固体で取り扱いやすく、反応をこれらだけで行え、水溶液の形態を採らずに済むため、長時間を要する液相でのイオン交換反応や固液分離の操作を必要としないので、セリウム担持ゼオライトを簡単かつ効率的に製造でき、さらには、大量に製造でき、スケールアップが可能になる。 According to the method of the present invention, both the raw material ammonium-type zeolite and the cerium salt are solid and easy to handle, the reaction can be carried out by these alone, and it is not necessary to take the form of an aqueous solution. No solid-liquid separation operation is required, so that cerium-supported zeolite can be produced easily and efficiently, and can be produced in large quantities and scaled up.
本発明方法で得られるセリウム担持ゼオライトは、セリウム担持量が大きく、有機イオウ吸着剤として吸着容量が大きいという長所を有している。 The cerium-supported zeolite obtained by the method of the present invention has the advantages of a large amount of cerium supported and a large adsorption capacity as an organic sulfur adsorbent.
次に、本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Next, the present invention will be described in more detail, but the present invention is not limited to these examples.
実施例1
アンモニウム型ゼオライトとして、分子中のSiO2/AlO2のモル比が7.0であるアンモニウム型Yゼオライトを用いた。当該アンモニウム型Yゼオライト1gに含まれるアンモニウムの含量を測定したところ、1.57mmol/gであった。上記アンモニウム型Yゼオライトの固体10gと固体状の硝酸セリウム六水和物4.3gとを混合し(Ce/NH4モル比0.63)、アルミナるつぼに入れ、大気中、250℃で2時間焼成して、セリウム担持Yゼオライトを、淡黄色結晶体として得た。生成物のX線回折を行い、セリウム担持Yゼオライトであることを確かめた。この吸着剤について、イオウ濃度で5mg/Lのチオフェンと1wt%のトルエンを含むn−ヘプタン溶液を、モデルガソリンに用いて、バッチ式吸着実験を行い、有機イオウ吸着性を評価した。テフロン(登録商標)製試験管に、吸着剤0.1gとモデルガソリン20mLを加えて、密栓し、80℃で2時間攪拌した後、上澄み液のイオウ濃度をガスクロマトグラフィーで測定した。脱硫率は90%であり、脱硫率が比較例と比べて高いのは明らかである。なお、イオウ吸着量は0.90mg/gであった。
Example 1
As the ammonium type zeolite, ammonium type Y zeolite having a molar ratio of SiO 2 / AlO 2 in the molecule of 7.0 was used. When the content of ammonium contained in 1 g of the ammonium type Y zeolite was measured, it was 1.57 mmol / g. 10 g of the ammonium type Y zeolite solid and 4.3 g of solid cerium nitrate hexahydrate were mixed (Ce / NH 4 molar ratio 0.63), placed in an alumina crucible, and in the atmosphere at 250 ° C. for 2 hours. Calcination yielded cerium-supported Y zeolite as a pale yellow crystal. X-ray diffraction of the product was performed and it was confirmed that it was a cerium-supported Y zeolite. With respect to this adsorbent, a batch type adsorption experiment was conducted using an n-heptane solution containing 5 mg / L thiophene and 1 wt% toluene at a sulfur concentration as model gasoline, and the organic sulfur adsorption property was evaluated. To a test tube made of Teflon (registered trademark), 0.1 g of an adsorbent and 20 mL of model gasoline were added, sealed, and stirred at 80 ° C. for 2 hours, and then the sulfur concentration of the supernatant was measured by gas chromatography. The desulfurization rate is 90%, and it is clear that the desulfurization rate is higher than that of the comparative example. The sulfur adsorption amount was 0.90 mg / g.
比較例1
アンモニウム型Yゼオライト10gに0.1Mの硝酸セリウムを含む水溶液を200mL加えて、16時間攪拌した後、濾別した。このCe型Yゼオライトを、大気中、450℃で2時間焼成して、セリウム担持Yゼオライトを得た。この吸着剤について、イオウ濃度で5mg/Lのチオフェンと1wt%のトルエンを含むn−ヘプタン溶液を、モデルガソリンに用いて、バッチ式吸着実験を行い、有機イオウ吸着性を評価した。テフロン(登録商標)製試験管に、吸着剤0.1gとモデルガソリン20mLを加えて、密栓し、80℃で2時間攪拌混合した後、上澄み液のイオウ濃度をガスクロマトグラフィーで測定した。脱硫率は65%であり、イオウ吸着量は0.65mg/gであった。
Comparative Example 1
200 mL of an aqueous solution containing 0.1 M cerium nitrate was added to 10 g of ammonium type Y zeolite, and the mixture was stirred for 16 hours and then filtered off. This Ce type Y zeolite was calcined in the atmosphere at 450 ° C. for 2 hours to obtain a cerium-supported Y zeolite. With respect to this adsorbent, a batch type adsorption experiment was conducted using an n-heptane solution containing 5 mg / L thiophene and 1 wt% toluene at a sulfur concentration as model gasoline, and the organic sulfur adsorption property was evaluated. To a test tube made of Teflon (registered trademark), 0.1 g of an adsorbent and 20 mL of model gasoline were added, sealed, mixed with stirring at 80 ° C. for 2 hours, and then the sulfur concentration of the supernatant was measured by gas chromatography. The desulfurization rate was 65%, and the sulfur adsorption amount was 0.65 mg / g.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005328092A JP4840907B2 (en) | 2005-11-11 | 2005-11-11 | Method for producing organic sulfur compound adsorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005328092A JP4840907B2 (en) | 2005-11-11 | 2005-11-11 | Method for producing organic sulfur compound adsorbent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007130607A JP2007130607A (en) | 2007-05-31 |
JP4840907B2 true JP4840907B2 (en) | 2011-12-21 |
Family
ID=38152690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005328092A Expired - Fee Related JP4840907B2 (en) | 2005-11-11 | 2005-11-11 | Method for producing organic sulfur compound adsorbent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4840907B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011052008A1 (en) * | 2009-10-29 | 2011-05-05 | 株式会社Nhvコーポレーション | Adsorbent, method for producing same, and use of same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0131726B1 (en) * | 1983-06-02 | 1986-12-10 | Union Carbide Corporation | Catalytic cracking catalyst |
JP2000016989A (en) * | 1998-07-01 | 2000-01-18 | Nippon Steel Chem Co Ltd | Separation or recovery of thiophene |
DK176408B1 (en) * | 1998-12-28 | 2007-12-17 | Mobil Oil Corp | Petrol sulfur reduction in fluid catalytic cracking |
JP4413520B2 (en) * | 2003-04-17 | 2010-02-10 | 株式会社アイシーティー | Exhaust gas purification catalyst and exhaust gas purification method using the catalyst |
JP4339134B2 (en) * | 2004-01-09 | 2009-10-07 | 出光興産株式会社 | Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method |
-
2005
- 2005-11-11 JP JP2005328092A patent/JP4840907B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007130607A (en) | 2007-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0170423B1 (en) | Ceric oxide containing composition, its preparation and its use | |
JP5116880B2 (en) | Fe (II) -substituted beta zeolite, gas adsorbent containing the same, method for producing the same, and method for removing nitric oxide and hydrocarbon | |
Yang et al. | Highly efficient catalytic combustion of o-dichlorobenzene over three-dimensional ordered mesoporous cerium manganese bimetallic oxides: A new concept of chlorine removal mechanism | |
WO2015020014A1 (en) | Zeolite, and production method and use therefor | |
CN107750232A (en) | Cu CHA and its application in catalysis are directly synthesized by combining Cu complex compounds and tetraethyl ammonium | |
KR102074751B1 (en) | Fe(II)-SUBSTITUTED BETA-TYPE ZEOLITE, PRODUCTION METHOD THEREFOR AND GAS ADSORBENT INCLUDING SAME, AND NITRIC OXIDE AND HYDROCARBON REMOVAL METHOD | |
JPS5837249B2 (en) | Zeolite Ferrierite | |
CN107635921A (en) | Direct synthesis of copper-containing aluminosilicate materials with AEI zeolite structures and their applications in catalysis | |
KR102220690B1 (en) | Mn+-substituted beta zeolite, gas adsorbent comprising same, method for producing same, and method for removing nitrogen monoxide | |
WO2011078149A1 (en) | Novel metallosilicate, production method thereof, nitrogen oxide purification catalyst, production method thereof, and nitrogen oxide purification method making use thereof | |
RU2009120403A (en) | ALUMINUM NAPHTHALINDICARBOXYLATE AS A POROUS METALLORGANIC MATERIAL WITH A SKELETON STRUCTURE | |
JP2015044720A (en) | Metal-containing copper-sapo zeolite | |
JP2021524431A (en) | Method for synthesizing high-purity AFX-structured zeolite in the presence of organic nitrogen-containing structuring agent | |
IE52463B1 (en) | Oxychlorination process and catalyst therefor | |
JP2016166124A (en) | AEI zeolite containing titanium and method for producing the same | |
JP6578704B2 (en) | Porous coordination polymer | |
JP2014526965A (en) | Reduction of nitrogen oxides in gas stream using molecular sieve SSZ-23 | |
JP2014122142A (en) | Transition metal-containing zeolite, and method for producing the same | |
CN104588069A (en) | Catalyst for dechloridation of methane chloride | |
RU2440299C1 (en) | Composition based on zirconium oxide, yttrium oxide and tungsten oxide, method of production and use as catalyst or catalyst support | |
JP4840907B2 (en) | Method for producing organic sulfur compound adsorbent | |
JP2022538295A (en) | IZM-5 Crystallized Solid and Method for Preparation of Same | |
WO2021201018A1 (en) | Hydrocarbon adsorbent and hydrocarbon adsorption method | |
RU2341507C1 (en) | Method of obtaining hydrocarbons c2-c3 | |
US7097772B2 (en) | Method of purifying a waste stream using a microporous composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110506 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110920 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110930 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141014 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141014 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |