[go: up one dir, main page]

JP4840213B2 - In-cylinder injection spark ignition internal combustion engine - Google Patents

In-cylinder injection spark ignition internal combustion engine Download PDF

Info

Publication number
JP4840213B2
JP4840213B2 JP2007078809A JP2007078809A JP4840213B2 JP 4840213 B2 JP4840213 B2 JP 4840213B2 JP 2007078809 A JP2007078809 A JP 2007078809A JP 2007078809 A JP2007078809 A JP 2007078809A JP 4840213 B2 JP4840213 B2 JP 4840213B2
Authority
JP
Japan
Prior art keywords
fuel
amount
wall surface
cylinder
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007078809A
Other languages
Japanese (ja)
Other versions
JP2008240551A (en
Inventor
剛 芦澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007078809A priority Critical patent/JP4840213B2/en
Publication of JP2008240551A publication Critical patent/JP2008240551A/en
Application granted granted Critical
Publication of JP4840213B2 publication Critical patent/JP4840213B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、筒内噴射式火花点火内燃機関に関する。   The present invention relates to a direct injection spark ignition internal combustion engine.

筒内噴射式火花点火内燃機関において、噴射燃料はシリンダボア又はピストン頂面に付着し易い。噴射燃料がシリンダボアへ付着して気化しなければ、エンジンオイルを希釈させる。また、ピストン頂面に付着して点火時期まで気化せずに存在する燃料は、未燃燃料又はパティキュレートとなって排出され、排気エミッションを悪化させる。それにより、必要燃料量を分割して噴射して各噴射燃料の塊を小さくし、それぞれを気化し易くすることにより、シリンダボア又はピストン頂面への付着を抑制することが提案されている(例えば、特許文献1参照)。   In a direct injection spark ignition internal combustion engine, injected fuel tends to adhere to the cylinder bore or piston top surface. If the injected fuel adheres to the cylinder bore and does not vaporize, the engine oil is diluted. Further, the fuel that is attached to the top surface of the piston and does not vaporize until the ignition timing is discharged as unburned fuel or particulates, thereby deteriorating exhaust emission. Accordingly, it has been proposed to suppress the adhesion to the cylinder bore or the piston top surface by dividing and injecting the required amount of fuel to reduce the mass of each injected fuel and to facilitate vaporization of each (for example, , See Patent Document 1).

特開2002−161790JP 2002-161790 A 特開2001−173499JP 2001-173499 A

しかしながら、このような分割噴射を実施するためには、燃料噴射弁において弁体の開閉を繰り返さなければならず、消費電力が増大するだけでなく、燃料噴射弁の寿命を低下させる。   However, in order to perform such divided injection, the fuel injector must be repeatedly opened and closed, which not only increases power consumption but also reduces the life of the fuel injector.

従って、本発明の目的は、筒内噴射式火花点火内燃機関において、燃料噴射弁の寿命の低下を抑制すると共に、シリンダボア又はピストン頂面への燃料付着に起因する問題発生も抑制することである。   Accordingly, an object of the present invention is to suppress a decrease in the life of the fuel injection valve in a direct injection spark ignition internal combustion engine, and also to suppress the occurrence of problems caused by the fuel adhering to the cylinder bore or the piston top surface. .

本発明による請求項に記載の筒内噴射式火花点火内燃機関は、気筒内へ直接的に燃料を噴射する燃料噴射弁を具備し、均質燃焼を実施するための必要燃料量が増量される時から噴射燃料付着位置における気筒内壁面温度が増量後の必要燃料量に対して設定された設定温度となるまでの間だけ前記燃料噴射弁により噴射される増量後の必要燃料量を分割して噴射することを特徴とする。 Injection spark ignition internal combustion engine according to claim 1 according to the present invention, necessary fuel amount for comprising a fuel injection valve for directly injecting fuel into the cylinder, carrying out homogeneous combustion is increased The fuel amount after increase is divided by the fuel injection valve only until the cylinder inner wall surface temperature at the position where the injected fuel is attached reaches the set temperature set for the fuel amount after increase. It is characterized by spraying.

本発明による請求項に記載の筒内噴射式火花点火内燃機関は、請求項に記載の筒内噴射式火花点火内燃機関において、機関低負荷時の均質燃焼を実施するための必要燃料量が増量される時から噴射燃料付着位置における気筒内壁面温度が増量後の必要燃料量に対して設定された設定温度となるまでの間だけ前記燃料噴射弁により噴射される増量後の必要燃料量を分割して噴射することを特徴とする。 A direct injection spark ignition internal combustion engine according to claim 2 according to the present invention is an amount of fuel required for performing homogeneous combustion at low engine load in the direct injection spark ignition internal combustion engine according to claim 1. From the time when the fuel is increased until the cylinder inner wall surface temperature at the fuel adhering position reaches the set temperature set with respect to the required fuel amount after the increase. Is divided and injected.

本発明による請求項1に記載の筒内噴射式火花点火内燃機関によれば、均質燃焼を実施するための必要燃料量が増量される時から噴射燃料付着位置における気筒内壁面温度が増量後の必要燃料量に対して設定された設定温度となるまでの間だけ燃料噴射弁により噴射される増量後の必要燃料量を分割して噴射するようになっている。定常運転時において、均質燃焼を実施するための必要燃料量が少ないほどシリンダボア及びピストン頂面のような気筒内壁面温度は低くなり、付着燃料は気化し難くなるが、噴射される必要燃料量が少ないほど気筒内壁面に付着する燃料量も少なくなるために、定常運転時においては、均質燃焼を実施するための必要燃料量が多くても少なくても、気筒内壁面に付着した燃料は容易に気化し、エンジンオイルの希釈及び排気エミッションの悪化は殆ど発生しない。それにより、この時には分割噴射を実施しない。 According to the in-cylinder injection spark ignition internal combustion engine according to claim 1 of the present invention, the cylinder inner wall surface temperature at the position where the injected fuel is attached is increased after the amount of fuel required for carrying out homogeneous combustion is increased. The increased required fuel amount injected by the fuel injection valve is divided and injected only until the set temperature set for the required fuel amount is reached. During steady operation, the smaller the amount of fuel required to perform homogeneous combustion, the lower the temperature of the cylinder inner wall, such as the cylinder bore and the top surface of the piston, and the attached fuel is less likely to vaporize. The smaller the amount, the smaller the amount of fuel adhering to the cylinder inner wall surface. Therefore, during steady operation, the amount of fuel adhering to the cylinder inner wall surface can be easily increased regardless of whether the amount of fuel required for homogeneous combustion is large or small. Vaporization causes little dilution of engine oil and deterioration of exhaust emissions. Accordingly, the split injection is not performed at this time.

しかしながら、均質燃焼を実施するための必要燃料量が増量された時の気筒内壁面温度は、増量前の必要燃料量に対応する定常時の第一壁面温度であり、増量された必要燃料量での運転が繰り返される毎に、徐々に増量後の必要燃料量に対応する定常時の第二壁面温度へ高められることとなる。第二壁面温度となれば、前述したように、分割噴射は不必要となるが、第一壁面温度から第二壁面温度となる間においては、付着燃料量に対して壁面温度が低く、気筒内壁面へ付着する燃料は容易に気化せず、エンジンオイルの希釈又は排気エミッションの悪化を発生させることがあるために、必要燃料量が増量される時から噴射燃料付着位置における気筒内壁面温度が増量後の必要燃料量に対して設定された設定温度となるまでの間だけは分割噴射を実施して、分割された各噴射燃料を小さな塊として気筒内を飛行中に気化させ易くし、気筒内壁面への燃料付着を抑制するようにしている。こうして、燃料噴射弁の寿命を低下させる分割燃料噴射が常に実施される場合に比較して分割燃料噴射の実施機会を減少させても、シリンダボア又はピストン頂面への燃料付着に起因する問題発生を抑制することができる。 However, the cylinder wall surface temperature when the amount of fuel required to perform homogeneous combustion is increased is the first wall surface temperature at the steady state corresponding to the amount of fuel before increase, and the increased amount of fuel required Each time this operation is repeated, the temperature is gradually raised to the second wall surface temperature at the steady state corresponding to the required fuel amount after the increase. If the second wall surface temperature is reached, as described above, split injection is not necessary, but during the period from the first wall surface temperature to the second wall surface temperature, the wall surface temperature is low relative to the amount of attached fuel and The fuel adhering to the wall surface does not evaporate easily and may cause dilution of engine oil or deterioration of exhaust emission. Therefore, the cylinder inner wall surface temperature at the injection fuel adhesion position increases from the time when the required fuel amount is increased. Split injection is performed only until the set temperature set for the required amount of fuel later is reached, so that each split injected fuel can be easily vaporized in flight as a small lump. The fuel adhesion to the wall surface is suppressed. Thus, even if the opportunity for performing the split fuel injection is reduced as compared with the case where the split fuel injection for reducing the life of the fuel injection valve is always performed, the problem caused by the fuel adhering to the cylinder bore or the piston top surface is generated. Can be suppressed.

本発明による請求項2に記載の筒内噴射式火花点火内燃機関によれば、請求項1に記載の筒内噴射式火花点火内燃機関において、機関低負荷時の均質燃焼を実施するための必要燃料量が増量される時から噴射燃料付着位置における気筒内壁面温度が増量後の必要燃料量に対して設定された設定温度となるまでの間だけ燃料噴射弁により噴射される増量後の必要燃料量を分割して噴射するようになっている。機関高負荷時であれば、均質燃焼を実施するための必要燃料量が比較的多いために、増量分はそれほど多くはならない。それにより、機関高負荷時においては、増量前の必要燃料量に対応する定常時の第一壁面温度と、増量後の必要燃料量に対応する定常時の第二壁面温度との差は小さく、また、第一壁面温度が比較的高いために、増量前の必要燃料量に対応する付着燃料量より多くの付着燃料量を容易に気化させることができ、それほど大幅でない増量後の必要燃料量に対応する付着燃料量でも容易に気化させることができる。こうして、均質燃焼を実施するための必要燃料量が増量される時でも機関高負荷時であれば、分割燃料噴射は必要なく、機関低負荷時に必要燃料量が増量される時から噴射燃料付着位置における気筒内壁面温度が増量後の必要燃料量に対して設定された設定温度となるまでの間だけは分割噴射を実施するようにしている。こうして、燃料噴射弁の寿命を低下させる分割燃料噴射の実施機会をさらに減少させても、シリンダボア又はピストン頂面への燃料付着に起因する問題発生を抑制することができる。 According to the in-cylinder injection spark-ignition internal combustion engine according to claim 2 of the present invention, in the in-cylinder injection spark-ignition internal combustion engine according to claim 1, there is a need for performing homogeneous combustion at low engine load. Increased required fuel that is injected by the fuel injection valve only from when the fuel amount is increased until the cylinder inner wall surface temperature at the injected fuel attachment position reaches the set temperature set for the increased required fuel amount The quantity is divided and injected. At the time of high engine load, the amount of increase is not so great because the amount of fuel required to perform homogeneous combustion is relatively large. Thereby, at the time of high engine load, the difference between the steady-state first wall surface temperature corresponding to the required fuel amount before the increase and the steady-state second wall temperature corresponding to the required fuel amount after the increase is small, Moreover, since the first wall surface temperature is relatively high, it is possible to easily vaporize a larger amount of fuel adhering than the amount of fuel required before the increase, and the amount of fuel required after the increase is not so large. It can be easily vaporized even with the corresponding amount of attached fuel. Thus, even when the amount of fuel required to perform homogeneous combustion is increased, if the engine is under high load, split fuel injection is not necessary, and the injection fuel attachment position from when the required amount of fuel is increased at low engine load. The split injection is performed only until the cylinder inner wall surface temperature reaches the set temperature set for the required fuel amount after the increase . Thus, even if the opportunity for performing split fuel injection, which reduces the life of the fuel injection valve, is further reduced, it is possible to suppress the occurrence of problems due to fuel adhesion to the cylinder bore or piston top surface.

図1は本発明による筒内噴射式火花点火内燃機関の実施形態を示す概略縦断面図であり、均質燃焼のための吸気行程における燃料噴射時期を示している。同図において、1は気筒上部略中心に配置されて気筒内へ直接的に燃料を噴射するための燃料噴射弁であり、2は燃料噴射弁1の吸気ポート側近傍に配置された点火プラグである。3はピストン、4は一対の吸気ポート、5は一対の排気ポートを、それぞれ示している。   FIG. 1 is a schematic longitudinal sectional view showing an embodiment of an in-cylinder injection spark ignition internal combustion engine according to the present invention, and shows a fuel injection timing in an intake stroke for homogeneous combustion. In the figure, reference numeral 1 denotes a fuel injection valve that is disposed substantially at the center of the cylinder and directly injects fuel into the cylinder, and 2 is an ignition plug that is disposed near the intake port side of the fuel injection valve 1. is there. Reference numeral 3 denotes a piston, 4 denotes a pair of intake ports, and 5 denotes a pair of exhaust ports.

本筒内噴射式火花点火内燃機関は、気筒内に理論空燃比又は理論空燃比よりリーンな均質混合気を形成し、この均質混合気を点火プラグ2により着火燃焼させる均質燃焼を実施するものである。理論空燃比よりリーンな均質燃焼が実施される場合のリーン空燃比は、NOX生成量が比較的少なくなるように設定される(例えば、20)。高出力が必要な高回転高負荷時等においては、理論空燃比又はリッチ空燃比での均質燃焼を実施するようにしても良い。また、機関排気系に排気ガスの空燃比がリーンである時にNOXを吸蔵するNOX吸蔵触媒装置が配置されている場合においては、NOX吸蔵触媒装置から吸蔵NOXを放出して還元浄化する時に、燃焼空燃比を設定リッチ空燃比とする均質燃焼が実施される。 This in-cylinder injection spark ignition internal combustion engine forms a homogeneous air-fuel mixture that is leaner than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio in the cylinder, and performs homogeneous combustion in which this homogeneous air-fuel mixture is ignited and burned by the spark plug 2. is there. When the homogeneous combustion that is leaner than the stoichiometric air-fuel ratio is performed, the lean air-fuel ratio is set so that the amount of NO x generated is relatively small (for example, 20). For example, when the engine speed is high and the load is high, homogeneous combustion at the stoichiometric air-fuel ratio or rich air-fuel ratio may be performed. Further, when the NO X storing catalyst apparatus for storing the NO X when the air-fuel ratio of the exhaust gas in the engine exhaust system is lean is located, to release the occluded NO X from the NO X storing catalyst apparatus reducing and purifying When performing, homogeneous combustion is performed with the combustion air-fuel ratio set to the set rich air-fuel ratio.

特に、リーン空燃比での均質燃焼は、点火時期において気筒内に乱れを存在させて燃焼速度を速めないと、所望の機関出力が得られない。それにより、吸気行程において気筒内に供給される吸気によってシリンダボアの排気ポート側に沿って下降して吸気ポート側に沿って上昇して気筒内を縦方向に旋回するタンブル流Tを気筒内に形成し、このタンブル流Tを圧縮行程後半まで持続させてピストン3により押し潰すことにより点火時期において気筒内に乱れを存在させることが好ましい。   In particular, in homogeneous combustion at a lean air-fuel ratio, a desired engine output cannot be obtained unless the combustion speed is increased by causing turbulence in the cylinder at the ignition timing. As a result, a tumble flow T that descends along the exhaust port side of the cylinder bore and rises along the intake port side by the intake air supplied into the cylinder during the intake stroke is formed in the cylinder. The tumble flow T is preferably maintained until the latter half of the compression stroke and is crushed by the piston 3 so that turbulence exists in the cylinder at the ignition timing.

しかしながら、シリンダヘッドを厚くして吸気ポートの形状配置を工夫したり、吸気ポート内に吸気流制御弁を設ける等しない限り、気筒内に形成されるタンブル流は、それほど強いものではなく、減衰により圧縮行程前半で容易に消滅し、点火時期においてタンブル流による乱れを気筒内に存在させることはできない。それにより、本筒内噴射式火花点火内燃機関においては、吸気行程において気筒内に形成されたタンブル流Tを、吸気下死点近傍、好ましくは、吸気行程末期において燃料噴射弁1によりシリンダボアの排気ポート側下部又はピストン頂面の排気ポート側周囲部へ向けて斜め下方向に噴射される燃料Fの貫徹力を利用して強めるようにしている。点火プラグ2は燃料噴射弁1より吸気ポート側に配置されているために、噴射燃料により濡らされてアークの発生が阻害されることはない。   However, unless the cylinder head is thickened to devise the shape and arrangement of the intake port, or an intake flow control valve is provided in the intake port, the tumble flow formed in the cylinder is not so strong, and due to attenuation It disappears easily in the first half of the compression stroke, and turbulence due to the tumble flow cannot exist in the cylinder at the ignition timing. Thus, in the in-cylinder injection spark ignition internal combustion engine, the tumble flow T formed in the cylinder during the intake stroke is exhausted from the cylinder bore by the fuel injection valve 1 in the vicinity of the intake bottom dead center, preferably at the end of the intake stroke. The penetration force of the fuel F injected diagonally downward toward the exhaust port side periphery of the port side lower part or the piston top surface is strengthened by using the penetration force. Since the spark plug 2 is disposed on the intake port side of the fuel injection valve 1, the spark plug 2 is not wet by the injected fuel and does not hinder the generation of arc.

タンブル流Tを確実に強めるために、噴射燃料F1の貫徹力は、例えば、噴射開始から1ms後の燃料先端が60mm以上に達するように強くすることが好ましい。本筒内噴射式火花点火内燃機関において、燃料噴射弁1は、例えば、図1に図示された燃料噴射方向Pから噴孔中心Cを見た図2に示すように、半円弧状に整列された複数の丸噴孔を有しており、各丸噴孔から噴射される柱状燃料は、吸気下死点近傍において、タンブル流Tを強めるために、シリンダボアの排気ポート側下部(略半円弧断面の帯状部分)及びピストン頂面の排気ポート側周囲部(略半円弧の帯状部分)の少なくとも一方に向かうようにされる。   In order to surely strengthen the tumble flow T, it is preferable to increase the penetration force of the injected fuel F1 so that, for example, the fuel tip after 1 ms from the start of injection reaches 60 mm or more. In the in-cylinder injection spark ignition internal combustion engine, the fuel injection valve 1 is arranged in a semicircular arc shape, for example, as shown in FIG. 2 when the injection hole center C is viewed from the fuel injection direction P shown in FIG. In order to strengthen the tumble flow T in the vicinity of the intake bottom dead center, the columnar fuel injected from each round nozzle hole has a lower part on the exhaust port side of the cylinder bore (substantially semicircular cross section). Of the piston) and at least one of the exhaust port side peripheral portion (substantially semicircular belt-like portion) on the top surface of the piston.

また、図2と同様な図3に示すように、燃料噴射弁1は、図2の複数の丸噴孔を連結させた半円弧状のスリット噴孔を有して、吸気下死点近傍において、タンブル流を強めるために、シリンダボアの排気ポート側下部(略半円弧断面の帯状部分)及びピストン頂面の排気ポート側周囲部(略半円弧の帯状部分)の少なくとも一方に向かうように中空略半円錐形状の燃料を噴射するようにしても良い。   Further, as shown in FIG. 3 similar to FIG. 2, the fuel injection valve 1 has a semi-arc shaped slit injection hole connecting the plurality of round injection holes of FIG. In order to increase the tumble flow, the cylinder bore is substantially hollow toward the exhaust port side lower part of the cylinder bore (a belt-like part of a substantially semicircular cross section) and the exhaust port side peripheral part (a belt-like part of a substantially semicircular arc) of the piston top surface. A semi-conical fuel may be injected.

また、図2と同様な図4に示すように、燃料噴射弁1は、直線状のスリット噴孔を有して、吸気下死点近傍において、タンブル流を強めるために、シリンダボアの排気ポート側下部(略半円弧断面の帯状部分)及びピストン頂面の排気ポート側周囲部(略半円弧の帯状部分)の少なくとも一方に向かうように扇形状の燃料を噴射するようにしても良い。   Further, as shown in FIG. 4 similar to FIG. 2, the fuel injection valve 1 has a linear slit injection hole, and in order to strengthen the tumble flow in the vicinity of the intake bottom dead center, the exhaust port side of the cylinder bore The fan-shaped fuel may be injected so as to go to at least one of the lower portion (a belt-like portion having a substantially semicircular cross section) and the peripheral portion of the piston top surface on the exhaust port side (a belt-like portion having a substantially semicircular arc).

また、図2と同様な図5に示すように、燃料噴射弁1は、直線状に整列された複数の丸噴孔を有して、吸気下死点近傍において、タンブル流を強めるために、シリンダボアの排気ポート側下部(略半円弧断面の帯状部分)及びピストン頂面の排気ポート側周囲部(略半円弧の帯状部分)の少なくとも一方に向かうように複数の柱状燃料を噴射するようにしても良い。   Further, as shown in FIG. 5 similar to FIG. 2, the fuel injection valve 1 has a plurality of linear injection holes arranged in a straight line, and in order to strengthen the tumble flow in the vicinity of the intake bottom dead center, A plurality of columnar fuels are injected so as to be directed to at least one of a lower part of the cylinder bore on the exhaust port side (a belt-like portion having a substantially semicircular cross section) and a peripheral portion of the piston port on the exhaust port side (a belt-like portion having a substantially semicircular arc). Also good.

また、燃料噴射弁1は、シリンダボアの排気ポート側下部(略半円弧断面の帯状部分)及びピストン頂面の排気ポート側周囲部(略半円弧の帯状部分)の範囲内に向かうように、中実又は中空円錐形状の燃料を噴射するものでも良い。こうして強められたタンブル流Tは、圧縮行程後半においても確実に持続するために、ピストン3により押し潰されると、点火時期においても維持される気筒内の乱れを発生させることができる。   In addition, the fuel injection valve 1 is arranged so as to be in the range of the lower part on the exhaust port side of the cylinder bore (a belt-like portion having a substantially semicircular cross section) and the periphery of the piston port on the exhaust port side (a belt-like portion having a substantially semicircular arc). It may be one that injects a real or hollow conical fuel. Since the tumble flow T thus strengthened is reliably maintained even in the latter half of the compression stroke, when the piston 3 is crushed, the turbulence in the cylinder maintained even at the ignition timing can be generated.

このように噴射燃料によりタンブル流を強める筒内噴射式火花点火内燃機関に限ったことではないが、気筒内へ直接的に燃料を噴射すると、噴射燃料の一部がシリンダボア又はピストン頂面等の気筒内壁面に衝突して付着する。本実施形態のように、噴射燃料の貫徹力が強められていると、特に、噴射燃料は気筒内壁面に衝突し易い。本実施形態では、気筒上部略中心に燃料噴射弁1を配置し、燃料噴射時期を吸気下死点近傍として、シリンダボアの排気ポート側下部(略半円弧断面の帯状部分)及びピストン頂面の排気ポート側周囲部(略半円弧の帯状部分)の範囲内に燃料を噴射するようにしているために、噴射燃料の気筒内壁面までの飛行距離は比較的長くなり、それにより、気筒内壁面への噴射燃料の衝突を抑制している。しかしながら、この燃料衝突を完全に防止することはできず、一部の燃料が気筒内壁面に付着する。   In this way, it is not limited to the in-cylinder spark-ignition internal combustion engine that intensifies the tumble flow with the injected fuel. However, when the fuel is directly injected into the cylinder, a part of the injected fuel is in the cylinder bore or piston top surface, etc. It collides with and adheres to the cylinder inner wall surface. When the penetration force of the injected fuel is increased as in the present embodiment, the injected fuel particularly easily collides with the cylinder inner wall surface. In the present embodiment, the fuel injection valve 1 is disposed substantially at the center of the upper part of the cylinder, the fuel injection timing is set to the vicinity of the intake bottom dead center, the exhaust port side lower part of the cylinder bore (a belt-like part having a substantially semicircular cross section) and the exhaust of the piston top surface. Since the fuel is injected within the range of the port-side peripheral portion (substantially semicircular belt-like portion), the flight distance of the injected fuel to the cylinder inner wall surface is relatively long, and thereby, to the cylinder inner wall surface. The collision of the injected fuel is suppressed. However, this fuel collision cannot be completely prevented, and a part of the fuel adheres to the inner wall surface of the cylinder.

シリンダボアに付着した燃料は、上昇するピストン3が通過するまでに気化しなければ、燃焼に寄与せずに、エンジンオイルと混合されてエンジンオイルを希釈させる。また、ピストン頂面に付着した燃料は、点火までに気化しなければ、燃焼に寄与せずに、未燃燃料又はパティキュレートとして排出され、排気エミッションを悪化させる。   If the fuel adhering to the cylinder bore does not vaporize before the rising piston 3 passes, it does not contribute to combustion and is mixed with the engine oil to dilute the engine oil. Further, if the fuel adhering to the piston top surface does not vaporize before ignition, it does not contribute to combustion, but is discharged as unburned fuel or particulates, thereby deteriorating exhaust emission.

定常運転時において、必要燃料量が少ないほどシリンダボア及びピストン頂面のような気筒内壁面温度は低くなり、付着燃料は気化し難くなるが、この必要燃料量が少ないほど気筒内壁面に付着する燃料量も少なくなるために、定常運転時であれば、必要燃料量が多くても少なくても、気筒内壁面に付着した燃料は容易に気化し、エンジンオイルの希釈及び排気エミッションの悪化は殆ど発生しない。   During steady operation, the smaller the required amount of fuel, the lower the temperature of the cylinder inner wall, such as the cylinder bore and the piston top surface, and the more difficult the fuel adhering to vaporize. Because the amount of fuel is reduced, the fuel adhering to the inner wall of the cylinder easily vaporizes during steady operation, even if the amount of fuel required is large or small, and almost no deterioration of engine oil dilution and exhaust emission occurs. do not do.

しかしながら、必要燃料量が増量された時の気筒内壁面温度は、増量前の必要燃料量に対応する定常時の第一壁面温度(増量前の必要燃料量毎の温度)であり、増量された必要燃料量での運転が繰り返される毎に、徐々に増量後の必要燃料量に対応する定常時の第二壁面温度(増量後の必要燃料量毎の温度)へ高められることとなる。第二壁面温度となれば、前述したように、気筒内壁面に付着した燃料は容易に気化するが、第一壁面温度から第二壁面温度となる間においては、付着燃料量に対して壁面温度が低く、気筒内壁面へ付着する燃料は容易に気化せず、エンジンオイルの希釈又は排気エミッションの悪化を発生させることがある。   However, the cylinder inner wall surface temperature when the required fuel amount is increased is the first wall surface temperature in the steady state corresponding to the required fuel amount before the increase (the temperature for each required fuel amount before the increase) and increased. Each time the operation with the required fuel amount is repeated, the temperature is gradually raised to the second wall surface temperature at the steady state (the temperature for each required fuel amount after the increase) corresponding to the required fuel amount after the increase. As described above, when the second wall surface temperature is reached, the fuel adhering to the cylinder inner wall surface is easily vaporized, but during the period from the first wall surface temperature to the second wall surface temperature, the wall surface temperature with respect to the amount of adhered fuel. However, the fuel adhering to the inner wall surface of the cylinder is not easily vaporized, and may cause dilution of engine oil or deterioration of exhaust emission.

この問題を解決するために、本実施形態では、図6に示すフローチャートに従って燃料噴射が制御される。先ず、ステップ101において、機関負荷及び機関回転数によって定まる噴射すべき必要燃料量が増量されるか否かが判断される。この判断が否定される時には、定常運転時又は機関減速時であり、気筒内壁面に付着する燃料量に対して、壁面温度はそれを容易に気化させるほど十分に高いために、問題はなく、ステップ105において、燃料噴射弁1は、必要燃料量を連続的に噴射する。   In order to solve this problem, in this embodiment, fuel injection is controlled according to the flowchart shown in FIG. First, in step 101, it is determined whether or not the required amount of fuel to be injected determined by the engine load and the engine speed is increased. When this judgment is denied, there is no problem because it is during steady operation or engine deceleration, and the wall surface temperature is high enough to easily vaporize the amount of fuel adhering to the cylinder inner wall surface, In step 105, the fuel injection valve 1 continuously injects the required fuel amount.

一方、ステップ101の判断が肯定される時には、必要燃料量が増量される機関加速時であり、この時にステップ105の連続噴射を実施すると、気筒内壁面に付着する燃料量に対して、増量直後の壁面温度は、それを容易に気化させるほど高くなく、エンジンオイルの希釈又は排気エミッションの悪化が発生するために、ステップ102及びステップ103の処理を実施した後、ステップ104において、燃料噴射弁1は、増量された必要燃料量を分割して噴射する。   On the other hand, when the determination in step 101 is affirmative, it is during engine acceleration when the required fuel amount is increased. If continuous injection in step 105 is performed at this time, the fuel amount adhering to the cylinder inner wall surface is increased immediately after the increase. The wall temperature of the fuel injection valve 1 is not so high as to easily vaporize it, and the engine oil dilution or exhaust emission deterioration occurs. Divides and injects the increased required fuel amount.

必要燃料量が二分割、三分割、又は、四分割のように複数に分割して噴射されると、分割された各噴射燃料は連続噴射の場合に比較して小さな塊として気筒内を飛行することとなるために、飛行中の吸気との摩擦による気化が促進され、気筒内壁面への燃料付着を十分に低減することができ、エンジンオイルの希釈又は排気エミッションの悪化を抑制することができる。しかしながら、このような分割噴射は、燃料噴射弁1の弁体の開閉を繰り返さなければならず、消費電力を増大させるだけでなく、燃料噴射弁1の寿命を低下させる。それにより、分割燃料噴射の実施は最小限とすることが好ましい。   When the required amount of fuel is divided and divided into two, three, or four parts and injected, each divided fuel will fly in the cylinder as a small lump compared to continuous injection Therefore, vaporization due to friction with intake air during flight is promoted, fuel adhesion to the cylinder inner wall surface can be sufficiently reduced, and engine oil dilution or exhaust emission deterioration can be suppressed. . However, such divided injection has to repeat opening and closing of the valve body of the fuel injection valve 1 and not only increases power consumption but also reduces the life of the fuel injection valve 1. Thereby, it is preferable to minimize the implementation of split fuel injection.

それにより、ステップ102においては、次式(1)により燃料付着位置での今回の壁面温度上昇値ΔTが算出される。
ΔT=ΔT+(T(Q2)−T(Q1))/n ・・・(1)
ここで、ΔTの初期値は0であり、T(Q2)は今回の増量後の必要燃料量Q2に対する定常時の壁面温度、すなわち、必要燃料量Q2での運転が繰り返されて一定値となった壁面温度であり、T(Q1)は今回の増量前の必要燃料量Q1に対する定常時の壁面温度、すなわち、必要燃料量Q1での運転が繰り返されて一定値となった壁面温度であり、図7に示すようにT(Q)としてマップ化されている。もちろん、Q1及びQ2は、必要燃料量の増量が行われる毎に、増量前の必要燃料量と増量後の必要燃料量として新たに設定される値である。
Thus, in step 102, the current wall temperature rise value ΔT at the fuel adhesion position is calculated by the following equation (1).
ΔT = ΔT + (T (Q2) −T (Q1)) / n (1)
Here, the initial value of ΔT is 0, and T (Q2) becomes a constant value by repeating the operation at the wall temperature in the steady state with respect to the required fuel amount Q2 after the current increase, that is, the operation at the required fuel amount Q2. T (Q1) is a wall surface temperature at a steady state with respect to the required fuel amount Q1 before this increase, that is, a wall surface temperature at which the operation with the required fuel amount Q1 is repeated and becomes a constant value, As shown in FIG. 7, it is mapped as T (Q). Of course, Q1 and Q2 are values newly set as the required fuel amount before the increase and the required fuel amount after the increase each time the required fuel amount is increased.

ステップ103では、増量前の必要燃料量Q1に対する定常時の壁面温度T(Q1)に温度上昇値ΔTが加算された現在の壁面温度が、増量後の必要燃料量Q2において連続噴射が実施された時の壁面付着燃料量を容易に気化させるのに必要な壁面温度T(Q2)’以上となったか否かが判断される。もちろん、現在の壁面温度が増量後の必要燃料量Q2に対する定常時の壁面温度T(Q2)となれば、必要燃料量Q2が連続噴射された時に壁面付着燃料量を確実に気化させることができるが、それ以前の壁面温度でも、この壁面付着燃料量を容易に気化させることができる。このようにして設定された必要燃料量Qに対する壁面温度T(Q)’も、図7に示すようにマップ化されている。   In step 103, the current wall surface temperature obtained by adding the temperature increase value ΔT to the wall surface temperature T (Q1) in the steady state with respect to the required fuel amount Q1 before the increase is continuously injected at the required fuel amount Q2 after the increase. It is determined whether or not the wall surface temperature T (Q2) ′ necessary for easily vaporizing the amount of fuel adhered to the wall surface has become equal to or higher. Of course, if the current wall surface temperature becomes the steady wall surface temperature T (Q2) with respect to the required fuel amount Q2 after the increase, the fuel amount adhering to the wall surface can be surely vaporized when the required fuel amount Q2 is continuously injected. However, the wall surface attached fuel amount can be easily vaporized even at the wall surface temperature before that. The wall surface temperature T (Q) 'with respect to the required fuel amount Q set in this way is also mapped as shown in FIG.

当初は、ステップ103の判断は否定されるために、前述したように、ステップ104において増量後の必要燃料量Q2は分割して噴射されるが、必要燃料量が増量されてから設定期間が経過すると、壁面温度が徐々に高まってステップ103の判断が肯定されるようになり、この時には、ステップ105において、増量された必要燃料量Q2は連続的に噴射される。こうして、分割燃料噴射が常に実施される場合に比較して分割燃料噴射の実施機会を減少させても、シリンダボア又はピストン頂面への燃料付着に起因する問題発生を抑制することができる。   Initially, since the determination in step 103 is denied, as described above, the required fuel amount Q2 after the increase in step 104 is divided and injected, but the set period elapses after the required fuel amount is increased. Then, the wall surface temperature gradually increases and the determination in step 103 becomes affirmative. At this time, in step 105, the increased required fuel amount Q2 is continuously injected. In this way, even if the opportunity for performing the split fuel injection is reduced as compared with the case where the split fuel injection is always performed, it is possible to suppress the occurrence of problems due to the fuel adhering to the cylinder bore or the piston top surface.

図6のフローチャートにおいて、ステップ102を通過する単位時間毎に、燃料付着位置での気筒内壁面温度は、(T(Q2)−T(Q1))/nだけ温度上昇するとしている。ここで、分母nは一定値としても良いが、機関回転数が高いほど単位時間当たりの燃料噴射機会が増加するために、分母nを小さくするようにしても良い。   In the flowchart of FIG. 6, it is assumed that the cylinder inner wall surface temperature at the fuel adhesion position rises by (T (Q2) −T (Q1)) / n for each unit time passing through step 102. Here, the denominator n may be a constant value. However, since the fuel injection opportunity per unit time increases as the engine speed increases, the denominator n may be reduced.

また、図6のフローチャートにおいて、増量前の必要燃料量Q1と増量後の必要燃料量Q2とに基づき、必要燃料量が増量されてから必要燃料量の分割噴射を繰り返して壁面温度が徐々に上昇し、増量された必要燃料量を連続噴射した時の壁面付着燃料量が容易に気化する壁面温度となるまでの時間(機関回転数の関数としても良い)を、実験的に又は計算により予め設定しておくことも可能である。こうして、増量前の必要燃料量Q1と増量後の必要燃料量Q2とに基づき設定された設定期間だけ分割燃料噴射を実施するようにしても良い。   In the flowchart of FIG. 6, the wall surface temperature gradually rises by repeating the divided injection of the required fuel amount after the required fuel amount is increased based on the required fuel amount Q1 before the increase and the required fuel amount Q2 after the increase. The time until the wall surface temperature at which the wall surface attached fuel amount evaporates easily when the increased amount of required fuel is continuously injected (may be a function of the engine speed) is set in advance experimentally or by calculation. It is also possible to keep it. Thus, the split fuel injection may be performed for a set period set based on the required fuel amount Q1 before the increase and the required fuel amount Q2 after the increase.

また、機関高負荷時は、もともと必要燃料量が比較的多いために、増量分はそれほど多くはならない。それにより、機関高負荷時においては、増量前の必要燃料量に対応する定常時の第一壁面温度T(Q1)と、増量後の必要燃料量に対応する定常時の第二壁面温度T(Q2)との差は小さい。また、必要燃料量Qが多いほど、図7に示すように、定常時の壁面温度T(Q)と壁面付着燃料を容易に気化させるのに必要な壁面温度T(Q)’との差が大きくなる。すなわち、増量前の壁面温度T(Q1)が比較的高いために、増量前の必要燃料量に対応する付着燃料量より多くの付着燃料量を容易に気化させることができ、それほど大幅でない増量後の必要燃料量に対応する付着燃料量でも容易に気化させることができる。   Also, when the engine is heavily loaded, the required amount of fuel is relatively large from the beginning, so the increase is not so much. Accordingly, at the time of high engine load, the steady first wall surface temperature T (Q1) corresponding to the required fuel amount before the increase and the steady second wall temperature T (Q1) corresponding to the necessary fuel amount after the increase. The difference from Q2) is small. Further, as the required fuel amount Q increases, as shown in FIG. 7, the difference between the wall surface temperature T (Q) in the steady state and the wall surface temperature T (Q) ′ necessary for easily vaporizing the wall-attached fuel becomes smaller. growing. That is, since the wall surface temperature T (Q1) before the increase is relatively high, it is possible to easily vaporize the amount of attached fuel corresponding to the required fuel amount before the increase, and after the increase is not so large. The amount of attached fuel corresponding to the required amount of fuel can be easily vaporized.

こうして、必要燃料量が増量される時でも機関高負荷時であれば、分割燃料噴射を実施しないようにし、機関低負荷時に必要燃料量が増量される時だけ分割噴射を実施するようにしても良い。こうして、燃料噴射弁の寿命を低下させる分割燃料噴射の実施機会をさらに減少させても、シリンダボア又はピストン頂面への燃料付着に起因する問題発生を抑制することができる。   Thus, even when the required fuel amount is increased, the split fuel injection is not performed if the engine is at a high load, and the split injection is performed only when the required fuel amount is increased at a low engine load. good. Thus, even if the opportunity for performing split fuel injection, which reduces the life of the fuel injection valve, is further reduced, it is possible to suppress the occurrence of problems due to fuel adhesion to the cylinder bore or piston top surface.

図8は本発明による筒内噴射式火花点火内燃機関の第二実施形態を示す吸気下死点近傍の概略縦断面図である。第一実施形態との違いは、気筒内へ直接的に燃料を噴射するための燃料噴射弁1’が、気筒上部周囲の吸気ポート側に配置され、また、点火プラグ2’は気筒上部略中心に配置されていることである。燃料噴射弁1’は、シリンダボアの排気ポート側上部(略半円弧断面の帯状部分)へ向けて燃料を噴射し、気筒内のタンブル流を強めるようになっている。   FIG. 8 is a schematic longitudinal sectional view in the vicinity of the intake bottom dead center showing a second embodiment of the direct injection spark ignition internal combustion engine according to the present invention. The difference from the first embodiment is that a fuel injection valve 1 ′ for directly injecting fuel into the cylinder is disposed on the intake port side around the upper part of the cylinder, and the spark plug 2 ′ is substantially at the center of the upper part of the cylinder. It is arranged in. The fuel injection valve 1 ′ injects fuel toward the upper part of the cylinder bore on the exhaust port side (a belt-like portion having a substantially semicircular arc cross section) to strengthen the tumble flow in the cylinder.

燃料噴射弁1’は、図4の直線状スリット噴孔又は図5の直線配置の複数噴孔を有するものとすることができ、又は、中実又は中空の円錐形状に燃料を噴射するものでも良い。本実施形態においても、必要燃料量が増量される時に連続噴射を実施すると、シリンダボアの排気ポート側上部へ付着する燃料が容易に気化せずにエンジンオイルの希釈の問題を発生するために、前述同様に、必要燃料量が増量された直後は分割燃料噴射を実施するようにしている。   The fuel injection valve 1 ′ may have the linear slit injection holes shown in FIG. 4 or the plurality of injection holes arranged in a straight line in FIG. 5, or may inject fuel into a solid or hollow conical shape. good. Also in this embodiment, if the continuous injection is performed when the required fuel amount is increased, the fuel adhering to the upper part of the exhaust port side of the cylinder bore is not easily vaporized, causing a problem of dilution of the engine oil. Similarly, split fuel injection is performed immediately after the required fuel amount is increased.

必要燃料量が連続的に噴射される時の気筒内壁面に付着する燃料量は、燃料噴射弁から噴射される燃料の貫徹力が強いほど多くなり、また、燃料噴射弁から気筒内壁面までの距離が短いほど多くなる。この付着燃料量が多くなるほど、容易に気化させるのに必要な壁面温度T(Q)’は高くなる。このように、燃料噴射弁の位置及び燃料噴射方向が異なる前述の二つの実施形態において、各必要燃料量に対する壁面付着燃料量は異なると共に、付着燃料量を容易に気化させるのに必要な壁面温度T(Q)’も異なる値となる。   The amount of fuel adhering to the cylinder inner wall surface when the required fuel amount is continuously injected increases as the penetration force of the fuel injected from the fuel injection valve increases, and from the fuel injection valve to the cylinder inner wall surface. The shorter the distance, the more. The greater the amount of adhered fuel, the higher the wall surface temperature T (Q) 'required for easy vaporization. As described above, in the above-described two embodiments in which the position of the fuel injection valve and the fuel injection direction are different, the wall surface attached fuel amount for each required fuel amount is different and the wall surface temperature necessary for easily vaporizing the attached fuel amount. T (Q) ′ is also a different value.

本発明による筒内噴射式火花点火内燃機関の実施形態を示す概略縦断面図である。1 is a schematic longitudinal sectional view showing an embodiment of a direct injection spark ignition internal combustion engine according to the present invention. 燃料噴射弁の噴孔形状を示す図である。It is a figure which shows the nozzle hole shape of a fuel injection valve. 燃料噴射弁のもう一つの噴孔形状を示す図である。It is a figure which shows another nozzle hole shape of a fuel injection valve. 燃料噴射弁のさらにもう一つの噴孔形状を示す図である。It is a figure which shows another another nozzle hole shape of a fuel injection valve. 燃料噴射弁のさらにもう一つの噴孔形状を示す図である。It is a figure which shows another another nozzle hole shape of a fuel injection valve. 燃料噴射制御を示すフローチャートである。It is a flowchart which shows fuel-injection control. 必要燃料量に対する定常時の壁面温度及び付着燃料を容易に気化させる壁面温度の変化を示すグラフである。It is a graph which shows the change of the wall surface temperature at the time of steady with respect to required fuel amount, and the wall surface temperature which vaporizes adhering fuel easily. 本発明による筒内噴射式火花点火内燃機関の実施形態を示す概略縦断面図である。1 is a schematic longitudinal sectional view showing an embodiment of a direct injection spark ignition internal combustion engine according to the present invention.

符号の説明Explanation of symbols

1,1’ 燃料噴射弁
2,2’ 点火プラグ
3 ピストン
4 吸気ポート
5 排気ポート
F 噴射燃料
T タンブル流
1, 1 'fuel injection valve 2, 2' spark plug 3 piston 4 intake port 5 exhaust port F injected fuel T tumble flow

Claims (2)

気筒内へ直接的に燃料を噴射する燃料噴射弁を具備し、均質燃焼を実施するための必要燃料量が増量される時から噴射燃料付着位置における気筒内壁面温度が増量後の必要燃料量に対して設定された設定温度となるまでの間だけ前記燃料噴射弁により噴射される増量後の必要燃料量を分割して噴射することを特徴とする筒内噴射式火花点火内燃機関。 A fuel injection valve for directly injecting fuel into the cylinder is provided, and the cylinder inner wall surface temperature at the position where the injected fuel is attached becomes the required amount of fuel after the increase from the time when the amount of required fuel for performing homogeneous combustion is increased. An in-cylinder injection type spark ignition internal combustion engine that divides and injects the increased amount of fuel that is injected by the fuel injection valve until the set temperature is set . 機関低負荷時の均質燃焼を実施するための必要燃料量が増量される時から噴射燃料付着位置における気筒内壁面温度が増量後の必要燃料量に対して設定された設定温度となるまでの間だけ前記燃料噴射弁により噴射される増量後の必要燃料量を分割して噴射することを特徴とする請求項1に記載の筒内噴射式火花点火内燃機関。 From when the required amount of fuel to perform homogeneous combustion at low engine load is increased until the cylinder inner wall surface temperature at the injected fuel attachment position reaches the set temperature set for the increased required fuel amount The in-cylinder injection spark ignition internal combustion engine according to claim 1, characterized in that the required amount of fuel after the increase injected by the fuel injection valve is divided and injected.
JP2007078809A 2007-03-26 2007-03-26 In-cylinder injection spark ignition internal combustion engine Expired - Fee Related JP4840213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078809A JP4840213B2 (en) 2007-03-26 2007-03-26 In-cylinder injection spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078809A JP4840213B2 (en) 2007-03-26 2007-03-26 In-cylinder injection spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008240551A JP2008240551A (en) 2008-10-09
JP4840213B2 true JP4840213B2 (en) 2011-12-21

Family

ID=39912201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078809A Expired - Fee Related JP4840213B2 (en) 2007-03-26 2007-03-26 In-cylinder injection spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4840213B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921732B2 (en) * 1997-04-28 2007-05-30 マツダ株式会社 In-cylinder injection type spark ignition engine
JPH1136958A (en) * 1997-07-23 1999-02-09 Mazda Motor Corp Cylinder injection type engine
JP3680258B2 (en) * 2000-02-25 2005-08-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4092489B2 (en) * 2003-05-01 2008-05-28 日産自動車株式会社 Fuel injection control device for in-cylinder direct injection spark ignition engine
JP3968331B2 (en) * 2003-08-14 2007-08-29 株式会社日立製作所 Fuel injection control device and method for in-cylinder internal combustion engine
JP4196887B2 (en) * 2004-06-22 2008-12-17 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP2008240551A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US10167797B2 (en) Control system of engine
JP4353216B2 (en) In-cylinder injection spark ignition internal combustion engine
US20160356230A1 (en) Control system of engine
CN107429625B (en) Fuel injection control device for direct injection engine
JP2007297989A (en) In-cylinder injection spark ignition internal combustion engine
WO2015115115A1 (en) Control device for direct injection gasoline engine
JP2018184869A (en) Control device of internal combustion engine
US6684848B2 (en) Direct-injection spark-ignition engine
CN101484680A (en) Fuel injection control method for a direct injection spark ignition internal combustion engine
JP2010048212A (en) Direct injection type gasoline engine
JP2007327464A (en) In-cylinder injection spark ignition internal combustion engine
JP4747553B2 (en) Compression ignition internal combustion engine
JP4600361B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP4840213B2 (en) In-cylinder injection spark ignition internal combustion engine
CN106460712A (en) Fuel injection control apparatus for internal combustion engine
JP2009174440A (en) In-cylinder injection spark ignition internal combustion engine
JPWO2002020957A1 (en) In-cylinder injection spark ignition engine
JP4582049B2 (en) In-cylinder injection spark ignition internal combustion engine
JP6402753B2 (en) Combustion chamber structure of direct injection engine
JP2007285205A (en) In-cylinder injection spark ignition internal combustion engine
JP4428273B2 (en) In-cylinder direct injection internal combustion engine
JP4900311B2 (en) In-cylinder injection spark ignition internal combustion engine
JP5067566B2 (en) In-cylinder injection type spark ignition internal combustion engine
JP2018172980A (en) Premixing compression ignition type engine
JP4310640B2 (en) In-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees