JP4836243B2 - Low gas permeability tube - Google Patents
Low gas permeability tube Download PDFInfo
- Publication number
- JP4836243B2 JP4836243B2 JP2006004145A JP2006004145A JP4836243B2 JP 4836243 B2 JP4836243 B2 JP 4836243B2 JP 2006004145 A JP2006004145 A JP 2006004145A JP 2006004145 A JP2006004145 A JP 2006004145A JP 4836243 B2 JP4836243 B2 JP 4836243B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- rubber
- silicone
- tube
- rubber layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000035699 permeability Effects 0.000 title claims description 27
- 229920001971 elastomer Polymers 0.000 claims description 67
- 239000005060 rubber Substances 0.000 claims description 60
- 229920002379 silicone rubber Polymers 0.000 claims description 22
- 239000004945 silicone rubber Substances 0.000 claims description 22
- 239000002861 polymer material Substances 0.000 claims description 16
- 229920001577 copolymer Polymers 0.000 claims description 13
- 238000004073 vulcanization Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 229920002367 Polyisobutene Polymers 0.000 claims description 10
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 238000007259 addition reaction Methods 0.000 claims description 8
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 8
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 5
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 5
- 229920002545 silicone oil Polymers 0.000 claims description 5
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 claims description 4
- 101150065749 Churc1 gene Proteins 0.000 claims description 4
- 102100038239 Protein Churchill Human genes 0.000 claims description 4
- 238000012669 compression test Methods 0.000 claims description 3
- 229920001281 polyalkylene Polymers 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 8
- 239000000806 elastomer Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 229920003051 synthetic elastomer Polymers 0.000 description 5
- 239000005061 synthetic rubber Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 241000282320 Panthera leo Species 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012763 reinforcing filler Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000010227 cup method (microbiological evaluation) Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000002683 reaction inhibitor Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
Images
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
- Laminated Bodies (AREA)
Description
本発明は、特に柔軟性、圧縮永久歪性、復元性、動的疲労特性が要求される低ガス透過性チューブに関するものである The present invention relates to a low gas permeable tube that is particularly required to have flexibility, compression set, resilience, and dynamic fatigue characteristics.
従来から低ガス透過性の高分子材料であるポリエチレン樹脂、ナイロン樹脂、ポリプロピレン樹脂、フッ素樹脂などの樹脂製のチューブやオレフィン系合成ゴム、フッ素系合成ゴム、ジエン系合成ゴム、ビニル系合成ゴムなどのゴム製のチューブが使用されてきた。これらの樹脂材料、ゴム材料は一般的に硬く柔軟性に乏しいので、動的疲労特性に問題がある。各種材料の気体透過率については非特許文献1に詳しく記載されている。 Polyethylene resin, nylon resin, polypropylene resin, fluororesin resin tubes, olefin synthetic rubber, fluoro synthetic rubber, diene synthetic rubber, vinyl synthetic rubber, etc. Rubber tubes have been used. Since these resin materials and rubber materials are generally hard and poor in flexibility, there is a problem in dynamic fatigue characteristics. The gas permeability of various materials is described in detail in Non-Patent Document 1.
シリコーンゴム製チューブは化学的に安定であり、弾性、衛生性、耐候性があり、様々な分野において使用されている。例えば薬液送液や血液送液などの液体輸送に使用されている。これらのチューブは送液する液体の種類によって耐溶剤性、耐アルカリ性、耐酸性、耐ガス透過性、柔軟性、圧縮永久歪性、動的疲労特性などのさまざまな特性が要求されており、個々の目的により多くの材質、種類、性能のチューブの中から選択され使用されている。 Silicone rubber tubes are chemically stable, elastic, hygienic and weather resistant, and are used in various fields. For example, it is used for liquid transportation such as chemical liquid feeding and blood liquid feeding. These tubes are required to have various properties such as solvent resistance, alkali resistance, acid resistance, gas resistance, flexibility, compression set, and dynamic fatigue characteristics depending on the type of liquid to be fed. Depending on the purpose, tubes are selected from many materials, types and performances.
又シリコーンゴムにポリエチレン樹脂、ナイロン樹脂、ポリプロピレン樹脂、フッ素樹脂などを被覆したチューブもあるが、これらも前記の樹脂、合成ゴム製チューブと同様の問題がある。
シリコーンゴム単体で構成されたチューブは、シリコーンゴムはガス透過性が良い為に外部の空気やその他のガスなどがチューブの壁を透過して薬液や溶剤などに混入してしまうという問題がある。又逆に溶液中の溶液や溶剤などがチューブの壁を透過して外部に揮発して変質するという問題がある。さらに気体が透過すると送液する液体の定量性も不安定になる問題がある。 A tube composed of a single silicone rubber has a problem that since the silicone rubber has good gas permeability, external air or other gas penetrates the wall of the tube and is mixed into a chemical solution or a solvent. On the other hand, there is a problem that a solution or a solvent in the solution permeates through the wall of the tube and volatilizes to the outside and changes its quality. Furthermore, when gas permeates, there is a problem that the quantitativeness of the liquid to be sent becomes unstable.
本発明は前記の問題点を解決する為になされたものであり、ガス透過性、柔軟性、圧縮永久歪性、動的疲労特性が良好であり、かつ製造コストも安価であるチューブを提供する。 The present invention has been made to solve the above problems, and provides a tube having good gas permeability, flexibility, compression set, dynamic fatigue characteristics, and low manufacturing cost. .
本発明の低ガス透過性チューブは、ガス透過性の低い高分子材料の層と、高反発性の高分子材料で構成される層とが不可分一体に積層成形されている低ガス透過性チューブであって、前記ガス透過性の低い高分子材料層はシリコーン変性ポリアルキレン共重合体ゴム層であり、前記共重合体ゴムは、エチレンプロピレンポリマーとシリコーンオイルを混合し、さらに前記配合物に、主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された液状ポリマー(下記化学式1)を加えたものであり、
CH2=CHCH2-PIB-CH2CH=CH2(但し、PIBはポリイソブチレン) ・・・(化1)
前記高反発性の高分子材料層は厚さが0.20mm以上0.90mm以下のシリコーンゴム層であり、前記共重合体ゴム層及び前記シリコーンゴム層は、それぞれ付加反応加硫型ゴムであり、2層構造のチューブに押出し成形後、同時一体的に加硫されていることを特徴とする。
The low gas permeable tube of the present invention is a low gas permeable tube in which a layer made of a polymer material having low gas permeability and a layer made of a polymer material having high resilience are inseparably laminated. The polymer material layer having low gas permeability is a silicone-modified polyalkylene copolymer rubber layer, and the copolymer rubber is a mixture of ethylene propylene polymer and silicone oil, A liquid polymer in which allyl groups are introduced almost quantitatively at both ends of polyisobutylene whose chain structure is a saturated hydrocarbon (the following chemical formula 1) is added,
CH 2 = CHCH 2 -PIB-CH 2 CH = CH 2 (where PIB is polyisobutylene)
The high resilience polymer material layer is a silicone rubber layer having a thickness of 0.20 mm to 0.90 mm , and each of the copolymer rubber layer and the silicone rubber layer is an addition reaction vulcanization type rubber. It is characterized by being vulcanized simultaneously and integrally after being extruded into a two-layered tube.
本発明の低ガス透過性チューブは、ガス透過性の低い高分子材料の層と、高反発性の高分子材料で構成される層とが不可分一体に積層成形されている。これにより、ガス透過性、柔軟性、圧縮永久歪性、動的疲労特性が良好であり、製造コストも安価なチューブを提供できる。とくに、前記ガス透過性の低い高分子材料はシリコーン変性ポリアルキレン共重合体ゴム層(以下「シリコーン変性共重合体エラストマー」ともいう。)であり、前記高反発性の高分子材料はシリコーンゴムであり、両者はそれぞれ付加反応加硫により同時一体的に加硫されていると、前記の効果は顕著である。 In the low gas permeable tube of the present invention, a layer made of a polymer material having low gas permeability and a layer made of a polymer material having high resilience are inseparably laminated. Thereby, a gas permeability, a softness | flexibility, a compression set, a dynamic fatigue characteristic is favorable, and the manufacturing cost can also be provided inexpensively. In particular, the polymer material having low gas permeability is a silicone-modified polyalkylene copolymer rubber layer (hereinafter also referred to as “silicone-modified copolymer elastomer”), and the high-resilience polymer material is silicone rubber. The above-mentioned effect is remarkable when both are simultaneously and integrally vulcanized by addition reaction vulcanization.
本発明のチューブは、内径、1mm〜13mm、外径、3mm〜20mm、片肉厚、1mm〜3.5mmの範囲が好ましい。 The tube of the present invention preferably has an inner diameter of 1 mm to 13 mm, an outer diameter of 3 mm to 20 mm, a single wall thickness of 1 mm to 3.5 mm.
本発明においては、前記シリコーン変性重合体エラストマーとシリコーンゴムの厚み比は、全体を100としたとき、10:90〜90:10の範囲であることが好ましい。さらに好ましくは、両者の厚み比は20:80〜80:20の範囲である。 In the present invention, the thickness ratio of the silicone-modified polymer elastomer and the silicone rubber is preferably in the range of 10:90 to 90:10 when the total is 100. More preferably, the thickness ratio of both is in the range of 20:80 to 80:20.
また、前記ガス透過性の低い高分子材料のシリコーン変性共重合体エラストマーは外層であり、前記高反発性の高分子材料のシリコーンゴムは内層に配置されているか、又は前記ガス透過性の低い高分子材料のシリコーン変性共重合体エラストマーは内層であり、前記高反発性の高分子材料のシリコーンゴムは外層に配置されていることが好ましい。 Further, the silicone-modified copolymer elastomer of the polymer material having low gas permeability is an outer layer, and the silicone rubber of the polymer material having high resilience is disposed in an inner layer, or the high-reactivity gas material having low gas permeability is high. It is preferable that the silicone-modified copolymer elastomer of the molecular material is an inner layer, and the silicone rubber of the high resilience polymer material is disposed in the outer layer.
前記シリコーン変性重合体エラストマー及び前記シリコーンゴムは、それぞれ付加反応加硫型ゴムであり、2層構造のチューブに押出し成形後、同時一体的に加硫して製造する。 The silicone-modified polymer elastomer and the silicone rubber are each an addition reaction vulcanization type rubber, and are manufactured by extruding into a tube having a two-layer structure and simultaneously vulcanizing.
前記シリコーン変性共重合体エラストマーは、エチレンプロピレンポリマーとシリコーンオイルを混合し、必要に応じて補強性充填材として二酸化ケイ素パウダーを混合した配合物とし、前記配合物に、主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された液状ポリマー(下記化学式1)を加え、付加反応加硫したものが好ましい。
CH2=CHCH2-PIB-CH2CH=CH2(但し、PIBはポリイソブチレン) ・・・(化1)
さらに本発明の一実施例のチューブについて図面を用いて説明する。図1は低ガス透過性チューブの断面図である。チューブに使用するゴム材料は一体成型が可能な様に同一硬化機構に配合された材料であって、外層又は内層を構成する片方の材料はシリコーン変性エチレンプロピレンゴムやシリコーン変性アクリルゴムなどが使用できる。好ましくはガス透過性、柔軟性、復元性、動的疲労特性が高いシリコーン変性エチレンプロピレンゴムである。ここでシリコーン変性エチレンプロピレンゴムとは、エチレンプロピレンポリマー30〜90質量部にシリコーンオイルを70〜10質量部の範囲で混合し、必要な場合はさらに補強性充填材として二酸化ケイ素パウダーを10〜90質量部添加混合した配合物したものを準備する。この配合物50〜90質量部に、さらに主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された、数平均分子量が例えば5,000で粘度が例えば700Pa・s(23℃)の液状ポリマー(下記化学式1)を10〜50質量部加えた後、付加反応架橋が可能となるように配合する。
CH2=CHCH2-PIB-CH2CH=CH2(但し、PIBはポリイソブチレン) ・・・(化1)
前記したエチレンプロピレンポリマーとシリコーンオイルを混合した配合物は、信越化学工業(株)製商品名“SEP―X−890C−U”として市販されている。
The silicone-modified copolymer elastomer is a blend in which ethylene propylene polymer and silicone oil are mixed, and silicon dioxide powder is mixed as a reinforcing filler if necessary, and the main chain structure is saturated hydrocarbon. in a poly Isobuchire almost quantitatively liquid polymer allyl group is introduced at both ends of the emission (chemical formula 1) was added, obtained by adding the reaction vulcanization is preferable.
CH 2 = CHCH 2 -PIB-CH 2 CH = CH 2 (where PIB is polyisobutylene)
Furthermore, the tube of one Example of this invention is demonstrated using drawing. FIG. 1 is a cross-sectional view of a low gas permeability tube. The rubber material used for the tube is a material blended in the same curing mechanism so that it can be integrally molded, and one of the materials constituting the outer layer or inner layer can be silicone-modified ethylene propylene rubber or silicone-modified acrylic rubber. . A silicone-modified ethylene propylene rubber having high gas permeability, flexibility, resilience, and dynamic fatigue characteristics is preferred. Here, the silicone-modified ethylene propylene rubber means that 30 to 90 parts by mass of an ethylene propylene polymer is mixed with silicone oil in the range of 70 to 10 parts by mass, and if necessary, 10 to 90 of silicon dioxide powder as a reinforcing filler. Prepare a blended mixture with mass parts added. To this blend 50 to 90 parts by weight, almost quantitatively allyl groups at both ends of the poly Isobuchire emissions has been introduced, the viscosity average molecular weight of eg 5,000 eg more main chain structure is a saturated hydrocarbon After adding 10-50 mass parts of 700 Pa.s (23 degreeC) liquid polymer (following Chemical formula 1), it mix | blends so that addition reaction bridge | crosslinking may be attained.
CH 2 = CHCH 2 -PIB-CH 2 CH = CH 2 (where PIB is polyisobutylene)
A blend of the above-described ethylene propylene polymer and silicone oil is commercially available under the trade name “SEP-X-890C-U” manufactured by Shin-Etsu Chemical Co., Ltd.
本発明においては、この配合物にさらに前記化学式(1)の液状ポリマーを配合し、付加反応架橋が可能となるように工夫した。 In the present invention, the liquid polymer represented by the chemical formula (1) is further blended with this blend to devise addition reaction crosslinking.
もう一方の高分子材料であるシリコーンゴムには、加熱硬化型ミラブルゴム、加熱硬化型液状ゴムなどがあり、さらにそれらゴムの架橋機構としては有機過酸化物系架橋、付加反応系架橋などがあるが、とくに好ましくは上記加熱硬化型ミラブルゴムを付加反応架橋とした配合物である。前記2種類のゴム材料を同一の架橋機構にすることは不可分一体に成型する場合に重要である。 Silicone rubber, which is the other polymer material, includes heat-curing millable rubber, heat-curing liquid rubber, and the like, and the crosslinking mechanism of these rubbers includes organic peroxide-based crosslinking and addition reaction-based crosslinking. Particularly preferred is a blend obtained by subjecting the above-mentioned heat-curable millable rubber to addition reaction crosslinking. It is important that the two types of rubber materials have the same cross-linking mechanism when they are inseparably molded.
このシリコーンゴムの架橋後の物理特性は、硬度(JIS−K6253 A型硬度):40〜70度、反発弾性(JIS−K6255):50〜80%、圧縮永久歪(JIS−K6262・25%圧縮試験):20%以下であり柔軟性、復元性、動的疲労特性が高い低ガス透過性チューブの材料として好適である。 The physical properties after crosslinking of this silicone rubber are as follows: Hardness (JIS-K6253 A-type hardness): 40 to 70 degrees, Rebound resilience (JIS-K6255): 50-80%, Compression set (JIS-K6262, 25% compression) Test): 20% or less and suitable as a material for a low gas permeability tube having high flexibility, resilience and dynamic fatigue characteristics.
図1は本発明の一実施例における2層構造チューブ1の断面図である。このチューブ1の内層2は高反発性の高分子材料はシリコーンゴムであり、外層3はシリコーン変性共重合体エラストマーである。チューブ1の内径は例えば3mm、外径は5mmである。
FIG. 1 is a cross-sectional view of a two-layer structure tube 1 in one embodiment of the present invention. The
以下に実施例を用いて本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(実施例1)
(1)共重合体ゴム(ゴムA)
シリコーン変性エチレンプロピレンゴム(信越化学工業(株)製商品名“SEP―X−890C−U”)100質量部と、主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された数平均分子量が5,000で粘度が700Pa・s(23℃)の液状ポリマー15質量部を均一に2本ロールで混合分散したベースポリマーを作成した。その後にマイレン酸ジメチル、0.05質量部、第1硬化剤1質量部(SH1107/製品名・東レダウコーニング株式会社製)、第2硬化剤0.5質量部(X−93−1410A/製品名・信越化学株式会社製)、触媒0.05質量部(SRX212/製品名・東レダウコーニング株式会社製)を加え、2本ロールで均一に分散混練りしゴムAを得た。
Example 1
(1) Copolymer rubber (Rubber A)
A silicone-modified ethylene-propylene rubber (Shin-Etsu Chemical Co., trade name "SEP-X-890C-U ") 100 parts by weight, the both ends of the poly Isobuchire down the main chain structure is a saturated hydrocarbon almost quantitatively A base polymer was prepared in which 15 parts by mass of a liquid polymer having an allyl group introduced number average molecular weight of 5,000 and a viscosity of 700 Pa · s (23 ° C.) were uniformly mixed and dispersed by two rolls. Thereafter, dimethyl maleate, 0.05 parts by mass, 1 part by mass of the first curing agent (SH1107 / product name, manufactured by Toray Dow Corning Co., Ltd.), 0.5 parts by mass of the second curing agent (X-93-1410A / product) Name, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.05 part by mass of catalyst (SRX212 / product name, manufactured by Toray Dow Corning Co., Ltd.) were added and uniformly dispersed and kneaded with two rolls to obtain rubber A.
ゴムAの特性測定をした。熱加硫プレス機を使用し150℃で10分間加熱による1次加硫後に、150℃で1時間の2次加硫を行い、厚さ2.0mmの加硫シートを作成した。このシートの特性を測定したところ、硬度は53°(JIS−K6253 A型)、引張り強さは3.8Mpa(JIS−K6251)、伸びは220%(JIS−K6251)、引裂き強さは18(JIS−K6252・クレセント型)、圧縮永久歪は19%(JIS−K6262・25%圧縮試験)、反発弾性率は51%(JIS−K6255)であった。
(2)シリコーンゴム(ゴムB)
シリコーンゴムコンパウンド100質量部(SE1185U/製品名・東レダウコーニング株式会社製)に硬化触媒、0.4質量部(RD201/製品名・東レダウコーニング株式会社製)。架橋剤、0.4質量部(MR91/製品名・東レダウコーニング株式会社製)。反応抑制剤、0.8質量部(RD7/製品名・東レダウコーニング株式会社製)。白色顔料、0.2質量部を2本ロールで均一に分散混練りしゴムBを得た。
The properties of rubber A were measured. After primary vulcanization by heating at 150 ° C. for 10 minutes using a heat vulcanizing press machine, secondary vulcanization was performed at 150 ° C. for 1 hour to prepare a vulcanized sheet having a thickness of 2.0 mm. When the characteristics of this sheet were measured, the hardness was 53 ° (JIS-K6253 A type), the tensile strength was 3.8 Mpa (JIS-K6251), the elongation was 220% (JIS-K6251), and the tear strength was 18 ( JIS-K6252 / Crescent type), compression set was 19% (JIS-K6262 / 25% compression test), and rebound resilience was 51% (JIS-K6255).
(2) Silicone rubber (Rubber B)
100 parts by mass of silicone rubber compound (SE1185U / product name, manufactured by Toray Dow Corning Co., Ltd.), and 0.4 parts by mass (RD201 / product name, manufactured by Toray Dow Corning Co., Ltd.). Cross-linking agent, 0.4 parts by mass (MR91 / product name, manufactured by Toray Dow Corning Co., Ltd.). Reaction inhibitor, 0.8 parts by mass (RD7 / product name, manufactured by Toray Dow Corning Co., Ltd.). A white pigment, 0.2 parts by mass, was uniformly dispersed and kneaded with two rolls to obtain rubber B.
ゴムBの特性を測定した。熱加硫プレス機を使用し150℃で10分間の1次加硫後に、200℃で4時間の2次加硫を行い、厚さ2.0mmの加硫シートを作成した。このシートの特性を測定したところ、硬度は55度(JIS−K6253 A型)。引張り強さは8Mpa(JIS−K6251)。伸びは330%(JIS−K6251)。引裂き強さは22(JIS−K6252・アングル型)。圧縮永久歪は4.2%(JIS−K6262・25%圧縮試験)。反発弾性は80%(JIS−K6255)であった。 The properties of rubber B were measured. A primary vulcanization was performed at 150 ° C. for 10 minutes using a heat vulcanizing press machine, followed by a secondary vulcanization at 200 ° C. for 4 hours to prepare a vulcanized sheet having a thickness of 2.0 mm. When the characteristics of this sheet were measured, the hardness was 55 degrees (JIS-K6253 A type). Tensile strength is 8 Mpa (JIS-K6251). Elongation is 330% (JIS-K6251). The tear strength is 22 (JIS-K6252 angle type). The compression set is 4.2% (JIS-K6262, 25% compression test). The impact resilience was 80% (JIS-K6255).
次に透湿度の実験をした。以上のように作成したゴムAとゴムBを使用し全体(合計)の厚みが1.0mmとなる様にし、それぞれの厚み割合を変化させ2種類のゴムが分離しないように一体成形したシートを作成し、実験1〜実験7でそれぞれの透湿度をJIS−Z0208(防湿包装材料の透湿度試験方法・カップ法)で測定した。結果を表1に示す。表1はそれぞれの厚み割合を変化させ2種類のゴムが分離しないように一体成形したシートの透湿度を測定したデータである。 Next, an experiment on moisture permeability was performed. Using the rubber A and the rubber B created as described above, the total (total) thickness is 1.0 mm, and the thickness ratio is changed to change the thickness ratio of each so that the two types of rubber are not separated. It created and measured each moisture permeability in Experiment 1-Experiment 7 by JIS-Z0208 (moisture-proof packaging material moisture permeability test method / cup method). The results are shown in Table 1. Table 1 shows data obtained by measuring the moisture permeability of a sheet integrally formed so that the two types of rubber are not separated by changing the thickness ratio.
表1から明らかなとおり、ゴムA:ゴムBの厚み比率が100:0〜10:90の範囲の透湿度が低く、さらに100:0〜20:80の透湿度は低くて好ましかった。 As apparent from Table 1, the moisture permeability was low when the rubber A: rubber B thickness ratio was in the range of 100: 0 to 10:90, and the moisture permeability of 100: 0 to 20:80 was low.
(実施例2)
次に同時押出し成型装置を用いて、ゴムAとゴムBの成形後の合計肉厚みが1.0mmとなるように、ゴムAとゴムBのそれぞれの厚み割合を変化させ2種類のゴムが分離しないように一体成形した。ゴムBが内層、ゴムAが外層となるようにした。その後、300℃、60秒の1次加硫をし、次に200℃、2時間の2次加硫をした。冷却した後、内径3mm、外径5mmのチューブを作成し水蒸気透過率(%)を測定する実験8〜実験14のサンプルとした。
(Example 2)
Next, using a coextrusion molding device, the two types of rubber are separated by changing the thickness ratio of rubber A and rubber B so that the total thickness after molding of rubber A and rubber B is 1.0 mm. Integrally molded so that it does not. Rubber B was the inner layer and rubber A was the outer layer. Thereafter, primary vulcanization was performed at 300 ° C. for 60 seconds, and then secondary vulcanization was performed at 200 ° C. for 2 hours. After cooling, a tube having an inner diameter of 3 mm and an outer diameter of 5 mm was prepared and used as samples of Experiment 8 to Experiment 14 in which the water vapor transmission rate (%) was measured.
次にチューブを270mmに正確に切断した後、一方の先端から10mmの位置をバインダークリップ(ライオン社製・No155)で封止した後、チューブ内に気泡が入らないように蒸留水をもう片方の先端まで一杯なる様に注射器で注入した後、先端から10mmの位置で同じくバインダークリップ(ライオン社製・No155)で封止した後、全体の重量を精密に測定し加熱前試料重量(W1)とした。
Next, after accurately cutting the tube to 270 mm, seal the 10 mm position from one end with a binder clip (Lion Corporation, No. 155), and then add distilled water to the other so that air bubbles do not enter the tube. After injecting with a syringe to fill the tip, seal with a binder clip (Lion Corporation, No. 155) at a
次に上記で作成したサンプルを40℃+/−0.5℃の恒温オーブンに60時間投入した後に取り出し1時間室温で冷却した後、重量を測定し加熱後試験重量(W2)とし水蒸気透過率(%)を測定した結果を表2に示す。表2はそれぞれの厚み割合を変化させ2種類のゴムが分離できない様に一体成型したチューブの水蒸気透過率を測定したデータである。 Next, the sample prepared above was put into a constant temperature oven at 40 ° C. + / − 0.5 ° C. for 60 hours and then taken out and cooled at room temperature for 1 hour. Then, the weight was measured, and the test weight (W2) was measured after heating. The results of measuring (%) are shown in Table 2. Table 2 shows data obtained by measuring the water vapor transmission rate of a tube integrally molded so that the two types of rubber cannot be separated by changing the thickness ratio.
表2から明らかなとおり、ゴムA:ゴムBの厚み比率が100:0〜10:90の範囲の水蒸気透過率が低く、さらに100:0〜20:80の水蒸気透過率は低くて好ましかった。
(実施例3)
次に、チューブの復元性を確認した。実験15(比較例)のチューブは、ゴムA単体で成形され内径2.6mm、外径4.6mm、処理前は断面が略真円のチューブであった。
As is clear from Table 2, the water vapor transmission rate in the range where the thickness ratio of rubber A: rubber B is 100: 0 to 10:90 is low, and the water vapor transmission rate of 100: 0 to 20:80 is low, which is preferable. It was.
(Example 3)
Next, the restoring property of the tube was confirmed. The tube of Experiment 15 (Comparative Example) was formed of rubber A alone and had an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a substantially circular cross section before processing.
実験16(比較例)のチューブは、ゴムB単体で成形され内径2.6mm、外径4.6mm、処理前は断面が略真円のチューブであった。 The tube of Experiment 16 (Comparative Example) was formed of rubber B alone and had an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a substantially circular cross section before processing.
実験17(実施例)のサンプルはゴムAを外層に厚み0.20mm、ゴムBを内層に厚み0.80mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。 The sample of Experiment 17 (Example) has rubber A as an outer layer with a thickness of 0.20 mm, rubber B with an inner layer as a thickness of 0.80 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a cross-section of the sample. It was a round tube.
実験18(実施例)のサンプルはゴムAを外層に厚み0.50mm、ゴムBを内層に厚み0.50mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。 The sample of Experiment 18 (Example) has rubber A as the outer layer with a thickness of 0.50 mm, rubber B with the inner layer as the thickness of 0.50 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a cross-section of the sample. It was a round tube.
実験19(実施例)のサンプルはゴムAを外層に厚み0.80mm、ゴムBを内層に厚み0.20mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。 The sample of Experiment 19 (Example) has rubber A as an outer layer with a thickness of 0.80 mm, rubber B with an inner layer as a thickness of 0.20 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a cross-section of the sample. It was a round tube.
実験20(実施例)のサンプルはゴムAを内層に厚み0.20mm、ゴムBを外層に厚み0.80mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。 The sample of Experiment 20 (Example) has rubber A as an inner layer with a thickness of 0.20 mm, rubber B with an outer layer as a thickness of 0.80 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a substantially cross-sectional shape. It was a round tube.
実験21(実施例)のサンプルはゴムAを内層に厚み0.50mm、ゴムBを外層に厚み0.50mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。 In the sample of Experiment 21 (Example), rubber A is 0.50 mm in thickness for the inner layer, rubber B is 0.50 mm in thickness for the outer layer, the total thickness is 1.0 mm, the inner diameter is 2.6 mm, the outer diameter is 4.6 mm, and the cross section is approximately. It was a round tube.
実験22(実施例)のサンプルはゴムAを内層に厚み0.80mm、ゴムBを外層に厚み0.20mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。 The sample of Experiment 22 (Example) has rubber A as an inner layer with a thickness of 0.80 mm, rubber B with an outer layer as a thickness of 0.20 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a substantially cross-sectional shape. It was a round tube.
実験15〜実験22のチューブは、断面が略真円となるように押出し、チューブを作成し、それぞれを300℃、60秒の一次加硫と、200℃、2時間の2次加硫を施した。復元性を評価するために図2に示す試験冶具10に固定した。すなわち、下プレート11の上に長さ50mmのチューブ1を置き、その上から上プレート12を置き、ナット13a,13bを締め付けることにより、チューブ1を1.28mmの厚さLまで押し潰す。
The tubes in Experiments 15 to 22 were extruded so that the cross-sections were almost perfect circles, and the tubes were each subjected to primary vulcanization at 300 ° C. for 60 seconds and secondary vulcanization at 200 ° C. for 2 hours. did. In order to evaluate the resilience, it was fixed to the
その後、冷熱試験機に投入し+80℃(1時間)→−20℃(1時間)を1サイクルとし、合計36サイクル、合計72時間の熱ストレス下で暴露し復元性の実験をした。比較例1としてPVC製のチューブの結果を加えて表3に示す。表3はチューブの復元性を測定したデータである。X方向は縦方向を示す。 Then, it put into the cold-heat test machine, +80 degreeC (1 hour)->-20 degreeC (1 hour) was made into 1 cycle, and it exposed under the heat stress of a total of 36 cycles and a total of 72 hours, and experimented resilience. As a comparative example 1, the result of a tube made of PVC is added and shown in Table 3. Table 3 shows data obtained by measuring the restoring property of the tube. The X direction indicates the vertical direction.
表3から明らかなとおり、実験17〜22は2層構造のチューブであり、暴露前に対する内径変化が小さく、良好であった。 As is apparent from Table 3, Experiments 17 to 22 were tubes having a two-layer structure, and the inner diameter change before exposure was small and good.
これに対して、実験15はゴムA単体で成形されており、暴露前に対する内径変化は高かった。また実験16はゴムB単体で成形されており、暴露前に対する内径変化は小さかったが、表1〜2から透湿度及び水蒸気透過性が高く、この面で好ましくなかった。 On the other hand, Experiment 15 was molded with rubber A alone, and the inner diameter change before exposure was high. Experiment 16 was molded with rubber B alone, and the change in the inner diameter before exposure was small, but from Tables 1 and 2, the moisture permeability and water vapor permeability were high, which was not preferable in this respect.
以上の様に本発明の積層一体化成形チューブによれば、水蒸気透過率が低く、復元性の高い低ガス透過性チューブを得ることができる。 As described above, according to the laminated integrated tube of the present invention, it is possible to obtain a low gas permeability tube having a low water vapor transmission rate and a high restoration property.
1 2層構造のチューブ
2 内層
3 外層
10 試験冶具
11 下プレート
12 上プレート
13a,13b ナット
1 Two-
Claims (5)
前記ガス透過性の低い高分子材料層はシリコーン変性ポリアルキレン共重合体ゴム層であり、前記共重合体ゴムは、エチレンプロピレンポリマーとシリコーンオイルを混合し、さらに前記配合物に、主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された液状ポリマー(下記化学式1)を加えたものであり、
CH2=CHCH2-PIB-CH2CH=CH2(但し、PIBはポリイソブチレン) ・・・(化1)
前記高反発性の高分子材料層は厚さが0.20mm以上0.90mm以下のシリコーンゴム層であり、
前記共重合体ゴム層及び前記シリコーンゴム層は、それぞれ付加反応加硫型ゴムであり、2層構造のチューブに押出し成形後、同時一体的に加硫されていることを特徴とする低ガス透過性チューブ。 A low gas permeability tube in which a layer of a polymer material having low gas permeability and a layer made of a high resilience polymer material are inseparably laminated and formed,
The polymer material layer having low gas permeability is a silicone-modified polyalkylene copolymer rubber layer, and the copolymer rubber is a mixture of ethylene propylene polymer and silicone oil, and the main chain structure is added to the blend. A liquid polymer in which allyl groups are introduced almost quantitatively at both ends of the polyisobutylene that is a saturated hydrocarbon (the following chemical formula 1) is added,
CH 2 = CHCH 2 -PIB-CH 2 CH = CH 2 (where PIB is polyisobutylene)
The high resilience polymer material layer is a silicone rubber layer having a thickness of 0.20 mm to 0.90 mm ,
The copolymer rubber layer and the silicone rubber layer are each an addition reaction vulcanization type rubber, and are extruded into a two-layered tube and then vulcanized integrally at the same time. Sex tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006004145A JP4836243B2 (en) | 2005-02-03 | 2006-01-11 | Low gas permeability tube |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005027520 | 2005-02-03 | ||
JP2005027520 | 2005-02-03 | ||
JP2006004145A JP4836243B2 (en) | 2005-02-03 | 2006-01-11 | Low gas permeability tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006240291A JP2006240291A (en) | 2006-09-14 |
JP4836243B2 true JP4836243B2 (en) | 2011-12-14 |
Family
ID=37047142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006004145A Active JP4836243B2 (en) | 2005-02-03 | 2006-01-11 | Low gas permeability tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4836243B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5569450A (en) * | 1978-11-21 | 1980-05-26 | Toshiba Silicone | Method of forming multilayer structure |
SE429139B (en) * | 1981-12-22 | 1983-08-15 | Primus Sievert Ab | DEVICE FOR A CAMPING COOK OPERATION WITH CONDENSED PETROLEUM GAS |
JPS60178046A (en) * | 1984-02-24 | 1985-09-12 | 住友ベークライト株式会社 | Composite molded shape of olefin group resin composition andsilicone rubber |
JP2809051B2 (en) * | 1993-01-13 | 1998-10-08 | 東海ゴム工業株式会社 | Coolant transfer hose for vehicles |
JP3540920B2 (en) * | 1997-09-29 | 2004-07-07 | 鐘淵化学工業株式会社 | Crosslinkable rubber composition, and crosslinked rubber thereof |
JP4799814B2 (en) * | 2002-10-30 | 2011-10-26 | 東レ・ダウコーニング株式会社 | Composite and production method thereof |
-
2006
- 2006-01-11 JP JP2006004145A patent/JP4836243B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006240291A (en) | 2006-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60324555D1 (en) | VULCANISTS OF FLUOROELASTOMERS AND SILICONS | |
CN1034607C (en) | Composite tubular article, in particular gasoline pipe, and method for producing such an article | |
JPH08175188A (en) | Rubber compound for glass run | |
WO2007136751A3 (en) | Elastomeric compositions comprising butyl rubber and propylene polymers | |
EP1599534B1 (en) | Thermoplastic elastomer composition having viscosity-enhanced and vulcanized elastomer dispersions | |
EP1153973A1 (en) | Rubber vibration isolator and method for producing the same | |
CN105860179A (en) | Rubber sealing product and preparation method and application thereof | |
JP4836243B2 (en) | Low gas permeability tube | |
US20150051307A1 (en) | Self-Adhesive Silicone Rubber Compositions and Articles Comprising Same | |
JP2002192528A (en) | Bladder for vulcanizing tire | |
EP0687708A1 (en) | Improved heat and ozone resistant NBR/epichlorohydrin blends | |
KR101709691B1 (en) | Method producing of foam compounds having high mechanical properties and low compression set and adhesion strength in primerless state | |
JP7088679B2 (en) | Thermoplastic elastomer composition | |
JP3952350B2 (en) | Resin composition for skin member, laminated body thereof, method for reducing the amount of creaking at the time of extrusion molding of the composition, and method for producing molded body | |
JPH0412750B2 (en) | ||
RU2425073C2 (en) | Polyamide resin-based composition, having excellent expansibility and flexural fatigue, and use thereof in pneumatic tyre and air hose | |
EP3849791A1 (en) | Thermoplastic vulcanizate compositions in polymeric inner / pressure sheaths of flexible pipes for oil & gas applications | |
JP2020055981A (en) | Thermoplastic elastomer composition and joining member | |
TWI230723B (en) | Oil-extended copolymers for sponge | |
US20210221973A1 (en) | Foamed Thermoplastic Vulcanizate and Methods Related Thereto | |
JP3910313B2 (en) | Resin composition for skin member and laminate thereof | |
JP7198734B2 (en) | Method for producing thermoplastic elastomer composition | |
CN103897383B (en) | Amilan polyamide resin composition with excellent ductility and flexing fatigue and the pneumatic tire and hose using said composition | |
JP2004143250A (en) | Rubber composition and rubber composite article | |
JP5932298B2 (en) | Method for producing rubber composition for seal, rubber composition for seal and seal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110114 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110601 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110922 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110926 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4836243 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |