[go: up one dir, main page]

JP4836243B2 - Low gas permeability tube - Google Patents

Low gas permeability tube Download PDF

Info

Publication number
JP4836243B2
JP4836243B2 JP2006004145A JP2006004145A JP4836243B2 JP 4836243 B2 JP4836243 B2 JP 4836243B2 JP 2006004145 A JP2006004145 A JP 2006004145A JP 2006004145 A JP2006004145 A JP 2006004145A JP 4836243 B2 JP4836243 B2 JP 4836243B2
Authority
JP
Japan
Prior art keywords
layer
rubber
silicone
tube
rubber layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006004145A
Other languages
Japanese (ja)
Other versions
JP2006240291A (en
Inventor
智之 奥村
浩智 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Polymer Industries Co Ltd
Original Assignee
Fuji Polymer Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Polymer Industries Co Ltd filed Critical Fuji Polymer Industries Co Ltd
Priority to JP2006004145A priority Critical patent/JP4836243B2/en
Publication of JP2006240291A publication Critical patent/JP2006240291A/en
Application granted granted Critical
Publication of JP4836243B2 publication Critical patent/JP4836243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、特に柔軟性、圧縮永久歪性、復元性、動的疲労特性が要求される低ガス透過性チューブに関するものである   The present invention relates to a low gas permeable tube that is particularly required to have flexibility, compression set, resilience, and dynamic fatigue characteristics.

従来から低ガス透過性の高分子材料であるポリエチレン樹脂、ナイロン樹脂、ポリプロピレン樹脂、フッ素樹脂などの樹脂製のチューブやオレフィン系合成ゴム、フッ素系合成ゴム、ジエン系合成ゴム、ビニル系合成ゴムなどのゴム製のチューブが使用されてきた。これらの樹脂材料、ゴム材料は一般的に硬く柔軟性に乏しいので、動的疲労特性に問題がある。各種材料の気体透過率については非特許文献1に詳しく記載されている。   Polyethylene resin, nylon resin, polypropylene resin, fluororesin resin tubes, olefin synthetic rubber, fluoro synthetic rubber, diene synthetic rubber, vinyl synthetic rubber, etc. Rubber tubes have been used. Since these resin materials and rubber materials are generally hard and poor in flexibility, there is a problem in dynamic fatigue characteristics. The gas permeability of various materials is described in detail in Non-Patent Document 1.

シリコーンゴム製チューブは化学的に安定であり、弾性、衛生性、耐候性があり、様々な分野において使用されている。例えば薬液送液や血液送液などの液体輸送に使用されている。これらのチューブは送液する液体の種類によって耐溶剤性、耐アルカリ性、耐酸性、耐ガス透過性、柔軟性、圧縮永久歪性、動的疲労特性などのさまざまな特性が要求されており、個々の目的により多くの材質、種類、性能のチューブの中から選択され使用されている。   Silicone rubber tubes are chemically stable, elastic, hygienic and weather resistant, and are used in various fields. For example, it is used for liquid transportation such as chemical liquid feeding and blood liquid feeding. These tubes are required to have various properties such as solvent resistance, alkali resistance, acid resistance, gas resistance, flexibility, compression set, and dynamic fatigue characteristics depending on the type of liquid to be fed. Depending on the purpose, tubes are selected from many materials, types and performances.

又シリコーンゴムにポリエチレン樹脂、ナイロン樹脂、ポリプロピレン樹脂、フッ素樹脂などを被覆したチューブもあるが、これらも前記の樹脂、合成ゴム製チューブと同様の問題がある。
「プラスチック・データブック」,工業調査会,1999年12月1日,38-42頁
There are also tubes in which silicone rubber is coated with polyethylene resin, nylon resin, polypropylene resin, fluororesin, etc., but these also have the same problems as the above-mentioned resin and synthetic rubber tubes.
"Plastic Data Book", Industrial Research Council, December 1, 1999, pp. 38-42

シリコーンゴム単体で構成されたチューブは、シリコーンゴムはガス透過性が良い為に外部の空気やその他のガスなどがチューブの壁を透過して薬液や溶剤などに混入してしまうという問題がある。又逆に溶液中の溶液や溶剤などがチューブの壁を透過して外部に揮発して変質するという問題がある。さらに気体が透過すると送液する液体の定量性も不安定になる問題がある。   A tube composed of a single silicone rubber has a problem that since the silicone rubber has good gas permeability, external air or other gas penetrates the wall of the tube and is mixed into a chemical solution or a solvent. On the other hand, there is a problem that a solution or a solvent in the solution permeates through the wall of the tube and volatilizes to the outside and changes its quality. Furthermore, when gas permeates, there is a problem that the quantitativeness of the liquid to be sent becomes unstable.

本発明は前記の問題点を解決する為になされたものであり、ガス透過性、柔軟性、圧縮永久歪性、動的疲労特性が良好であり、かつ製造コストも安価であるチューブを提供する。   The present invention has been made to solve the above problems, and provides a tube having good gas permeability, flexibility, compression set, dynamic fatigue characteristics, and low manufacturing cost. .

本発明の低ガス透過性チューブは、ガス透過性の低い高分子材料の層と、高反発性の高分子材料で構成される層とが不可分一体に積層成形されている低ガス透過性チューブであって、前記ガス透過性の低い高分子材料層はシリコーン変性ポリアルキレン共重合体ゴム層であり、前記共重合体ゴムは、エチレンプロピレンポリマーとシリコーンオイルを混合し、さらに前記配合物に、主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された液状ポリマー(下記化学式1)を加えたものであり、
CH2=CHCH2-PIB-CH2CH=CH2(但し、PIBはポリイソブチレン) ・・・(化1)
前記高反発性の高分子材料層は厚さが0.20mm以上0.90mm以下のシリコーンゴム層であり、前記共重合体ゴム層及び前記シリコーンゴム層は、それぞれ付加反応加硫型ゴムであり、2層構造のチューブに押出し成形後、同時一体的に加硫されていることを特徴とする。
The low gas permeable tube of the present invention is a low gas permeable tube in which a layer made of a polymer material having low gas permeability and a layer made of a polymer material having high resilience are inseparably laminated. The polymer material layer having low gas permeability is a silicone-modified polyalkylene copolymer rubber layer, and the copolymer rubber is a mixture of ethylene propylene polymer and silicone oil, A liquid polymer in which allyl groups are introduced almost quantitatively at both ends of polyisobutylene whose chain structure is a saturated hydrocarbon (the following chemical formula 1) is added,
CH 2 = CHCH 2 -PIB-CH 2 CH = CH 2 (where PIB is polyisobutylene)
The high resilience polymer material layer is a silicone rubber layer having a thickness of 0.20 mm to 0.90 mm , and each of the copolymer rubber layer and the silicone rubber layer is an addition reaction vulcanization type rubber. It is characterized by being vulcanized simultaneously and integrally after being extruded into a two-layered tube.

本発明の低ガス透過性チューブは、ガス透過性の低い高分子材料の層と、高反発性の高分子材料で構成される層とが不可分一体に積層成形されている。これにより、ガス透過性、柔軟性、圧縮永久歪性、動的疲労特性が良好であり、製造コストも安価なチューブを提供できる。とくに、前記ガス透過性の低い高分子材料はシリコーン変性ポリアルキレン共重合体ゴム層(以下「シリコーン変性共重合体エラストマー」ともいう。)であり、前記高反発性の高分子材料はシリコーンゴムであり、両者はそれぞれ付加反応加硫により同時一体的に加硫されていると、前記の効果は顕著である。   In the low gas permeable tube of the present invention, a layer made of a polymer material having low gas permeability and a layer made of a polymer material having high resilience are inseparably laminated. Thereby, a gas permeability, a softness | flexibility, a compression set, a dynamic fatigue characteristic is favorable, and the manufacturing cost can also be provided inexpensively. In particular, the polymer material having low gas permeability is a silicone-modified polyalkylene copolymer rubber layer (hereinafter also referred to as “silicone-modified copolymer elastomer”), and the high-resilience polymer material is silicone rubber. The above-mentioned effect is remarkable when both are simultaneously and integrally vulcanized by addition reaction vulcanization.

本発明のチューブは、内径、1mm〜13mm、外径、3mm〜20mm、片肉厚、1mm〜3.5mmの範囲が好ましい。   The tube of the present invention preferably has an inner diameter of 1 mm to 13 mm, an outer diameter of 3 mm to 20 mm, a single wall thickness of 1 mm to 3.5 mm.

本発明においては、前記シリコーン変性重合体エラストマーとシリコーンゴムの厚み比は、全体を100としたとき、10:90〜90:10の範囲であることが好ましい。さらに好ましくは、両者の厚み比は20:80〜80:20の範囲である。   In the present invention, the thickness ratio of the silicone-modified polymer elastomer and the silicone rubber is preferably in the range of 10:90 to 90:10 when the total is 100. More preferably, the thickness ratio of both is in the range of 20:80 to 80:20.

また、前記ガス透過性の低い高分子材料のシリコーン変性共重合体エラストマーは外層であり、前記高反発性の高分子材料のシリコーンゴムは内層に配置されているか、又は前記ガス透過性の低い高分子材料のシリコーン変性共重合体エラストマーは内層であり、前記高反発性の高分子材料のシリコーンゴムは外層に配置されていることが好ましい。   Further, the silicone-modified copolymer elastomer of the polymer material having low gas permeability is an outer layer, and the silicone rubber of the polymer material having high resilience is disposed in an inner layer, or the high-reactivity gas material having low gas permeability is high. It is preferable that the silicone-modified copolymer elastomer of the molecular material is an inner layer, and the silicone rubber of the high resilience polymer material is disposed in the outer layer.

前記シリコーン変性重合体エラストマー及び前記シリコーンゴムは、それぞれ付加反応加硫型ゴムであり、2層構造のチューブに押出し成形後、同時一体的に加硫して製造する。   The silicone-modified polymer elastomer and the silicone rubber are each an addition reaction vulcanization type rubber, and are manufactured by extruding into a tube having a two-layer structure and simultaneously vulcanizing.

前記シリコーン変性共重合体エラストマーは、エチレンプロピレンポリマーとシリコーンオイルを混合し、必要に応じて補強性充填材として二酸化ケイ素パウダーを混合した配合物とし、前記配合物に、主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された液状ポリマー(下記化学式1)を加え、付加反応加硫したものが好ましい。
CH2=CHCH2-PIB-CH2CH=CH2(但し、PIBはポリイソブチレン) ・・・(化1)
さらに本発明の一実施例のチューブについて図面を用いて説明する。図1は低ガス透過性チューブの断面図である。チューブに使用するゴム材料は一体成型が可能な様に同一硬化機構に配合された材料であって、外層又は内層を構成する片方の材料はシリコーン変性エチレンプロピレンゴムやシリコーン変性アクリルゴムなどが使用できる。好ましくはガス透過性、柔軟性、復元性、動的疲労特性が高いシリコーン変性エチレンプロピレンゴムである。ここでシリコーン変性エチレンプロピレンゴムとは、エチレンプロピレンポリマー30〜90質量部にシリコーンオイルを70〜10質量部の範囲で混合し、必要な場合はさらに補強性充填材として二酸化ケイ素パウダーを10〜90質量部添加混合した配合物したものを準備する。この配合物50〜90質量部に、さらに主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された、数平均分子量が例えば5,000で粘度が例えば700Pa・s(23℃)の液状ポリマー(下記化学式1)を10〜50質量部加えた後、付加反応架橋が可能となるように配合する。
CH2=CHCH2-PIB-CH2CH=CH2(但し、PIBはポリイソブチレン) ・・・(化1)
前記したエチレンプロピレンポリマーとシリコーンオイルを混合した配合物は、信越化学工業(株)製商品名“SEP―X−890C−U”として市販されている。
The silicone-modified copolymer elastomer is a blend in which ethylene propylene polymer and silicone oil are mixed, and silicon dioxide powder is mixed as a reinforcing filler if necessary, and the main chain structure is saturated hydrocarbon. in a poly Isobuchire almost quantitatively liquid polymer allyl group is introduced at both ends of the emission (chemical formula 1) was added, obtained by adding the reaction vulcanization is preferable.
CH 2 = CHCH 2 -PIB-CH 2 CH = CH 2 (where PIB is polyisobutylene)
Furthermore, the tube of one Example of this invention is demonstrated using drawing. FIG. 1 is a cross-sectional view of a low gas permeability tube. The rubber material used for the tube is a material blended in the same curing mechanism so that it can be integrally molded, and one of the materials constituting the outer layer or inner layer can be silicone-modified ethylene propylene rubber or silicone-modified acrylic rubber. . A silicone-modified ethylene propylene rubber having high gas permeability, flexibility, resilience, and dynamic fatigue characteristics is preferred. Here, the silicone-modified ethylene propylene rubber means that 30 to 90 parts by mass of an ethylene propylene polymer is mixed with silicone oil in the range of 70 to 10 parts by mass, and if necessary, 10 to 90 of silicon dioxide powder as a reinforcing filler. Prepare a blended mixture with mass parts added. To this blend 50 to 90 parts by weight, almost quantitatively allyl groups at both ends of the poly Isobuchire emissions has been introduced, the viscosity average molecular weight of eg 5,000 eg more main chain structure is a saturated hydrocarbon After adding 10-50 mass parts of 700 Pa.s (23 degreeC) liquid polymer (following Chemical formula 1), it mix | blends so that addition reaction bridge | crosslinking may be attained.
CH 2 = CHCH 2 -PIB-CH 2 CH = CH 2 (where PIB is polyisobutylene)
A blend of the above-described ethylene propylene polymer and silicone oil is commercially available under the trade name “SEP-X-890C-U” manufactured by Shin-Etsu Chemical Co., Ltd.

本発明においては、この配合物にさらに前記化学式(1)の液状ポリマーを配合し、付加反応架橋が可能となるように工夫した。   In the present invention, the liquid polymer represented by the chemical formula (1) is further blended with this blend to devise addition reaction crosslinking.

もう一方の高分子材料であるシリコーンゴムには、加熱硬化型ミラブルゴム、加熱硬化型液状ゴムなどがあり、さらにそれらゴムの架橋機構としては有機過酸化物系架橋、付加反応系架橋などがあるが、とくに好ましくは上記加熱硬化型ミラブルゴムを付加反応架橋とした配合物である。前記2種類のゴム材料を同一の架橋機構にすることは不可分一体に成型する場合に重要である。   Silicone rubber, which is the other polymer material, includes heat-curing millable rubber, heat-curing liquid rubber, and the like, and the crosslinking mechanism of these rubbers includes organic peroxide-based crosslinking and addition reaction-based crosslinking. Particularly preferred is a blend obtained by subjecting the above-mentioned heat-curable millable rubber to addition reaction crosslinking. It is important that the two types of rubber materials have the same cross-linking mechanism when they are inseparably molded.

このシリコーンゴムの架橋後の物理特性は、硬度(JIS−K6253 A型硬度):40〜70度、反発弾性(JIS−K6255):50〜80%、圧縮永久歪(JIS−K6262・25%圧縮試験):20%以下であり柔軟性、復元性、動的疲労特性が高い低ガス透過性チューブの材料として好適である。   The physical properties after crosslinking of this silicone rubber are as follows: Hardness (JIS-K6253 A-type hardness): 40 to 70 degrees, Rebound resilience (JIS-K6255): 50-80%, Compression set (JIS-K6262, 25% compression) Test): 20% or less and suitable as a material for a low gas permeability tube having high flexibility, resilience and dynamic fatigue characteristics.

図1は本発明の一実施例における2層構造チューブ1の断面図である。このチューブ1の内層2は高反発性の高分子材料はシリコーンゴムであり、外層3はシリコーン変性共重合体エラストマーである。チューブ1の内径は例えば3mm、外径は5mmである。   FIG. 1 is a cross-sectional view of a two-layer structure tube 1 in one embodiment of the present invention. The inner layer 2 of the tube 1 is made of silicone rubber, and the outer layer 3 is made of silicone-modified copolymer elastomer. The inner diameter of the tube 1 is 3 mm, for example, and the outer diameter is 5 mm.

以下に実施例を用いて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
(1)共重合体ゴム(ゴムA)
シリコーン変性エチレンプロピレンゴム(信越化学工業(株)製商品名“SEP―X−890C−U”)100質量部と、主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された数平均分子量が5,000で粘度が700Pa・s(23℃)の液状ポリマー15質量部を均一に2本ロールで混合分散したベースポリマーを作成した。その後にマイレン酸ジメチル、0.05質量部、第1硬化剤1質量部(SH1107/製品名・東レダウコーニング株式会社製)、第2硬化剤0.5質量部(X−93−1410A/製品名・信越化学株式会社製)、触媒0.05質量部(SRX212/製品名・東レダウコーニング株式会社製)を加え、2本ロールで均一に分散混練りしゴムAを得た。
Example 1
(1) Copolymer rubber (Rubber A)
A silicone-modified ethylene-propylene rubber (Shin-Etsu Chemical Co., trade name "SEP-X-890C-U ") 100 parts by weight, the both ends of the poly Isobuchire down the main chain structure is a saturated hydrocarbon almost quantitatively A base polymer was prepared in which 15 parts by mass of a liquid polymer having an allyl group introduced number average molecular weight of 5,000 and a viscosity of 700 Pa · s (23 ° C.) were uniformly mixed and dispersed by two rolls. Thereafter, dimethyl maleate, 0.05 parts by mass, 1 part by mass of the first curing agent (SH1107 / product name, manufactured by Toray Dow Corning Co., Ltd.), 0.5 parts by mass of the second curing agent (X-93-1410A / product) Name, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.05 part by mass of catalyst (SRX212 / product name, manufactured by Toray Dow Corning Co., Ltd.) were added and uniformly dispersed and kneaded with two rolls to obtain rubber A.

ゴムAの特性測定をした。熱加硫プレス機を使用し150℃で10分間加熱による1次加硫後に、150℃で1時間の2次加硫を行い、厚さ2.0mmの加硫シートを作成した。このシートの特性を測定したところ、硬度は53°(JIS−K6253 A型)、引張り強さは3.8Mpa(JIS−K6251)、伸びは220%(JIS−K6251)、引裂き強さは18(JIS−K6252・クレセント型)、圧縮永久歪は19%(JIS−K6262・25%圧縮試験)、反発弾性率は51%(JIS−K6255)であった。
(2)シリコーンゴム(ゴムB)
シリコーンゴムコンパウンド100質量部(SE1185U/製品名・東レダウコーニング株式会社製)に硬化触媒、0.4質量部(RD201/製品名・東レダウコーニング株式会社製)。架橋剤、0.4質量部(MR91/製品名・東レダウコーニング株式会社製)。反応抑制剤、0.8質量部(RD7/製品名・東レダウコーニング株式会社製)。白色顔料、0.2質量部を2本ロールで均一に分散混練りしゴムBを得た。
The properties of rubber A were measured. After primary vulcanization by heating at 150 ° C. for 10 minutes using a heat vulcanizing press machine, secondary vulcanization was performed at 150 ° C. for 1 hour to prepare a vulcanized sheet having a thickness of 2.0 mm. When the characteristics of this sheet were measured, the hardness was 53 ° (JIS-K6253 A type), the tensile strength was 3.8 Mpa (JIS-K6251), the elongation was 220% (JIS-K6251), and the tear strength was 18 ( JIS-K6252 / Crescent type), compression set was 19% (JIS-K6262 / 25% compression test), and rebound resilience was 51% (JIS-K6255).
(2) Silicone rubber (Rubber B)
100 parts by mass of silicone rubber compound (SE1185U / product name, manufactured by Toray Dow Corning Co., Ltd.), and 0.4 parts by mass (RD201 / product name, manufactured by Toray Dow Corning Co., Ltd.). Cross-linking agent, 0.4 parts by mass (MR91 / product name, manufactured by Toray Dow Corning Co., Ltd.). Reaction inhibitor, 0.8 parts by mass (RD7 / product name, manufactured by Toray Dow Corning Co., Ltd.). A white pigment, 0.2 parts by mass, was uniformly dispersed and kneaded with two rolls to obtain rubber B.

ゴムBの特性を測定した。熱加硫プレス機を使用し150℃で10分間の1次加硫後に、200℃で4時間の2次加硫を行い、厚さ2.0mmの加硫シートを作成した。このシートの特性を測定したところ、硬度は55度(JIS−K6253 A型)。引張り強さは8Mpa(JIS−K6251)。伸びは330%(JIS−K6251)。引裂き強さは22(JIS−K6252・アングル型)。圧縮永久歪は4.2%(JIS−K6262・25%圧縮試験)。反発弾性は80%(JIS−K6255)であった。   The properties of rubber B were measured. A primary vulcanization was performed at 150 ° C. for 10 minutes using a heat vulcanizing press machine, followed by a secondary vulcanization at 200 ° C. for 4 hours to prepare a vulcanized sheet having a thickness of 2.0 mm. When the characteristics of this sheet were measured, the hardness was 55 degrees (JIS-K6253 A type). Tensile strength is 8 Mpa (JIS-K6251). Elongation is 330% (JIS-K6251). The tear strength is 22 (JIS-K6252 angle type). The compression set is 4.2% (JIS-K6262, 25% compression test). The impact resilience was 80% (JIS-K6255).

次に透湿度の実験をした。以上のように作成したゴムAとゴムBを使用し全体(合計)の厚みが1.0mmとなる様にし、それぞれの厚み割合を変化させ2種類のゴムが分離しないように一体成形したシートを作成し、実験1〜実験7でそれぞれの透湿度をJIS−Z0208(防湿包装材料の透湿度試験方法・カップ法)で測定した。結果を表1に示す。表1はそれぞれの厚み割合を変化させ2種類のゴムが分離しないように一体成形したシートの透湿度を測定したデータである。   Next, an experiment on moisture permeability was performed. Using the rubber A and the rubber B created as described above, the total (total) thickness is 1.0 mm, and the thickness ratio is changed to change the thickness ratio of each so that the two types of rubber are not separated. It created and measured each moisture permeability in Experiment 1-Experiment 7 by JIS-Z0208 (moisture-proof packaging material moisture permeability test method / cup method). The results are shown in Table 1. Table 1 shows data obtained by measuring the moisture permeability of a sheet integrally formed so that the two types of rubber are not separated by changing the thickness ratio.

Figure 0004836243
Figure 0004836243

表1から明らかなとおり、ゴムA:ゴムBの厚み比率が100:0〜10:90の範囲の透湿度が低く、さらに100:0〜20:80の透湿度は低くて好ましかった。   As apparent from Table 1, the moisture permeability was low when the rubber A: rubber B thickness ratio was in the range of 100: 0 to 10:90, and the moisture permeability of 100: 0 to 20:80 was low.

(実施例2)
次に同時押出し成型装置を用いて、ゴムAとゴムBの成形後の合計肉厚みが1.0mmとなるように、ゴムAとゴムBのそれぞれの厚み割合を変化させ2種類のゴムが分離しないように一体成形した。ゴムBが内層、ゴムAが外層となるようにした。その後、300℃、60秒の1次加硫をし、次に200℃、2時間の2次加硫をした。冷却した後、内径3mm、外径5mmのチューブを作成し水蒸気透過率(%)を測定する実験8〜実験14のサンプルとした。
(Example 2)
Next, using a coextrusion molding device, the two types of rubber are separated by changing the thickness ratio of rubber A and rubber B so that the total thickness after molding of rubber A and rubber B is 1.0 mm. Integrally molded so that it does not. Rubber B was the inner layer and rubber A was the outer layer. Thereafter, primary vulcanization was performed at 300 ° C. for 60 seconds, and then secondary vulcanization was performed at 200 ° C. for 2 hours. After cooling, a tube having an inner diameter of 3 mm and an outer diameter of 5 mm was prepared and used as samples of Experiment 8 to Experiment 14 in which the water vapor transmission rate (%) was measured.

次にチューブを270mmに正確に切断した後、一方の先端から10mmの位置をバインダークリップ(ライオン社製・No155)で封止した後、チューブ内に気泡が入らないように蒸留水をもう片方の先端まで一杯なる様に注射器で注入した後、先端から10mmの位置で同じくバインダークリップ(ライオン社製・No155)で封止した後、全体の重量を精密に測定し加熱前試料重量(W1)とした。   Next, after accurately cutting the tube to 270 mm, seal the 10 mm position from one end with a binder clip (Lion Corporation, No. 155), and then add distilled water to the other so that air bubbles do not enter the tube. After injecting with a syringe to fill the tip, seal with a binder clip (Lion Corporation, No. 155) at a position 10 mm from the tip, and then accurately measure the entire weight and the sample weight (W1) before heating. did.

次に上記で作成したサンプルを40℃+/−0.5℃の恒温オーブンに60時間投入した後に取り出し1時間室温で冷却した後、重量を測定し加熱後試験重量(W2)とし水蒸気透過率(%)を測定した結果を表2に示す。表2はそれぞれの厚み割合を変化させ2種類のゴムが分離できない様に一体成型したチューブの水蒸気透過率を測定したデータである。   Next, the sample prepared above was put into a constant temperature oven at 40 ° C. + / − 0.5 ° C. for 60 hours and then taken out and cooled at room temperature for 1 hour. Then, the weight was measured, and the test weight (W2) was measured after heating. The results of measuring (%) are shown in Table 2. Table 2 shows data obtained by measuring the water vapor transmission rate of a tube integrally molded so that the two types of rubber cannot be separated by changing the thickness ratio.

Figure 0004836243
Figure 0004836243

表2から明らかなとおり、ゴムA:ゴムBの厚み比率が100:0〜10:90の範囲の水蒸気透過率が低く、さらに100:0〜20:80の水蒸気透過率は低くて好ましかった。
(実施例3)
次に、チューブの復元性を確認した。実験15(比較例)のチューブは、ゴムA単体で成形され内径2.6mm、外径4.6mm、処理前は断面が略真円のチューブであった。
As is clear from Table 2, the water vapor transmission rate in the range where the thickness ratio of rubber A: rubber B is 100: 0 to 10:90 is low, and the water vapor transmission rate of 100: 0 to 20:80 is low, which is preferable. It was.
(Example 3)
Next, the restoring property of the tube was confirmed. The tube of Experiment 15 (Comparative Example) was formed of rubber A alone and had an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a substantially circular cross section before processing.

実験16(比較例)のチューブは、ゴムB単体で成形され内径2.6mm、外径4.6mm、処理前は断面が略真円のチューブであった。   The tube of Experiment 16 (Comparative Example) was formed of rubber B alone and had an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a substantially circular cross section before processing.

実験17(実施例)のサンプルはゴムAを外層に厚み0.20mm、ゴムBを内層に厚み0.80mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。   The sample of Experiment 17 (Example) has rubber A as an outer layer with a thickness of 0.20 mm, rubber B with an inner layer as a thickness of 0.80 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a cross-section of the sample. It was a round tube.

実験18(実施例)のサンプルはゴムAを外層に厚み0.50mm、ゴムBを内層に厚み0.50mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。   The sample of Experiment 18 (Example) has rubber A as the outer layer with a thickness of 0.50 mm, rubber B with the inner layer as the thickness of 0.50 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a cross-section of the sample. It was a round tube.

実験19(実施例)のサンプルはゴムAを外層に厚み0.80mm、ゴムBを内層に厚み0.20mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。   The sample of Experiment 19 (Example) has rubber A as an outer layer with a thickness of 0.80 mm, rubber B with an inner layer as a thickness of 0.20 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a cross-section of the sample. It was a round tube.

実験20(実施例)のサンプルはゴムAを内層に厚み0.20mm、ゴムBを外層に厚み0.80mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。   The sample of Experiment 20 (Example) has rubber A as an inner layer with a thickness of 0.20 mm, rubber B with an outer layer as a thickness of 0.80 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a substantially cross-sectional shape. It was a round tube.

実験21(実施例)のサンプルはゴムAを内層に厚み0.50mm、ゴムBを外層に厚み0.50mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。   In the sample of Experiment 21 (Example), rubber A is 0.50 mm in thickness for the inner layer, rubber B is 0.50 mm in thickness for the outer layer, the total thickness is 1.0 mm, the inner diameter is 2.6 mm, the outer diameter is 4.6 mm, and the cross section is approximately. It was a round tube.

実験22(実施例)のサンプルはゴムAを内層に厚み0.80mm、ゴムBを外層に厚み0.20mmとし、総厚み1.0mmで内径2.6mm、外径4.6mm、断面が略真円のチューブであった。   The sample of Experiment 22 (Example) has rubber A as an inner layer with a thickness of 0.80 mm, rubber B with an outer layer as a thickness of 0.20 mm, a total thickness of 1.0 mm, an inner diameter of 2.6 mm, an outer diameter of 4.6 mm, and a substantially cross-sectional shape. It was a round tube.

実験15〜実験22のチューブは、断面が略真円となるように押出し、チューブを作成し、それぞれを300℃、60秒の一次加硫と、200℃、2時間の2次加硫を施した。復元性を評価するために図2に示す試験冶具10に固定した。すなわち、下プレート11の上に長さ50mmのチューブ1を置き、その上から上プレート12を置き、ナット13a,13bを締め付けることにより、チューブ1を1.28mmの厚さLまで押し潰す。   The tubes in Experiments 15 to 22 were extruded so that the cross-sections were almost perfect circles, and the tubes were each subjected to primary vulcanization at 300 ° C. for 60 seconds and secondary vulcanization at 200 ° C. for 2 hours. did. In order to evaluate the resilience, it was fixed to the test jig 10 shown in FIG. That is, the tube 1 having a length of 50 mm is placed on the lower plate 11, the upper plate 12 is placed thereon, and the nuts 13 a and 13 b are tightened to crush the tube 1 to a thickness L of 1.28 mm.

その後、冷熱試験機に投入し+80℃(1時間)→−20℃(1時間)を1サイクルとし、合計36サイクル、合計72時間の熱ストレス下で暴露し復元性の実験をした。比較例1としてPVC製のチューブの結果を加えて表3に示す。表3はチューブの復元性を測定したデータである。X方向は縦方向を示す。   Then, it put into the cold-heat test machine, +80 degreeC (1 hour)->-20 degreeC (1 hour) was made into 1 cycle, and it exposed under the heat stress of a total of 36 cycles and a total of 72 hours, and experimented resilience. As a comparative example 1, the result of a tube made of PVC is added and shown in Table 3. Table 3 shows data obtained by measuring the restoring property of the tube. The X direction indicates the vertical direction.

Figure 0004836243
Figure 0004836243

表3から明らかなとおり、実験17〜22は2層構造のチューブであり、暴露前に対する内径変化が小さく、良好であった。   As is apparent from Table 3, Experiments 17 to 22 were tubes having a two-layer structure, and the inner diameter change before exposure was small and good.

これに対して、実験15はゴムA単体で成形されており、暴露前に対する内径変化は高かった。また実験16はゴムB単体で成形されており、暴露前に対する内径変化は小さかったが、表1〜2から透湿度及び水蒸気透過性が高く、この面で好ましくなかった。   On the other hand, Experiment 15 was molded with rubber A alone, and the inner diameter change before exposure was high. Experiment 16 was molded with rubber B alone, and the change in the inner diameter before exposure was small, but from Tables 1 and 2, the moisture permeability and water vapor permeability were high, which was not preferable in this respect.

以上の様に本発明の積層一体化成形チューブによれば、水蒸気透過率が低く、復元性の高い低ガス透過性チューブを得ることができる。   As described above, according to the laminated integrated tube of the present invention, it is possible to obtain a low gas permeability tube having a low water vapor transmission rate and a high restoration property.

図1は本発明の一実施例における2層構造のチューブの断面図である。FIG. 1 is a cross-sectional view of a tube having a two-layer structure according to an embodiment of the present invention. 図2は本発明の実施例3におけるチューブの復元性を評価するための試験方法を示す断面図である。FIG. 2 is a cross-sectional view showing a test method for evaluating the restoring property of the tube in Example 3 of the present invention.

符号の説明Explanation of symbols

1 2層構造のチューブ
2 内層
3 外層
10 試験冶具
11 下プレート
12 上プレート
13a,13b ナット
1 Two-layer tube 2 Inner layer 3 Outer layer 10 Test jig 11 Lower plate 12 Upper plate 13a, 13b Nut

Claims (5)

ガス透過性の低い高分子材料の層と、高反発性の高分子材料で構成される層とが不可分一体に積層成形されている低ガス透過性チューブであって、
前記ガス透過性の低い高分子材料層はシリコーン変性ポリアルキレン共重合体ゴム層であり、前記共重合体ゴムは、エチレンプロピレンポリマーとシリコーンオイルを混合し、さらに前記配合物に、主鎖構造が飽和炭化水素であるポリイソブチレンの両末端にほぼ定量的にアリル基が導入された液状ポリマー(下記化学式1)を加えたものであり、
CH2=CHCH2-PIB-CH2CH=CH2(但し、PIBはポリイソブチレン) ・・・(化1)
前記高反発性の高分子材料層は厚さが0.20mm以上0.90mm以下のシリコーンゴム層であり、
前記共重合体ゴム層及び前記シリコーンゴム層は、それぞれ付加反応加硫型ゴムであり、2層構造のチューブに押出し成形後、同時一体的に加硫されていることを特徴とする低ガス透過性チューブ。
A low gas permeability tube in which a layer of a polymer material having low gas permeability and a layer made of a high resilience polymer material are inseparably laminated and formed,
The polymer material layer having low gas permeability is a silicone-modified polyalkylene copolymer rubber layer, and the copolymer rubber is a mixture of ethylene propylene polymer and silicone oil, and the main chain structure is added to the blend. A liquid polymer in which allyl groups are introduced almost quantitatively at both ends of the polyisobutylene that is a saturated hydrocarbon (the following chemical formula 1) is added,
CH 2 = CHCH 2 -PIB-CH 2 CH = CH 2 (where PIB is polyisobutylene)
The high resilience polymer material layer is a silicone rubber layer having a thickness of 0.20 mm to 0.90 mm ,
The copolymer rubber layer and the silicone rubber layer are each an addition reaction vulcanization type rubber, and are extruded into a two-layered tube and then vulcanized integrally at the same time. Sex tube.
前記シリコーンゴム層は、硬度(JIS−K6253 A型硬度):40〜70度、反発弾性(JIS−K6255):50〜80%、圧縮永久歪(JIS−K6262・25%圧縮試験):20%以下である請求項1に記載の低ガス透過性チューブ。   The silicone rubber layer has a hardness (JIS-K6253 A-type hardness): 40 to 70 degrees, impact resilience (JIS-K6255): 50 to 80%, compression set (JIS-K6262 / 25% compression test): 20% The low gas permeability tube according to claim 1, wherein: 前記共重合体ゴム層及び前記シリコーンゴムの厚み比は、全体を100としたとき10:90〜90:10の範囲である請求項1又は2に記載の低ガス透過性チューブ。   The low-gas-permeable tube according to claim 1 or 2, wherein a thickness ratio of the copolymer rubber layer and the silicone rubber is in a range of 10:90 to 90:10 when the whole is 100. 前記共重合体ゴム層は外層であり、前記シリコーンゴム層は内層に配置されている請求項1〜3のいずれかに記載の低ガス透過性チューブ。   The low-gas-permeable tube according to any one of claims 1 to 3, wherein the copolymer rubber layer is an outer layer, and the silicone rubber layer is disposed in an inner layer. 前記共重合体ゴム層は内層であり、前記シリコーンゴム層は外層に配置されている請求項1〜3のいずれかに記載の低ガス透過性チューブ。   The low-gas-permeable tube according to any one of claims 1 to 3, wherein the copolymer rubber layer is an inner layer, and the silicone rubber layer is disposed in an outer layer.
JP2006004145A 2005-02-03 2006-01-11 Low gas permeability tube Active JP4836243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004145A JP4836243B2 (en) 2005-02-03 2006-01-11 Low gas permeability tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005027520 2005-02-03
JP2005027520 2005-02-03
JP2006004145A JP4836243B2 (en) 2005-02-03 2006-01-11 Low gas permeability tube

Publications (2)

Publication Number Publication Date
JP2006240291A JP2006240291A (en) 2006-09-14
JP4836243B2 true JP4836243B2 (en) 2011-12-14

Family

ID=37047142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004145A Active JP4836243B2 (en) 2005-02-03 2006-01-11 Low gas permeability tube

Country Status (1)

Country Link
JP (1) JP4836243B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569450A (en) * 1978-11-21 1980-05-26 Toshiba Silicone Method of forming multilayer structure
SE429139B (en) * 1981-12-22 1983-08-15 Primus Sievert Ab DEVICE FOR A CAMPING COOK OPERATION WITH CONDENSED PETROLEUM GAS
JPS60178046A (en) * 1984-02-24 1985-09-12 住友ベークライト株式会社 Composite molded shape of olefin group resin composition andsilicone rubber
JP2809051B2 (en) * 1993-01-13 1998-10-08 東海ゴム工業株式会社 Coolant transfer hose for vehicles
JP3540920B2 (en) * 1997-09-29 2004-07-07 鐘淵化学工業株式会社 Crosslinkable rubber composition, and crosslinked rubber thereof
JP4799814B2 (en) * 2002-10-30 2011-10-26 東レ・ダウコーニング株式会社 Composite and production method thereof

Also Published As

Publication number Publication date
JP2006240291A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
DE60324555D1 (en) VULCANISTS OF FLUOROELASTOMERS AND SILICONS
CN1034607C (en) Composite tubular article, in particular gasoline pipe, and method for producing such an article
JPH08175188A (en) Rubber compound for glass run
WO2007136751A3 (en) Elastomeric compositions comprising butyl rubber and propylene polymers
EP1599534B1 (en) Thermoplastic elastomer composition having viscosity-enhanced and vulcanized elastomer dispersions
EP1153973A1 (en) Rubber vibration isolator and method for producing the same
CN105860179A (en) Rubber sealing product and preparation method and application thereof
JP4836243B2 (en) Low gas permeability tube
US20150051307A1 (en) Self-Adhesive Silicone Rubber Compositions and Articles Comprising Same
JP2002192528A (en) Bladder for vulcanizing tire
EP0687708A1 (en) Improved heat and ozone resistant NBR/epichlorohydrin blends
KR101709691B1 (en) Method producing of foam compounds having high mechanical properties and low compression set and adhesion strength in primerless state
JP7088679B2 (en) Thermoplastic elastomer composition
JP3952350B2 (en) Resin composition for skin member, laminated body thereof, method for reducing the amount of creaking at the time of extrusion molding of the composition, and method for producing molded body
JPH0412750B2 (en)
RU2425073C2 (en) Polyamide resin-based composition, having excellent expansibility and flexural fatigue, and use thereof in pneumatic tyre and air hose
EP3849791A1 (en) Thermoplastic vulcanizate compositions in polymeric inner / pressure sheaths of flexible pipes for oil & gas applications
JP2020055981A (en) Thermoplastic elastomer composition and joining member
TWI230723B (en) Oil-extended copolymers for sponge
US20210221973A1 (en) Foamed Thermoplastic Vulcanizate and Methods Related Thereto
JP3910313B2 (en) Resin composition for skin member and laminate thereof
JP7198734B2 (en) Method for producing thermoplastic elastomer composition
CN103897383B (en) Amilan polyamide resin composition with excellent ductility and flexing fatigue and the pneumatic tire and hose using said composition
JP2004143250A (en) Rubber composition and rubber composite article
JP5932298B2 (en) Method for producing rubber composition for seal, rubber composition for seal and seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250