[go: up one dir, main page]

JP4830259B2 - Manufacturing method of multilayer ceramic electronic component - Google Patents

Manufacturing method of multilayer ceramic electronic component Download PDF

Info

Publication number
JP4830259B2
JP4830259B2 JP2004040562A JP2004040562A JP4830259B2 JP 4830259 B2 JP4830259 B2 JP 4830259B2 JP 2004040562 A JP2004040562 A JP 2004040562A JP 2004040562 A JP2004040562 A JP 2004040562A JP 4830259 B2 JP4830259 B2 JP 4830259B2
Authority
JP
Japan
Prior art keywords
powder
ferrite
ray diffraction
raw material
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004040562A
Other languages
Japanese (ja)
Other versions
JP2005231922A (en
Inventor
淳司 杉原
正晴 河野上
英雄 阿慈知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004040562A priority Critical patent/JP4830259B2/en
Publication of JP2005231922A publication Critical patent/JP2005231922A/en
Application granted granted Critical
Publication of JP4830259B2 publication Critical patent/JP4830259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、積層セラミック電子部品の製造方法に関し、更に詳しくは、初透磁率μi及びQ値が高く、チップ特性にバラツキのない積層セラミック電子部品を製造することができる積層セラミック電子部品の製造方法に関する。The present invention relates to a method of manufacturing a product layer ceramic electronic components, more particularly, initial permeability μi and Q value is high, the product layer ceramic that can be produced variations of such Iseki layer ceramic electronic components in chip characteristics The present invention relates to a method for manufacturing an electronic component.

従来から、フェライト焼結体は、その優れた磁気的特性から磁心材料や積層チップインダクタ等の積層セラミック電子部品のインダクタ材料として用いられている。   Conventionally, ferrite sintered bodies have been used as inductor materials for multilayer ceramic electronic components such as magnetic core materials and multilayer chip inductors because of their excellent magnetic properties.

積層チップインダクタの場合、一般に、フェライト層と導体パターンを順次積層して、積層連結された導体パターンからなるコイルがフェライト内に形成された積層体を形成し、焼成した後、この焼結体にコイルに繋がる外部端子をそれぞれ形成して製造されている。そして、積層チップインダクタのフェライト材料としては、通常、Ni‐Cu‐Zn系フェライト材料やNi‐Zn系フェライト材料等が用いられ、導体材料としては電気伝導度の高いAgが用いられている。   In the case of a multilayer chip inductor, in general, a ferrite layer and a conductor pattern are sequentially laminated to form a laminate in which a coil composed of laminated and connected conductor patterns is formed in ferrite, and after firing, Each external terminal connected to the coil is formed and manufactured. In general, Ni—Cu—Zn ferrite material, Ni—Zn ferrite material, or the like is used as the ferrite material of the multilayer chip inductor, and Ag having high electrical conductivity is used as the conductor material.

また、電子機器の小型化、高性能化、高信頼性化、多機能化が進んでおり、それに用いるフェライト部品等について、小型化及び特性の更なる向上が求められている。これに対応して、例えば積層チップインダクタに用いるインダクタ材料の場合、フェライト原料にガラスを添加する等して、特性を向上させる試みがなされている。しかしながら、初透磁率μi及びQ値等のフェライトの特性を十分に向上させるまでには至っていなかった。   In addition, electronic devices are becoming smaller, higher performance, higher reliability, and multifunctional, and ferrite parts and the like used therefor are required to be further reduced in size and characteristics. In response to this, for example, in the case of an inductor material used for a multilayer chip inductor, an attempt has been made to improve characteristics by adding glass to a ferrite raw material. However, the properties of ferrite such as initial permeability μi and Q value have not been sufficiently improved.

そこで、本出願人は、特許文献1において、フェライト原料に炭化ホウ素(BC)粉末を添加することにより、高い初透磁率μi及びQ値を有し、積層チップインダクタ等のインダクタ用として好適に用いられるフェライト焼結体の製造方法を提案した。 Therefore, the applicant of the present invention has a high initial permeability μi and Q value by adding boron carbide (B 4 C) powder to the ferrite raw material in Patent Document 1, and is suitable for inductors such as multilayer chip inductors. A method for producing a sintered ferrite body used in the present invention was proposed.

特開2000‐233967号公報JP 2000-233967 A

しかしながら、特許文献1に記載されたフェライト焼結体の場合には、フェライト原料にBC粉末を添加することによって高い初透磁率μi及びQ値を有するフェライト焼結体を得ることができるが、BC粉末の添加量が同一であってもBC粉末の保管状態によってフェライト焼結体の初透磁率μiにバラツキが発生したり、劣化することが判った。 However, in the case of the ferrite sintered body described in Patent Document 1, a ferrite sintered body having high initial magnetic permeability μi and Q value can be obtained by adding B 4 C powder to the ferrite raw material. It was found that even when the amount of B 4 C powder added was the same, the initial permeability μi of the ferrite sintered body varied or deteriorated depending on the storage state of the B 4 C powder.

本発明は、上記課題を解決するためになされたもので、初透磁率μi及びQ値が高く、チップ特性のバラツキや劣化を抑制することができる積層セラミック電子部品の製造方法を提供することを目的としている。The present invention has been made to solve the above problems, the initial permeability μi and Q value is high, to provide a method of manufacturing variation or degradation Ru can be suppressed product layer ceramic electronic component chip characteristics The purpose is that.

本発明者等は、保管中のBC粉末について種々検討した結果、保管中のBC粉末は、粒子表面に形成された酸化膜によって安定しているが、保管状態によって酸化の度合いが異なっていることが判った。BCの酸化ではホウ酸及び酸化ホウ素を不純物として生成し、酸化の進行に伴ってこれらの不純物の生成量が増加するため、これらの不純物によってフェライト焼結体の透磁率やチップ特性が劣化することが判った。特に、本発明者等がBC粉末のX線回折分析を行ったところ、ホウ酸及び酸化ホウ素がX線回折強度でBC粉末の全てのピークの合計量に対して所定の比率を超えるとフェライト焼結体の透磁率が著しく劣化することを知見した。この原因としては、BCの酸化度が増すと、BC粉末をフェライト原料に添加してスラリーを調製した場合に溶剤中の水酸基と反応してBC粉末が凝集し、スラリーがゲル化して均一なシートを形成できなくなることが考えられる。尚、本明細書では、ホウ酸及び酸化ホウ素等の不純物を含む炭化ホウ素の粉末を炭化ホウ素粉末(BC粉末)と定義し、不純物を含まない炭化ホウ素(BC)と区別する。 The present inventors have studied a result the B 4 C powder during storage, B 4 C powder during storage, although stable by oxidation film formed on the particle surface, the degree of oxidation by storage conditions I found it different. In the oxidation of B 4 C, boric acid and boron oxide are generated as impurities, and as the amount of these impurities increases with the progress of oxidation, the permeability and chip characteristics of the ferrite sintered body deteriorate due to these impurities. I found out that In particular, when the present inventors conducted X-ray diffraction analysis of B 4 C powder, boric acid and boron oxide had a predetermined ratio with respect to the total amount of all peaks of B 4 C powder in terms of X-ray diffraction intensity. It has been found that the magnetic permeability of the ferrite sintered body deteriorates remarkably when exceeding. The reason for this is that when the degree of oxidation of B 4 C increases, when the slurry is prepared by adding B 4 C powder to the ferrite raw material, it reacts with the hydroxyl groups in the solvent and the B 4 C powder agglomerates. It is conceivable that a uniform sheet cannot be formed by gelation. In this specification, boron carbide powder containing impurities such as boric acid and boron oxide is defined as boron carbide powder (B 4 C powder), and is distinguished from boron carbide (B 4 C) containing no impurities.

本発明は、上記知見に基づいてなされたもので、請求項1に記載の積層セラミック電子部品の製造方法は、フェライト原料を用意する工程と、上記フェライト原料に水酸基を有 する溶媒を含む有機溶剤を用いて湿式粉砕する工程と、炭化ホウ素粉末をX線回折で分析して、不純物として含まれる酸化ホウ素及びホウ酸それぞれのX線回折強度を示すピークの合計量が炭化ホウ素粉末の全てのX線回折強度を示すピークの合計量に対してX線回折強度比で10%以内の炭化ホウ素粉末を選別する工程と、上記湿式粉砕後の上記フェライト原料にバインダと上記炭化ホウ素粉末を加えて混練してセラミックスラリーを得る工程と、上記セラミックスラリーをシート状に形成してセラミックグリーンシートを得る工程と、上記セラミックグリーンシートを所定枚数積層して積層体を形成する工程と、上記積層体を焼成する工程と、を備えたことを特徴とするものである。 The present invention has been made based on the above findings, the production method of a multilayer ceramic electronic component according to claim 1, an organic solvent and a step of preparing a starting ferrite, a solvent which have a hydroxyl group in the starting ferrite And the boron carbide powder is analyzed by X-ray diffraction, and the total amount of peaks indicating the X-ray diffraction intensities of boron oxide and boric acid contained as impurities is all X of the boron carbide powder. in addition the step of selecting a boron carbide powder within 10% in the X-ray diffraction intensity ratio to the total amount of peaks indicating ray diffraction intensity, the bus inductor and the boron carbide powder in the ferrite raw material after the wet pulverization Kneading to obtain a ceramic slurry, forming the ceramic slurry into a sheet to obtain a ceramic green sheet, and the ceramic green sheet. Forming a laminate by a predetermined number of stacked bets, it is characterized in that and a step of firing the laminate.

而して、本発明に用いられるフェライト原料は、特に制限されるものでなく、フェライト原料としては、例えば、Ni‐Cu‐Zn系フェライト、Ni‐Zn系フェライト等、Ni、Cu及びZnのうちの少なくとも二種以上の元素を含むフェライトが好ましく用いられる。また、これらのフェライト原料に、Mn、Sn等の添加剤を含むものであっても良い。   Thus, the ferrite raw material used in the present invention is not particularly limited, and examples of the ferrite raw material include Ni-Cu-Zn-based ferrite and Ni-Zn-based ferrite, among Ni, Cu and Zn. Ferrite containing at least two kinds of elements is preferably used. These ferrite raw materials may contain additives such as Mn and Sn.

また、本発明では、炭化ホウ素粉末(BC粉末)の保管状態をX線回折分析によって管理し、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度で炭化ホウ素粉末の全てのピークの合計量に対して10%以内のBC粉末を選別して用いる。BC粉末中に不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して10%を超えると、フェライト焼結体のμi等の電磁気特性にバラツキが生じる虞がある。また、本発明には不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して0%のBCも含まれるが、実際にはBCの酸化を完全に防止することは難しい。BCの酸化を抑制するためには、BC粉末を窒素ガス等の非酸化性雰囲気下で保管し、管理することが好ましい。 In the present invention, the storage state of the boron carbide powder (B 4 C powder) is managed by X-ray diffraction analysis, and boron oxide and boric acid contained as impurities are X-ray diffraction intensities of all peaks of the boron carbide powder. B 4 C powder within 10% of the total amount is selected and used. B 4 C the powder boron oxide and boric acid are contained as impurities in more than 10% of the total amount of all the peaks of the B 4 C powder X-ray diffraction intensity, electromagnetic μi like ferrite sintered body There may be variations in characteristics. In the present invention, boron oxide and boric acid contained as impurities include 0% B 4 C in terms of X-ray diffraction intensity with respect to the total amount of all peaks of the B 4 C powder. It is difficult to completely prevent 4 C oxidation. In order to suppress the oxidation of B 4 C, it is preferable to store and manage the B 4 C powder in a non-oxidizing atmosphere such as nitrogen gas.

ここで、酸化ホウ素とは、B、BO、B13、BO、BO、Bの総称である。BC粉末の保管中に生成する酸化ホウ素の殆どはBであるため、他の酸化ホウ素は極めて微量で殆ど無視できる量である。また、ホウ酸とは、オルトホウ酸、メタホウ酸、次ホウ酸等の総称である。BC粉末の保管中に生成するホウ酸の殆どはオルトホウ酸であるため、その他のホウ酸は殆ど含まれていないと考えられる。また、X線回折では酸化ホウ素とホウ酸のピーク位置が一致するため、BC粉末に対するX線回折強度が酸化ホウ素またはホウ酸いずれか単独のものか、これら両者の合計量によるものかは区別できない。また、BC粉末の結晶状態によってX線回折強度のピーク幅が異なるため、X線回折強度を求める際のピークの積分幅が異なる。 Here, boron oxide is a general term for B 2 O 3 , B 7 O, B 13 O 2 , B 6 O, BO, and B 4 O 5 . Since most of the boron oxide generated during storage of the B 4 C powder is B 2 O 3 , the other boron oxide is extremely small and almost negligible. Boric acid is a general term for orthoboric acid, metaboric acid, hypoboric acid, and the like. Since most of the boric acid produced during storage of the B 4 C powder is orthoboric acid, it is considered that other boric acid is hardly contained. In addition, since the peak positions of boron oxide and boric acid match in X-ray diffraction, whether the X-ray diffraction intensity for B 4 C powder is either boron oxide or boric acid alone or the total amount of both is determined. I can't distinguish. Further, since the peak width of the X-ray diffraction intensity varies depending on the crystal state of the B 4 C powder, the integral width of the peak when obtaining the X-ray diffraction intensity is different.

本発明によれば、初透磁率μi及びQ値が高く、チップ特性のバラツキや劣化を抑制することができる積層セラミック電子部品の製造方法を提供することができる。

According to the onset bright, it is possible to initial permeability μi and Q value is high, to provide a method of manufacturing variation or degradation Ru can be suppressed product layer ceramic electronic component chip characteristics.

本実施形態では、まず、実施例1〜4及び比較例1、2のフェライト焼結体それぞれを、本発明のフェライト焼結体の製造方法を用いて下記要領で作製した。   In this embodiment, first, each of the ferrite sintered bodies of Examples 1 to 4 and Comparative Examples 1 and 2 was prepared in the following manner using the method for producing a ferrite sintered body of the present invention.

(1)セラミック原料の調製
まず、フェライト原料として、Fe、ZnO、CuO及びNiOの粉末をそれぞれ用意した。その後、Feが48.7モル%、ZnOが26.9モル%、CuOが10.5モル%、残りがNiOとなるようにそれぞれの粉末を秤量した。次いで、これらの粉末をボールミルによって湿式混合して乾燥させた後、700℃で仮焼してフェライト原料を得た。その後、この仮焼済みフェライト原料をボールミルによって湿式粉砕した。この際、溶媒として、水系またはアルコール類等の水酸基を有する溶媒を含む有機溶剤を使用することができる。
(1) Preparation of Ceramic Raw Material First, Fe 2 O 3 , ZnO, CuO and NiO powders were prepared as ferrite raw materials. Then, each powder was weighed so that Fe 2 O 3 was 48.7 mol%, ZnO was 26.9 mol%, CuO was 10.5 mol%, and the rest was NiO. Next, these powders were wet mixed by a ball mill and dried, and then calcined at 700 ° C. to obtain a ferrite raw material. Thereafter, this calcined ferrite raw material was wet-ground by a ball mill. Under the present circumstances, the organic solvent containing the solvent which has hydroxyl groups, such as aqueous type | system | group or alcohol, can be used as a solvent.

(2)BC粉末の選別及びセラミックグリーンシートの作製
保管中のBC粉末についてX線回折分析を行った後、BC粉末の中から、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して10%以内のBC粉末を選別する。本実施例では表1に示すように、酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して1.07%のBC粉末を選別し、このBC粉末を湿式粉砕後のフェライト原料に80重量ppm添加し、ボールミルで湿式混合を行い、バインダを加えてスラリー化し、次いで、ドクターブレード法によりセラミックグリーンシートを作製した。
(2) Selection of B 4 C powder and preparation of ceramic green sheet After performing X-ray diffraction analysis on the B 4 C powder in storage, boron oxide and boric acid contained as impurities are contained in the B 4 C powder. to sort B 4 C powder within 10% relative to the total weight of all the peaks of the B 4 C powder X-ray diffraction intensity. As shown in Table 1 in the present embodiment, it screened 1.07 percent B 4 C powder to the total amount of all the peaks of the B 4 C powder boron oxide and boric acid in X-ray diffraction intensity, this 80 ppm by weight of B 4 C powder was added to the ferrite raw material after wet pulverization, wet-mixed with a ball mill, a binder was added to form a slurry, and then a ceramic green sheet was produced by a doctor blade method.

(3)フェライト焼結体の作製
上記セラミックグリーンシートを積層、圧着し、外径20mm、内径10mm、厚み1mmのトロイダルリングにカットした。その後、このトロイダルリングを900℃で150分焼成してフェライト焼結体を得た。
(3) Preparation of ferrite sintered body The ceramic green sheets were laminated and pressure-bonded, and cut into a toroidal ring having an outer diameter of 20 mm, an inner diameter of 10 mm, and a thickness of 1 mm. Then, this toroidal ring was fired at 900 ° C. for 150 minutes to obtain a ferrite sintered body.

(4)初透磁率μiの測定
次いで、上記フェライト焼結体について、インピーダンスアナライザを用いて測定周波数10kHzの条件で、μiを測定し、この結果を表1に示した。
(4) Measurement of initial permeability μi Next, the ferrite sintered body was measured for μi under the condition of a measurement frequency of 10 kHz using an impedance analyzer, and the results are shown in Table 1.

本実施例では表1に示すように、保管中のBC粉末の中から、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して4.32%のBC粉末を選別し、このBC粉末を用いた以外は実施例1と同一要領でフェライト焼結体を作製し、このフェライト焼結体のμiを実施例1と同一条件で測定し、この結果を表1に示した。 In this example, as shown in Table 1, out of the B 4 C powder being stored, boron oxide and boric acid contained as impurities are X-ray diffraction intensity with respect to the total amount of all peaks of the B 4 C powder. 4.32% B 4 C powder was selected, and a ferrite sintered body was prepared in the same manner as in Example 1 except that this B 4 C powder was used. The results are shown in Table 1.

本実施例では表1に示すように、保管中のBC粉末の中から、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して7.71%のBC粉末を選別し、このBC粉末を用いた以外は実施例1と同一要領でフェライト焼結体を作製し、このフェライト焼結体のμiを実施例1と同一条件で測定し、この結果を表1に示した。 In this example, as shown in Table 1, out of the B 4 C powder being stored, boron oxide and boric acid contained as impurities are X-ray diffraction intensity with respect to the total amount of all peaks of the B 4 C powder. 7.71% B 4 C powder was selected, and a ferrite sintered body was produced in the same manner as in Example 1 except that this B 4 C powder was used. The results are shown in Table 1.

本実施例では表1に示すように、保管中のBC粉末の中から、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して9.68%のBC粉末を選別し、このBC粉末を用いた以外は実施例1と同一要領でフェライト焼結体を作製し、このフェライト焼結体のμiを実施例1と同一条件で測定し、この結果を表1に示した。 In this example, as shown in Table 1, out of the B 4 C powder being stored, boron oxide and boric acid contained as impurities are X-ray diffraction intensity with respect to the total amount of all peaks of the B 4 C powder. 9.68% B 4 C powder was selected, and a ferrite sintered body was produced in the same manner as in Example 1 except that this B 4 C powder was used. The results are shown in Table 1.

また、保管中のBC粉末の中から、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して10%を超えるBC粉末を用いた比較例1、2のフェライト焼結体を作製した。表1に示すように、比較例1では不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して10.86%のBC粉末を用い、比較例2では不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して12.19%のBC粉末を用いた以外は実施例1と同一要領でフェライト焼結体を作製した。その後、比較例1、2の各フェライト焼結体のμiを測定し、この結果を表1に示した。 Also, more than from the B 4 C powder during storage, 10% of the total amount of all the peaks of boron oxide and boric acid B 4 C powder X-ray diffraction intensity as impurity B 4 C powder Ferrite sintered bodies of Comparative Examples 1 and 2 using the above were prepared. As shown in Table 1, the 10.86% of B 4 C powder to the total amount of all the peaks of boron oxide and boric acid B 4 C powder X-ray diffraction intensity as impurity in Comparative Example 1 used, the embodiment except for using 12.19% of B 4 C powder to the total amount of all the peaks of boron oxide and boric acid B 4 C powder X-ray diffraction intensity as impurity in Comparative example 2 A ferrite sintered body was produced in the same manner as in Example 1. Thereafter, μi of each ferrite sintered body of Comparative Examples 1 and 2 was measured, and the results are shown in Table 1.

Figure 0004830259
Figure 0004830259

表1に示す結果によれば、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して10%以内のBC粉末をフェライト原料に添加した実施例1〜4の場合には、高いμiを有するフェライト焼結体が得られた。これに対して、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して10%以上のBC粉末をフェライト原料に添加した比較例1、2の場合には、フェライト終結体のμiが著しく低下していることが判った。 According to the results shown in Table 1, boron oxide and boric acid contained as impurities are X-ray diffraction intensities of B 4 C powder within 10% of the total amount of all peaks of B 4 C powder. In the case of the added Examples 1 to 4, ferrite sintered bodies having high μi were obtained. Comparative example In contrast, boron oxide and boric acid are contained as impurities and the sum of all the more than 10% of B 4 C powder relative amount of the peak of B 4 C powder X-ray diffraction intensity is added to the ferrite material In the case of 1 and 2, it was found that μi of the ferrite termination body was remarkably lowered.

次いで、本実施形態では、上記各実施例及び上記各比較例と同一の原料を用いて図1に示す積層インダクタを作製した。   Next, in this embodiment, the multilayer inductor shown in FIG. 1 was manufactured using the same raw materials as those in the above examples and comparative examples.

本実施形態の積層セラミック電子部品10は、例えば図1に示すように、フェライト焼結体11と、このフェライト焼結体11内に形成されたコイル12と、このコイル12の上下の電極部12A、12Bに接続され且つ焼結体11の両端面を被覆する左右一対の外部電極13A、13Bとを備え、積層インダクタとして構成されている。コイル12は、水平方向に上下複数段に渡って形成されたコイル導体121と、上下のコイル導体121を電気的に接続するビアホール導体122とからなり、上下方向に延びる矩形の螺旋状として形成されている。本実施形態では実施例7〜10及び比較例11、12の積層インダクタをそれぞれ下記要領で作製した。   For example, as shown in FIG. 1, the multilayer ceramic electronic component 10 of the present embodiment includes a ferrite sintered body 11, a coil 12 formed in the ferrite sintered body 11, and upper and lower electrode portions 12 </ b> A of the coil 12. , 12B and a pair of left and right external electrodes 13A, 13B covering both end faces of the sintered body 11, and configured as a multilayer inductor. The coil 12 includes a coil conductor 121 formed in a plurality of upper and lower stages in the horizontal direction and a via-hole conductor 122 that electrically connects the upper and lower coil conductors 121, and is formed as a rectangular spiral extending in the vertical direction. ing. In this embodiment, the multilayer inductors of Examples 7 to 10 and Comparative Examples 11 and 12 were produced in the following manner.

(1)積層インダクタの作製
本実施例では表2に示すように、実施例1で作製したセラミックグリーンシートの所定位置にビアホールを形成した後、スクリーン印刷法等を用いてこのセラミックグリーンシートの上面に所定のコイルパターンを形成した。所定のコイルパターンが形成されたセラミックグリーンシートを必要枚数積層すると共に、その上下の両面にコイルパターンが形成されていないセラミックグリーンシートを積層した後、これを1000kgf/cmの圧力で圧着して圧着ブロックを形成した。これにより、各層のコイルパターンがビアホールによって接続されて積層型のコイルを形成する。そして、この圧着ブロックを所定サイズにカットして積層体を得た。次いで、この積層体の脱脂処理を行った後、脱脂後の積層体を900℃で焼成して焼結体を得、この焼結体の端面処理を行った後、その両端面に導電ペーストを塗布して700℃で焼き付けて外部電極をそれぞれ形成した。これによりフェライト焼結体内にコイルを内蔵する実施例5の積層インダクタを得た。
(1) Production of Multilayer Inductor In this example, as shown in Table 2, after a via hole was formed at a predetermined position of the ceramic green sheet produced in Example 1, the upper surface of this ceramic green sheet was used by screen printing or the like. A predetermined coil pattern was formed. Given the coil pattern is required number laminating ceramic green sheets formed, after laminating the ceramic green sheets where the coil pattern is not formed on both surfaces of the upper and lower, which was pressed at a pressure of 1000 kgf / cm 2 A crimping block was formed. Thereby, the coil pattern of each layer is connected by the via hole to form a laminated coil. And this press-bonded block was cut into a predetermined size to obtain a laminate. Next, after degreasing the laminated body, the laminated body after degreasing is fired at 900 ° C. to obtain a sintered body. After the end face treatment of the sintered body, the conductive paste is applied to both end faces. It was applied and baked at 700 ° C. to form external electrodes. As a result, the multilayer inductor of Example 5 in which the coil was built in the ferrite sintered body was obtained.

(2)積層インダクタのインダクタンス及びインピーダンスの測定
次いで、上記積層インダクタについて、1MHzにおけるインダクタンスLと、100MHzにおけるインピーダンスZを測定し、この結果を表2に示した。
(2) Measurement of Inductance and Impedance of Multilayer Inductor Next, with respect to the above multilayer inductor, an inductance L at 1 MHz and an impedance Z at 100 MHz were measured, and the results are shown in Table 2.

本実施例では表2に示すように、実施例2で作製されたセラミックグリーンシートを用いた以外は実施例5と同一要領で積層インダクタを作製し、この積層インダクタのインダクタンスL及びインピーダンスZを実施例5と同一条件で測定し、この結果を表2に示した。   In this example, as shown in Table 2, a laminated inductor was produced in the same manner as in Example 5 except that the ceramic green sheet produced in Example 2 was used, and the inductance L and impedance Z of this laminated inductor were implemented. The measurement was performed under the same conditions as in Example 5, and the results are shown in Table 2.

本実施例では表2に示すように、実施例3で作製されたセラミックグリーンシートを用いた以外は実施例5と同一要領で積層インダクタを作製し、この積層インダクタのインダクタンスL及びインピーダンスZを実施例5と同一条件で測定し、この結果を表2に示した。   In this example, as shown in Table 2, a laminated inductor was produced in the same manner as in Example 5 except that the ceramic green sheet produced in Example 3 was used, and the inductance L and impedance Z of this laminated inductor were implemented. The measurement was performed under the same conditions as in Example 5, and the results are shown in Table 2.

本実施例では表2に示すように、実施例4で作製されたセラミックグリーンシートを用いた以外は実施例5と同一要領で積層インダクタを作製し、この積層インダクタのインダクタンスL及びインピーダンスZを実施例5と同一条件で測定し、この結果を表2に示した。   In this example, as shown in Table 2, a laminated inductor was produced in the same manner as in Example 5 except that the ceramic green sheet produced in Example 4 was used, and the inductance L and impedance Z of this laminated inductor were implemented. The measurement was performed under the same conditions as in Example 5, and the results are shown in Table 2.

また、表2に示すように、実施例5〜8の積層インダクタの比較用として比較例1、2で作製されたセラミックグリーンシートを用いて、実施例5と同一要領で比較例3、4の積層インダクタを作製した。そして、比較例3、4の積層インダクタのインダクタンスL及びインピーダンスZを実施例5と同一条件で測定し、この結果を表2に示した。   Further, as shown in Table 2, the ceramic green sheets produced in Comparative Examples 1 and 2 were used for comparison of the multilayer inductors of Examples 5 to 8, and in the same manner as in Example 5, Comparative Examples 3 and 4 were used. A multilayer inductor was fabricated. And the inductance L and impedance Z of the multilayer inductor of the comparative examples 3 and 4 were measured on the same conditions as Example 5, and this result was shown in Table 2.

Figure 0004830259
Figure 0004830259

表2に示す結果によれば、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して10%以内に管理したBC粉末をフェライト原料に添加した実施例5〜8の場合には、高いインピーダンスを有する積層インダクタが得られた。これに対して、不純物として含まれる酸化ホウ素及びホウ酸がX線回折強度でBC粉末の全てのピークの合計量に対して10%以上のBC粉末をフェライト原料に添加した比較例3、4の場合には、積層インダクタのインピーダンスが著しく低下していることが判った。 According to the results shown in Table 2, the ferrite a B 4 C powder boron oxide and boric acid was managed within 10% relative to the total weight of all the peaks of the B 4 C powder X-ray diffraction intensity contained as impurities In the case of Examples 5 to 8 added to the raw material, a multilayer inductor having high impedance was obtained. Comparative example In contrast, boron oxide and boric acid are contained as impurities and the sum of all the more than 10% of B 4 C powder relative amount of the peak of B 4 C powder X-ray diffraction intensity is added to the ferrite material In cases 3 and 4, it was found that the impedance of the multilayer inductor was remarkably lowered.

尚、上記実施形態では、フェライト原料粉末の成分組成として、Feが48.7モル%、ZnOが26.9モル%、CuOが10.5モル%、残りがNiOとなるものを用いた場合について説明したが、本発明は、この組成成分に制限されるものではなく、Ni‐Cu‐Zn系フェライトの他、Ni‐Zn系フェライト等、Ni、Cu及びZnのうちの少なくとも二種以上の元素を含むフェライトにおいても同様の作用効果を期することができる。また、フェライト原料に、Mn、Sn等の添加剤を含むフェライトにおいても同様の作用効果を期することができる。 In the above embodiment, the component composition of the ferrite raw material powder is 48.7 mol% Fe 2 O 3 , 26.9 mol% ZnO, 10.5 mol% CuO, and the rest NiO. However, the present invention is not limited to this composition component. In addition to Ni—Cu—Zn ferrite, Ni—Zn ferrite, etc., at least two of Ni, Cu and Zn The same effect can be expected even in the ferrite containing the above elements. The same effect can also be expected in ferrites containing additives such as Mn and Sn in the ferrite raw material.

本発明は、積層インダクタ、積層LC複合部品等に用いられるフェライト焼結体の製造方法や、フェライト焼結体を含む積層セラミック電子部品の製造方法に好適に利用することができる。   The present invention can be suitably used in a method for manufacturing a ferrite sintered body used for a multilayer inductor, a multilayer LC composite component, and the like, and a method for manufacturing a multilayer ceramic electronic component including a ferrite sintered body.

本発明の積層セラミック電子部品の一実施形態を透視して示す透視図である。1 is a perspective view illustrating a multilayer ceramic electronic component according to an embodiment of the present invention.

符号の説明Explanation of symbols

10 積層セラミック電子部品
11 フェライト焼結体
12 コイル(内部電極)
10 Multilayer Ceramic Electronic Component 11 Ferrite Sintered Body 12 Coil (Internal Electrode)

Claims (1)

フェライト原料を用意する工程と、
上記フェライト原料に水酸基を有する溶媒を含む有機溶剤を用いて湿式粉砕する工程と、
炭化ホウ素粉末をX線回折で分析して、不純物として含まれる酸化ホウ素及びホウ酸それぞれのX線回折強度を示すピークの合計量が炭化ホウ素粉末の全てのX線回折強度を示すピークの合計量に対してX線回折強度比で10%以内の炭化ホウ素粉末を選別する工程と、
上記湿式粉砕後の上記フェライト原料にバインダと上記炭化ホウ素粉末を加えて混練してセラミックスラリーを得る工程と、
上記セラミックスラリーをシート状に形成してセラミックグリーンシートを得る工程と、
上記セラミックグリーンシートを所定枚数積層して積層体を形成する工程と、
上記積層体を焼成する工程と、
を備えたことを特徴とする積層セラミック電子部品の製造方法。
Preparing a ferrite raw material;
A step of performing wet pulverization using an organic solvent containing a solvent having a hydroxyl group in the ferrite raw material;
When the boron carbide powder is analyzed by X-ray diffraction, the total amount of peaks indicating the X-ray diffraction intensity of each of boron oxide and boric acid contained as impurities is the total amount of peaks indicating all the X-ray diffraction intensities of the boron carbide powder. Selecting a boron carbide powder having an X-ray diffraction intensity ratio of 10% or less relative to
Obtaining a ceramic slurry was kneaded to bus inductor and the boron carbide powder in the ferrite raw material after the wet pulverization,
Forming the ceramic slurry into a sheet to obtain a ceramic green sheet;
A step of laminating a predetermined number of the ceramic green sheets to form a laminate;
Firing the laminate,
A method for producing a multilayer ceramic electronic component comprising:
JP2004040562A 2004-02-17 2004-02-17 Manufacturing method of multilayer ceramic electronic component Expired - Fee Related JP4830259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040562A JP4830259B2 (en) 2004-02-17 2004-02-17 Manufacturing method of multilayer ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040562A JP4830259B2 (en) 2004-02-17 2004-02-17 Manufacturing method of multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2005231922A JP2005231922A (en) 2005-09-02
JP4830259B2 true JP4830259B2 (en) 2011-12-07

Family

ID=35015270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040562A Expired - Fee Related JP4830259B2 (en) 2004-02-17 2004-02-17 Manufacturing method of multilayer ceramic electronic component

Country Status (1)

Country Link
JP (1) JP4830259B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606127B2 (en) * 1998-12-08 2005-01-05 株式会社村田製作所 Method for producing ferrite sintered body

Also Published As

Publication number Publication date
JP2005231922A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP5626834B2 (en) Manufacturing method of open magnetic circuit type multilayer coil parts
CN110120291B (en) Common mode choke coil
EP2544200B1 (en) Ceramic electronic component and method for producing ceramic electronic component
JP6740817B2 (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
JP4326102B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2010018482A (en) Ferrite, and manufacturing method thereof
JP2010235324A (en) Ferrite composition, ferrite sintered body, composite lamination type electronic component, and method for manufacturing ferrite sintered body
CN105719834B (en) Multilayer ceramic electronic component and method for manufacturing the same
EP1219577B1 (en) Low temperature sintered ferrite material and ferrite parts using the same
CN111986876A (en) Laminated coil component
JP2019210204A (en) Composite magnetic material and electronic component using the same
CN114846569B (en) Capacitors
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP2020061522A (en) Multilayer coil component
JP3838845B2 (en) Multilayer ceramic capacitor
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP4830259B2 (en) Manufacturing method of multilayer ceramic electronic component
JP5159682B2 (en) Multilayer ceramic capacitor
JP4074438B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP2004339031A (en) Non-magnetic ferrite and multilayer electronic component using the same
JP4556668B2 (en) Ferrite material and inductor element
JP3606127B2 (en) Method for producing ferrite sintered body
JP2004339016A (en) Nonmagnetic ferrite and multilayer electronic component using it
JP5471672B2 (en) Multilayer electronic component and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees