JP4827473B2 - Method for producing ammonium lactate - Google Patents
Method for producing ammonium lactate Download PDFInfo
- Publication number
- JP4827473B2 JP4827473B2 JP2005267428A JP2005267428A JP4827473B2 JP 4827473 B2 JP4827473 B2 JP 4827473B2 JP 2005267428 A JP2005267428 A JP 2005267428A JP 2005267428 A JP2005267428 A JP 2005267428A JP 4827473 B2 JP4827473 B2 JP 4827473B2
- Authority
- JP
- Japan
- Prior art keywords
- lactic acid
- ammonia
- aqueous
- ammonium lactate
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004251 Ammonium lactate Substances 0.000 title claims description 66
- 229940059265 ammonium lactate Drugs 0.000 title claims description 66
- 235000019286 ammonium lactate Nutrition 0.000 title claims description 66
- RZOBLYBZQXQGFY-HSHFZTNMSA-N azanium;(2r)-2-hydroxypropanoate Chemical compound [NH4+].C[C@@H](O)C([O-])=O RZOBLYBZQXQGFY-HSHFZTNMSA-N 0.000 title claims description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 210
- 235000014655 lactic acid Nutrition 0.000 claims description 105
- 239000004310 lactic acid Substances 0.000 claims description 105
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 92
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 58
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 58
- 239000007864 aqueous solution Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 38
- 239000000243 solution Substances 0.000 claims description 37
- 230000032683 aging Effects 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- 230000005070 ripening Effects 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000178 monomer Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- 238000007865 diluting Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- SXQFCVDSOLSHOQ-UHFFFAOYSA-N lactamide Chemical compound CC(O)C(N)=O SXQFCVDSOLSHOQ-UHFFFAOYSA-N 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004390 EU approved flour treatment agent Substances 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- RZOBLYBZQXQGFY-UHFFFAOYSA-N ammonium lactate Chemical compound [NH4+].CC(O)C([O-])=O RZOBLYBZQXQGFY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 235000010037 flour treatment agent Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、乳酸アンモニウムの製造方法に関するものである。特に、本発明は、高濃度の乳酸水溶液から短時間で乳酸アンモニウムを製造する方法に関するものである。 The present invention relates to a method for producing ammonium lactate. In particular, the present invention relates to a method for producing ammonium lactate from a high concentration lactic acid aqueous solution in a short time.
乳酸アンモニウムは、pH調整剤、小麦粉処理剤、肌に潤いを与える保湿剤などの様々な用途で使用されている。従来、乳酸アンモニウムは、化学合成によって乳酸水溶液をアンモニア水と反応させることによって、あるいはアンモニアでpHを調整しながら乳酸発酵を行なうことによって製造される(特許文献1)。 Ammonium lactate is used in various applications such as pH adjusters, flour treatment agents, and moisturizers that moisturize the skin. Conventionally, ammonium lactate is produced by reacting an aqueous lactic acid solution with aqueous ammonia by chemical synthesis, or by performing lactic acid fermentation while adjusting the pH with ammonia (Patent Document 1).
一般に乳酸水溶液中には、2量体や3量体等の乳酸の縮合物が存在している。この縮合物は、アンモニアと反応しにくい上、またアンモニアと反応すると、乳酸アミド[(CH3)(OH)CH−CO−NH2]となるため、縮合物は乳酸アンモニウムへの変換反応には全く供されない。このため、特に高濃度の乳酸水溶液を用いる場合には、含まれる縮合物の量も多いため、得られる乳酸アンモニウムの収率がかなり低くなってしまうという問題があった。 In general, lactic acid aqueous solutions contain lactic acid condensates such as dimers and trimers. This condensate is difficult to react with ammonia, and when it reacts with ammonia, it becomes lactamide [(CH 3 ) (OH) CH—CO—NH 2 ]. Therefore, the condensate is not suitable for conversion to ammonium lactate. Not offered at all. For this reason, particularly when a high concentration lactic acid aqueous solution is used, since the amount of the condensate contained is large, there is a problem that the yield of the obtained ammonium lactate becomes considerably low.
このため、乳酸アンモニウムの収率を上げることを目的として、化学合成によって乳酸をアンモニアと反応させる場合には、下記比較例1に記載されるように、アンモニアとの反応前に、乳酸を過剰の水で希釈して乳酸濃度の低い水溶液を調製し、この水溶液を1日程度放置した後、アンモニア水を加えて乳酸とアンモニアとの反応を行なう方法が考えられている。当該方法は、希薄な乳酸水溶液の放置中に、乳酸縮合物が加水分解して乳酸に戻ることを利用し、このような方法を利用すれば、乳酸純度を上げることができ、ゆえに乳酸アンモニウムの収率を向上できる。または、同様の理由から、下記比較例2に記載されるように、最初から乳酸濃度の低い乳酸水溶液を出発材料として用いて、アンモニアと反応させる方法もまた考えられている。
しかしながら、前者の方法は、希釈水溶液を放置する時間がかなりかかる上、アンモニア水添加後も反応に十数時間を要するため、全工程に約3日間という非常に長い時間を要し、産業上好ましくないという問題があった。また、後者の方法では、乳酸濃度の低い、即ち、水含量の多い乳酸水溶液から出発しているため、得られる乳酸アンモニウム水溶液中の乳酸アンモニウムの濃度も低くなる。このため、高濃度の乳酸アンモニウム水溶液を得ようとする場合には、得られた希薄な乳酸アンモニウム水溶液から水を蒸留するなどの脱水工程を行なうことが必要となり、このための設備を必要とする。さらに、このような脱水工程では、得られた乳酸アンモニウムの一部が乳酸とアンモニアに分解するが、これにより目的物である乳酸アンモニウムの収率が低下する上、アンモニアは有毒であり排水する前に除去される必要がある。このため、このような方法を用いる場合には、脱水工程用の設備と、アンモニア除去用の設備がさらに必要となり、この方法もまた、産業上の観点から好ましい方法とはいえなかった。 However, in the former method, it takes a long time to leave the diluted aqueous solution, and the reaction requires ten hours after the addition of aqueous ammonia. Therefore, it takes a very long time of about 3 days for all the steps, which is industrially preferable. There was no problem. In the latter method, since the lactic acid concentration is low, that is, the lactic acid aqueous solution having a high water content is started, the concentration of ammonium lactate in the obtained ammonium lactate aqueous solution is also low. For this reason, when it is going to obtain high concentration ammonium lactate aqueous solution, it is necessary to perform dehydration processes, such as distilling water from the obtained diluted ammonium lactate aqueous solution, and the installation for this is required . Furthermore, in such a dehydration step, a part of the obtained ammonium lactate is decomposed into lactic acid and ammonia. This reduces the yield of the target ammonium lactate, and ammonia is toxic and before draining. Need to be removed. For this reason, when such a method is used, equipment for a dehydration process and equipment for ammonia removal are further required, and this method is also not a preferable method from an industrial viewpoint.
また、上記方法に加えて、乳酸水溶液に直接アンモニアガスを吹き込んで乳酸アンモニウムを製造する方法も考えられるが、当該方法は、高圧ガスを使用する方法でありかつ毒性ガスでもあるアンモニアガスの操作が難しいことから、実際に当該方法を使用することは困難であった。 Further, in addition to the above method, a method for producing ammonium lactate by directly blowing ammonia gas into a lactic acid aqueous solution is also conceivable. However, this method is a method using a high-pressure gas and the operation of ammonia gas which is also a toxic gas. It was difficult to actually use the method because it was difficult.
上述したように、従来の方法によって、60%を超える高濃度の乳酸水溶液を希釈することなく直接アンモニアと反応させることにより、高濃度の乳酸アンモニウム水溶液を短時間で容易に製造する、あるいはガスを使用せずに高濃度乳酸アンモニウムを製造することは困難であった。 As described above, the conventional method can easily produce a high concentration aqueous ammonium lactate solution in a short time by reacting directly with ammonia without diluting a high concentration aqueous solution of lactic acid exceeding 60%, or It was difficult to produce high-concentration ammonium lactate without using it.
したがって、本発明は、上記事情を鑑みてなされたものであり、高濃度の乳酸水溶液を希釈することなく直接アンモニアと反応させることにより、乳酸アンモニウムを高濃度で含む水溶液を製造できる方法を提供することを目的とするものである。 Therefore, the present invention has been made in view of the above circumstances, and provides a method capable of producing an aqueous solution containing ammonium lactate at a high concentration by directly reacting with a ammonia without diluting a high concentration lactic acid aqueous solution. It is for the purpose.
本発明者らは、上記目的を達成すべく、鋭意研究を行った結果、乳酸水溶液へのアンモニアの添加を数回に分けて行ない、かつ各添加工程間を所定時間あけて行なうことによって、高濃度の乳酸水溶液を用いてアンモニア水と直接反応させても、乳酸水溶液中の縮合物が収率に悪影響を与えることなく、高い収率で且つ短時間で高濃度の乳酸アンモニウム水溶液を製造できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors have performed the addition of ammonia to the lactic acid aqueous solution in several times, and by performing a predetermined time between the addition steps, It is possible to produce a high concentration ammonium lactate aqueous solution in a high yield and in a short time without causing adverse effects on the yield even if it is reacted directly with aqueous ammonia using a concentrated aqueous lactic acid solution. The headline and the present invention were completed.
すなわち、上記目的は、乳酸水溶液とアンモニア水とを反応させることにより乳酸アンモニウムを製造する方法において、乳酸水溶液へのアンモニア水の添加を少なくとも2回に分けて行ない、各添加工程間に、12〜24時間の熟成を行なうことを特徴とする、乳酸アンモニウムの製造方法によって達成される。 That is, in the method for producing ammonium lactate by reacting an aqueous lactic acid solution with aqueous ammonia, the above object is performed by adding ammonia water to the aqueous lactic acid solution at least twice, and between each addition step, This is achieved by a method for producing ammonium lactate characterized by aging for 24 hours.
本発明の方法によれば、高濃度の乳酸水溶液を出発材料として用いて直接アンモニアと反応させることにより、高濃度の乳酸アンモニウム水溶液を短時間でかつ容易に製造することができる。 According to the method of the present invention, by using a high concentration lactic acid aqueous solution as a starting material and reacting directly with ammonia, a high concentration ammonium lactate aqueous solution can be easily produced in a short time.
以下、本発明の実施の形態を説明する。 Embodiments of the present invention will be described below.
本発明は、乳酸水溶液とアンモニア水とを反応させることにより乳酸アンモニウムを製造する方法において、乳酸水溶液へのアンモニア水の添加を少なくとも2回に分けて行ない、各添加工程間に、12〜24時間の熟成を行なうことを特徴とする、乳酸アンモニウムの製造方法に関するものである。このように、乳酸水溶液とアンモニア水との反応において、アンモニア水の添加を途中で少なくとも1回中止して、所定時間、放置(熟成)することによって、50%以上という高濃度で縮合物を多量に含む乳酸水溶液を希釈せずにそのまま出発原料として用いて、アンモニア水と直接反応させても、高濃度の乳酸アンモニウム水溶液を簡単な装置でかつ短時間で製造することが可能である。アンモニア水の添加を分けることによって高濃度の乳酸アンモニウム水溶液を得ることができる理由は明らかではないが、添加の途中に設けられた熟成工程中に、反応溶液中に含まれる乳酸縮合物(特に乳酸の2量体や3量体等のオリゴマー)が加水分解されて乳酸(単量体)に変換され、このため、縮合物はアンモニアと反応して乳酸アミドとなることなく、乳酸としてアンモニアとの反応に供されうるためであると考えられる。なお、本発明は、上記考察によって限定されるものではない。 In the method for producing ammonium lactate by reacting an aqueous lactic acid solution with aqueous ammonia, the present invention performs the addition of aqueous ammonia to the aqueous lactic acid solution at least twice, and between each addition step, 12 to 24 hours. It is related with the manufacturing method of ammonium lactate characterized by performing aging of. In this way, in the reaction between the lactic acid aqueous solution and the aqueous ammonia, the addition of the aqueous ammonia is stopped at least once in the middle, and left for a predetermined time (ripening), so that a large amount of condensate can be obtained at a high concentration of 50% or more. Even if the aqueous lactic acid solution contained in is directly used as a starting material without dilution and reacted directly with aqueous ammonia, a high concentration aqueous ammonium lactate solution can be produced with a simple apparatus in a short time. The reason why a high concentration ammonium lactate aqueous solution can be obtained by dividing the addition of aqueous ammonia is not clear, but during the aging step provided in the middle of the addition, a lactic acid condensate (especially lactic acid) contained in the reaction solution Oligomers such as dimers and trimers) are hydrolyzed and converted into lactic acid (monomer). For this reason, the condensate does not react with ammonia to form lactic acid amide, but as lactic acid with ammonia. This is considered to be because it can be used for the reaction. The present invention is not limited by the above consideration.
本発明において、乳酸は、特に制限されず、石油化学製品から化学合成によって製造されてもあるいは特開平6−311886号公報に記載される方法などを用いて発酵法により製造されてもいずれでもよく、または市販品を使用してもよい。なお、上述したように、乳酸中には一般的に乳酸縮合物が全量(乳酸+乳酸縮合物の合計量)に対して5〜40質量%程度含まれている。 In the present invention, lactic acid is not particularly limited and may be produced by chemical synthesis from a petrochemical product or by a fermentation method using a method described in JP-A-6-31886. Alternatively, a commercially available product may be used. As described above, lactic acid condensate is generally contained in lactic acid in an amount of about 5 to 40% by mass based on the total amount (total amount of lactic acid + lactic acid condensate).
本発明において、使用される乳酸水溶液中の乳酸濃度は、特に制限されないが、得られる乳酸アンモニウムの量などを考慮すると、高い濃度であることが好ましい。より好ましくは、乳酸水溶液中の乳酸濃度は、60質量%以上、好ましくは60〜100質量%、さらにより好ましくは70〜100質量%、最も好ましくは80〜100質量%である。この際、乳酸の濃度が60質量%未満であると、乳酸アンモニウムが十分高い濃度で得られず、また、得られる乳酸アンモニウム水溶液中の水分が多くなり、脱水工程が必要とされる場合がある。逆に、乳酸の濃度が100質量%を超えると、縮合物が多量に含まれすぎて、後のアンモニアとの反応の際に乳酸アミドが副生成物として生成してしまい、さらに乳酸アミドを乳酸アンモニウムに変換させることが難しいため、乳酸アンモニウムの収率が下がってしまう場合がある。なお、上記乳酸濃度は、乳酸に換算した場合の値であり、乳酸縮合物については乳酸に換算した値(例えば、乳酸の2量体は乳酸2モルとして換算される)が含まれている。 In the present invention, the concentration of lactic acid in the aqueous lactic acid solution used is not particularly limited, but it is preferably a high concentration in consideration of the amount of ammonium lactate to be obtained. More preferably, the concentration of lactic acid in the aqueous lactic acid solution is 60% by mass or more, preferably 60 to 100% by mass, even more preferably 70 to 100% by mass, and most preferably 80 to 100% by mass. At this time, if the concentration of lactic acid is less than 60% by mass, ammonium lactate cannot be obtained at a sufficiently high concentration, and the water content in the resulting aqueous solution of ammonium lactate increases, which may require a dehydration step. . On the other hand, if the concentration of lactic acid exceeds 100% by mass, a large amount of condensate is contained, and lactic acid amide is generated as a by-product upon subsequent reaction with ammonia. Since it is difficult to convert to ammonium, the yield of ammonium lactate may decrease. The lactic acid concentration is a value when converted to lactic acid, and the lactic acid condensate includes a value converted to lactic acid (for example, a dimer of lactic acid is converted as 2 mol of lactic acid).
本発明において、乳酸水溶液に添加されるアンモニア水の全投入量は、十分量の乳酸アンモニウムが得られる量であれば特に制限されないが、乳酸アンモニウム中のアンモニアが遊離してアンモニアガスが排出されることを防ぐためには、投入される乳酸に対してやや少ない量に設定することが好ましい。具体的には、アンモニアの全投入量が、乳酸1モルに対して、0.7〜0.98モル、特に好ましくは0.75〜0.95モルとなるような量であることが好ましい。当該範囲であれば、十分量の乳酸単量体がアンモニアと効率よく反応でき且つ反応物からのアンモニア遊離は十分抑制できる。また、乳酸水溶液に添加されるアンモニア水のアンモニア濃度は、乳酸と効率よく反応できる濃度であれば特に制限されないが、15〜40質量%、さらにより好ましくは20〜35質量%、最も好ましくは22〜33質量%である。 In the present invention, the total amount of ammonia water added to the aqueous lactic acid solution is not particularly limited as long as a sufficient amount of ammonium lactate is obtained, but ammonia in ammonium lactate is liberated and ammonia gas is discharged. In order to prevent this, it is preferable to set the amount slightly smaller than the amount of lactic acid added. Specifically, it is preferable that the total input amount of ammonia is 0.7 to 0.98 mol, particularly preferably 0.75 to 0.95 mol with respect to 1 mol of lactic acid. If it is the said range, sufficient quantity of the lactic acid monomer can react with ammonia efficiently, and ammonia release from a reaction material can fully be suppressed. The ammonia concentration of the aqueous ammonia added to the lactic acid aqueous solution is not particularly limited as long as it can efficiently react with lactic acid, but is 15 to 40% by mass, more preferably 20 to 35% by mass, and most preferably 22 It is -33 mass%.
本発明では、乳酸水溶液へのアンモニア水の添加を少なくとも2回に分けて行なうことを必須とするが、この際、アンモニア水を添加する回数は、作業の行ないやすさや全工程にかかる時間などを考慮すると、2〜4回、より好ましくは2〜3回、特に好ましくは2回である。 In the present invention, it is essential to add ammonia water to the lactic acid aqueous solution at least twice. At this time, the number of times ammonia water is added depends on the ease of work and the time required for the entire process. In consideration, it is 2 to 4 times, more preferably 2 to 3 times, and particularly preferably 2 times.
また、この際の各添加工程でのアンモニア水の添加量は、乳酸縮合物とは反応せずにかつ乳酸単量体とは効率よく反応する量であれば制限されない。例えば、アンモニア水を2回に分けて添加する場合には、1回目の添加工程で、アンモニア水の全投入量に対して、79〜97質量%のアンモニア水を添加し、2回目の添加工程で、残りの21〜3質量%のアンモニア水を添加することが好ましく;より好ましくは、1回目の添加工程で、アンモニア水の全投入量に対して、82〜95質量%のアンモニア水を添加し、2回目の添加工程で、残りの18〜5質量%のアンモニア水を添加し;さらにより好ましくは、1回目の添加工程で、アンモニア水の全投入量に対して、85〜93質量%のアンモニア水を添加し、2回目の添加工程で、残りの15〜7質量%のアンモニア水を添加し;最も好ましくは、1回目の添加工程で、アンモニア水の全投入量に対して、91質量%のアンモニア水を添加し、2回目の添加工程で、残りの9質量%のアンモニア水を添加する。 In addition, the amount of ammonia water added in each addition step is not limited as long as it does not react with the lactic acid condensate and reacts efficiently with the lactic acid monomer. For example, when ammonia water is added in two steps, 79 to 97% by mass of ammonia water is added to the total amount of ammonia water added in the first addition step, and the second addition step. It is preferable to add the remaining 21 to 3% by mass of ammonia water; more preferably, 82 to 95% by mass of ammonia water is added to the total amount of ammonia water added in the first addition step. In the second addition step, the remaining 18 to 5% by mass of ammonia water is added; even more preferably, 85 to 93% by mass with respect to the total amount of ammonia water added in the first addition step. In the second addition step, and the remaining 15 to 7% by mass of ammonia water is added; most preferably, 91% of the total amount of ammonia water is added in the first addition step. Mass% ammonia water It was added, in the second addition step, adding the remaining 9% of aqueous ammonia.
乳酸水溶液へのアンモニア水の添加する際の、混合溶液の温度は、特に制限されないが、乳酸とアンモニアを混合すると中和反応が起こり、発熱するため、混合溶液の温度は一般的に添加中に上昇し、温度が高くなりすぎると、溶液中のアンモニアがガスとなって出てきてしまう可能性がる。このため、乳酸水溶液にアンモニア水を添加、混合する温度は、0〜40℃、より好ましくは0〜30℃に調節することが好ましい。また、上記したように、本発明に係る反応は乳酸のアンモニアによる中和反応であり、この際のアンモニア水の乳酸への添加・混合中の混合溶液のpHは、乳酸とアンモニアとの反応が良好に進行できるような値であればよく、6以下になるように調節される。 The temperature of the mixed solution when adding aqueous ammonia to the lactic acid aqueous solution is not particularly limited, but when lactic acid and ammonia are mixed, a neutralization reaction occurs and heat is generated. If the temperature rises and the temperature becomes too high, ammonia in the solution may come out as a gas. For this reason, it is preferable to adjust the temperature which adds and mixes ammonia water to lactic acid aqueous solution to 0-40 degreeC, More preferably, it is 0-30 degreeC. As described above, the reaction according to the present invention is a neutralization reaction of lactic acid with ammonia. At this time, the pH of the mixed solution during addition / mixing of aqueous ammonia to lactic acid is such that the reaction between lactic acid and ammonia occurs. Any value can be used as long as it can proceed well, and the value is adjusted to 6 or less.
乳酸水溶液にアンモニア水を添加する速度は、乳酸とアンモニアとの急速な反応による過熱による沸騰が起きず、かつ反応が進行する速度であれば特に制限されない。 The rate at which ammonia water is added to the aqueous lactic acid solution is not particularly limited as long as it does not cause boiling due to overheating due to the rapid reaction between lactic acid and ammonia and the reaction proceeds.
また、本発明では、乳酸水溶液にアンモニア水の一部を添加する各添加工程間に、混合液を放置する熟成工程を入れる。この熟成期間中に、反応溶液中に含まれる乳酸縮合物(特に、乳酸のオリゴマー)が加水分解されて乳酸(単量体)に変換されると考えられる。このため、熟成時間は、乳酸縮合物の乳酸への変換を考慮して、12〜24時間である。より好ましくは、熟成時間は、13〜21時間、さらにより好ましくは14〜18時間であり、前日の17時ごろ1回目のアンモニア水の添加を終了した後、翌日の9時ごろに2回目のアンモニア水の添加を開始することが実際の作業形態を考慮すると適当であるため、熟成時間を16時間とすることが特に好ましい。 Moreover, in this invention, the aging process which leaves a liquid mixture between each addition process which adds a part of aqueous ammonia to lactic acid aqueous solution is put. During this aging period, it is considered that the lactic acid condensate (especially oligomer of lactic acid) contained in the reaction solution is hydrolyzed and converted into lactic acid (monomer). Therefore, the aging time is 12 to 24 hours in consideration of conversion of the lactic acid condensate to lactic acid. More preferably, the aging time is 13 to 21 hours, and even more preferably 14 to 18 hours. After the addition of the first ammonia water at about 17:00 on the previous day is completed, the second time is about 9:00 on the next day. It is particularly preferable to set the aging time to 16 hours, since it is appropriate to start the addition of aqueous ammonia in consideration of the actual working mode.
本発明における熟成条件は、反応溶液中に含まれる乳酸縮合物(オリゴマー)が加水分解されて乳酸(単量体)に変換される条件であれば特に制限されず、また、上記したように混合工程では、中和熱により混合溶液の温度が上昇しているが、熟成工程では特に加熱や冷却などを行なう必要はなく、混合溶液を静置することによって十分熟成工程が達成できる。ただし、熟成温度は、具体的には、80℃以下、より好ましくは80〜45℃、特に好ましくは75〜50℃になるように、調節されることが好ましい。このため、添加工程後に得られた乳酸−アンモニア混合水溶液の温度が上記範囲を逸脱する場合には、熟成工程前に予め混合液を所望の温度になるまで冷却することが好ましい。また、熟成中の反応溶液のpHは、乳酸縮合物の形成やアンモニアガスの遊離が抑制されかつ乳酸とアンモニアとの反応は良好に進行できるような値であればよい。 The aging conditions in the present invention are not particularly limited as long as the lactic acid condensate (oligomer) contained in the reaction solution is hydrolyzed and converted into lactic acid (monomer), and mixing is performed as described above. In the process, the temperature of the mixed solution is increased by the heat of neutralization. However, in the aging process, it is not particularly necessary to perform heating or cooling, and the aging process can be sufficiently achieved by allowing the mixed solution to stand. However, the aging temperature is specifically preferably adjusted to 80 ° C. or less, more preferably 80 to 45 ° C., and particularly preferably 75 to 50 ° C. For this reason, when the temperature of the lactic acid-ammonia mixed aqueous solution obtained after the addition step deviates from the above range, it is preferable to cool the mixed solution in advance to a desired temperature before the aging step. In addition, the pH of the reaction solution during aging may be a value that can suppress the formation of lactic acid condensate and liberation of ammonia gas and allow the reaction between lactic acid and ammonia to proceed satisfactorily.
このようにして得られた乳酸アンモニウム水溶液は、高濃度の乳酸水溶液を希釈することなく、直接アンモニアと反応させることによって得られるため、58%以上という高濃度で得られる。また、本発明の方法では、アンモニア水の添加を2段階以上に分けて行ない、各添加工程間に熟成工程を設けることによって、熟成工程中に縮合物を乳酸単量体に変換させている。このため、縮合物濃度は低くかつ乳酸アンモニウム濃度は高い乳酸アンモニウム水溶液が得られる。なお、得られた乳酸アンモニウム水溶液は、アンモニアの発生を防ぐ理由から、pHが若干乳酸過剰の酸性領域であることが好ましく、より具体的にはpHが4.5〜6.0程度になるように調節されることが好ましい。 The ammonium lactate aqueous solution thus obtained is obtained by directly reacting with ammonia without diluting the high concentration lactic acid aqueous solution, so that it can be obtained at a high concentration of 58% or more. In the method of the present invention, ammonia water is added in two or more stages, and a condensate is converted into a lactic acid monomer during the aging process by providing an aging process between the adding processes. For this reason, an aqueous ammonium lactate solution having a low condensate concentration and a high ammonium lactate concentration is obtained. The obtained aqueous ammonium lactate solution is preferably in an acidic region with a slight lactic acid excess for the purpose of preventing the generation of ammonia, and more specifically, the pH is about 4.5 to 6.0. It is preferable to adjust to.
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
実施例1
総酸量90.5%の乳酸(縮合物を17%含む)水溶液1kg、蒸留水93.3gを均一に混合した乳酸水溶液に、28%アンモニア水を488.4g(対乳酸モル比:0.8モル)を添加、混合した。この際、アンモニア水の添加に160分を要した。混合液の温度は、混合とともにすぐに上昇し、添加終了時に100℃に到達した。添加・混合後、液温度が80℃になるまで冷却し、この混合液を16時間、静置した。16時間静置した後の混合液の温度は、60℃であった
16時間静置した後、再び28%アンモニア水を48.3g(対乳酸モル比:0.08モル)を添加、混合した。添加に要した時間は20分、液温度は変動しなかった。
Example 1
To a lactic acid aqueous solution in which 1 kg of an aqueous solution of lactic acid (containing 17% of a condensate) having a total acid amount of 90.5% and 93.3 g of distilled water were uniformly mixed, 488.4 g of 28% aqueous ammonia (molar ratio of lactic acid: 0.00%). 8 mol) was added and mixed. At this time, it took 160 minutes to add ammonia water. The temperature of the mixture immediately increased with mixing and reached 100 ° C. at the end of the addition. After the addition and mixing, the mixture was cooled until the liquid temperature reached 80 ° C., and the mixed liquid was allowed to stand for 16 hours. The temperature of the mixture after standing for 16 hours was 60 ° C. After standing for 16 hours, 48.3 g of 28% aqueous ammonia (with respect to lactic acid molar ratio: 0.08 mol) was added and mixed again. . The time required for the addition was 20 minutes, and the liquid temperature did not change.
その結果、乳酸アンモニウムを58.1%及び乳酸を6.7%含む乳酸アンモニウム水溶液1630.0gを製造した。この際、上記方法で乳酸アンモニウム水溶液を製造するのに要した時間は熟成16時間を入れても2日間であった。また、製造された乳酸アンモニウム水溶液のpHは、5.44であった。 As a result, 1630.0 g of an aqueous ammonium lactate solution containing 58.1% ammonium lactate and 6.7% lactic acid was produced. At this time, the time required for producing the aqueous ammonium lactate solution by the above method was 2 days even when 16 hours of aging were included. Moreover, the pH of the manufactured ammonium lactate aqueous solution was 5.44.
実施例2
第1回目のアンモニア水添加後の放置時間を12時間にした以外は実施例1に記載された方法と同じ方法により、乳酸アンモニウム水溶液を製造したところ、乳酸アンモニウムを58.1%及び乳酸を6.7%含む乳酸アンモニウム水溶液を製造した。また、得られた乳酸アンモニウム水溶液のpHは、5.44であった。
Example 2
An aqueous ammonium lactate solution was produced by the same method as described in Example 1 except that the standing time after the first ammonia water addition was 12 hours. As a result, 58.1% ammonium lactate and 6% lactic acid were produced. An aqueous ammonium lactate solution containing 7% was prepared. Moreover, pH of the obtained ammonium lactate aqueous solution was 5.44.
実施例3
第1回目のアンモニア水添加後の放置時間を20時間にした以外は実施例1に記載された方法と同じ方法により、乳酸アンモニウム水溶液を製造したところ、乳酸アンモニウムを58.1%及び乳酸を6.7%含む乳酸アンモニウム水溶液を製造した。また、得られた乳酸アンモニウム水溶液のpHは、5.44であった。
Example 3
An aqueous ammonium lactate solution was produced by the same method as described in Example 1 except that the standing time after the first ammonia water addition was 20 hours. As a result, 58.1% ammonium lactate and 6% lactic acid were produced. An aqueous ammonium lactate solution containing 7% was prepared. Moreover, pH of the obtained ammonium lactate aqueous solution was 5.44.
実施例4
第1回目に添加する28%アンモニア水の量を520.6gとし、かつ第2回目の28%アンモニア水の添加量を16.1gにそれぞれ変更した以外は実施例1に記載された方法と同じ方法により、乳酸アンモニウム水溶液を製造したところ、乳酸アンモニウムを58.1%及び乳酸を6.7%含む乳酸アンモニウム水溶液を製造した。また、得られた乳酸アンモニウム水溶液のpHは、5.43であった。
Example 4
The same method as described in Example 1 except that the amount of 28% ammonia water added in the first time was changed to 520.6 g and the amount of 28% ammonia water added in the second time was changed to 16.1 g. When an aqueous ammonium lactate solution was produced by the method, an aqueous ammonium lactate solution containing 58.1% ammonium lactate and 6.7% lactic acid was produced. Moreover, the pH of the obtained ammonium lactate aqueous solution was 5.43.
実施例5
第1回目に添加する28%アンモニア水の量を456.2gとし、かつ第2回目の28%アンモニア水の添加量を80.5gにそれぞれ変更した以外は実施例1に記載された方法と同じ方法により、乳酸アンモニウム水溶液を製造したところ、乳酸アンモニウムを58.1%及び乳酸を6.7%含む乳酸アンモニウム水溶液を製造した。また、得られた乳酸アンモニウム水溶液のpHは、5.43であった。
Example 5
The same method as described in Example 1 except that the amount of 28% ammonia water added in the first time was changed to 456.2 g and the amount of 28% ammonia water added in the second time was changed to 80.5 g. When an aqueous ammonium lactate solution was produced by the method, an aqueous ammonium lactate solution containing 58.1% ammonium lactate and 6.7% lactic acid was produced. Moreover, the pH of the obtained ammonium lactate aqueous solution was 5.43.
比較例1
総酸量90.5%の乳酸(縮合物を17%含む)水溶液1kg、蒸留水93.3gを均一に混合し、混合液を90℃に昇温した後、20時間放置した。放置後、乳酸水溶液に、28%アンモニア水 536.7g(対乳酸モル比:0.88モル)を添加、混合した。この際、アンモニア水の添加に3時間を要した。混合液の温度は、混合とともにすぐに上昇し、添加終了時に100℃に到達した。添加・混合後、液温度が80℃になるまで冷却し、この混合液を16時間、放置した。
Comparative Example 1
1 kg of an aqueous solution of lactic acid (containing 17% of a condensate) having a total acid amount of 90.5% and 93.3 g of distilled water were uniformly mixed, and the mixture was heated to 90 ° C. and left for 20 hours. After standing, 536.7 g of 28% aqueous ammonia (with respect to lactic acid molar ratio: 0.88 mol) was added to and mixed with the lactic acid aqueous solution. At this time, it took 3 hours to add ammonia water. The temperature of the mixture immediately increased with mixing and reached 100 ° C. at the end of the addition. After the addition and mixing, the mixture was cooled until the liquid temperature reached 80 ° C., and the mixed liquid was allowed to stand for 16 hours.
その結果、乳酸アンモニウムを58.1%及び乳酸を6.7%含む乳酸アンモニウム水溶液1630.0gを製造した。この際、上記方法で乳酸アンモニウム水溶液を製造するのに、単に各工程にかかった時間を合計するだけでも39時間(=20+3+16)かかり、実際の作業工程をみると、3日を要した。また、製造された乳酸アンモニウム水溶液のpHは5.44であった。 As a result, 1630.0 g of an aqueous ammonium lactate solution containing 58.1% ammonium lactate and 6.7% lactic acid was produced. At this time, it took 39 hours (= 20 + 3 + 16) to produce the ammonium lactate aqueous solution by the above method, and it took 3 days to see the actual work process. Moreover, the pH of the manufactured ammonium lactate aqueous solution was 5.44.
比較例2
総酸量50.5%の乳酸(縮合物を3%含む)水溶液1kgを撹拌しながら、28%アンモニア水を323.6g(対乳酸モル比:0.88モル)徐々に添加した。この際、添加時間は3時間であった。アンモニア水を添加するにつれ、液温は上昇し、添加終了時には100℃近くまで到達した。この混合液をそのまま撹拌しながら冷却し、液温が80℃以下になった段階で冷却を止め、そのまま20時間放置した。
Comparative Example 2
While stirring 1 kg of an aqueous solution of lactic acid (containing 3% of condensate) having a total acid amount of 50.5%, 323.6 g of 28% aqueous ammonia (molar ratio of lactic acid: 0.88 mol) was gradually added. At this time, the addition time was 3 hours. As the ammonia water was added, the liquid temperature increased and reached nearly 100 ° C. at the end of the addition. The mixed liquid was cooled as it was, and when the liquid temperature became 80 ° C. or lower, the cooling was stopped and the liquid mixture was left as it was for 20 hours.
20時間放置した後、生成した乳酸アンモニウムの濃度を高めるために、反応液を蒸留塔が付属した反応釜に移し、13.33kPa(100mmHg)に減圧しながら加熱、脱水を行ない、乳酸アンモニウムを濃縮した。これにより、乳酸アンモニウム濃度が58.1%であり、乳酸濃度が6.7%である乳酸アンモニウム溶液908.9gを得た。なお、上記脱水工程で留出させた水の量は、399.7g、アンモニア量は6.5gであった。ここで、残りの水8.5g[=(1000+323.6)−(908.9+399.7+6.5)]は、上記濃縮工程で、減圧中に減圧系(水流アスピレーター)に逃げてしまったものであると考えられる。 After standing for 20 hours, in order to increase the concentration of the produced ammonium lactate, the reaction solution was transferred to a reaction kettle equipped with a distillation column, heated and dehydrated under reduced pressure to 13.33 kPa (100 mmHg), and concentrated ammonium lactate. did. As a result, 908.9 g of an ammonium lactate solution having an ammonium lactate concentration of 58.1% and a lactic acid concentration of 6.7% was obtained. The amount of water distilled in the dehydration step was 399.7 g, and the ammonia amount was 6.5 g. Here, the remaining 8.5 g of water [= (1000 + 323.6) − (908.9 + 399.7 + 6.5)] escaped to the decompression system (water aspirator) during decompression in the concentration step. It is believed that there is.
Claims (4)
乳酸水溶液へのアンモニア水の添加を少なくとも2回に分けて行ない、各添加工程間に、12〜24時間、80〜45℃で、乳酸水溶液とアンモニア水との混合溶液を静置する熟成工程を行なうことを特徴とする、乳酸アンモニウムの製造方法。 In a method for producing ammonium lactate by reacting an aqueous lactic acid solution with aqueous ammonia,
Addition of aqueous ammonia to the aqueous lactic acid solution is carried out at least twice, and a ripening step of allowing the mixed solution of the aqueous lactic acid solution and aqueous ammonia to stand at 80 to 45 ° C. for 12 to 24 hours between the addition steps. A process for producing ammonium lactate, characterized in that it is carried out.
第一の添加工程において、アンモニア水の全投入量に対して、79〜97質量%のアンモニア水を乳酸水溶液中に添加、混合し、
熟成工程において、得られた混合液を、12〜24時間、80〜45℃で、乳酸水溶液とアンモニア水との混合溶液を静置し、さらに
第二の添加工程において、残りのアンモニア水を前記熟成後の混合液に添加、混合する工程を有する、請求項1に記載の方法。 Add ammonia water to lactic acid aqueous solution in two steps,
In the first addition step, 79 to 97% by mass of ammonia water is added to and mixed with the lactic acid aqueous solution with respect to the total amount of ammonia water,
In the aging step, the obtained mixed solution is allowed to stand at 80 to 45 ° C. for 12 to 24 hours at 80 ° C. to 45 ° C. , and in the second addition step, the remaining aqueous ammonia is added to the remaining aqueous ammonia. The method of Claim 1 which has the process of adding and mixing to the liquid mixture after ageing | curing | ripening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005267428A JP4827473B2 (en) | 2005-09-14 | 2005-09-14 | Method for producing ammonium lactate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005267428A JP4827473B2 (en) | 2005-09-14 | 2005-09-14 | Method for producing ammonium lactate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007077081A JP2007077081A (en) | 2007-03-29 |
JP4827473B2 true JP4827473B2 (en) | 2011-11-30 |
Family
ID=37937732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005267428A Active JP4827473B2 (en) | 2005-09-14 | 2005-09-14 | Method for producing ammonium lactate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4827473B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5359348B2 (en) * | 2009-02-18 | 2013-12-04 | 東レ株式会社 | Method for producing high purity lactic acid |
JP6052780B2 (en) * | 2013-01-11 | 2016-12-27 | 日揮触媒化成株式会社 | Method for producing alumina hydrate fine particle powder and alumina hydrate fine particle powder |
CN104860812B (en) * | 2015-05-20 | 2017-07-11 | 北京恩成康泰生物科技有限公司 | A kind of preparation method of ammonium lactate solid |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3502419B2 (en) * | 1993-03-02 | 2004-03-02 | 株式会社武蔵野化学研究所 | Method for producing lactic acid and lactic acid ester |
DE4341770A1 (en) * | 1993-12-08 | 1995-06-14 | Basf Ag | Process for the production of lactic acid esters |
JPH11137286A (en) * | 1997-11-11 | 1999-05-25 | Musashino Chemical Laboratory Ltd | Fermentation of lactic acid |
JP4158396B2 (en) * | 2002-03-28 | 2008-10-01 | トヨタ自動車株式会社 | Method and apparatus for producing lactate ester |
JP4279082B2 (en) * | 2003-08-06 | 2009-06-17 | 株式会社武蔵野化学研究所 | Method for producing optically active lactic acid (salt) |
-
2005
- 2005-09-14 JP JP2005267428A patent/JP4827473B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007077081A (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60237030A (en) | Manufacture of 1,2,3-trichloro-2-methyl-prone | |
NO152785B (en) | INTERMEDIATES FOR USE IN THE PREPARATION OF SUBSTITUTED 2- (2-BENZIMIDAZOYLYL) -PYRIDINES | |
CN107954887B (en) | Method for preparing tranexamic acid | |
JP2014508730A (en) | Method for producing methyl mercaptopropionaldehyde | |
JP4827473B2 (en) | Method for producing ammonium lactate | |
JPH03115204A (en) | Preparation of 2,2-dibromo-3-nitrilo- propyoneamide composition | |
RU2010147912A (en) | METHOD FOR PRODUCING CONCENTRATED PHOSPHORIC ACID | |
JPH10158238A (en) | Production of n-methyl-2-pyrrolidone | |
US2777846A (en) | Process of producing morpholine from diethanolamine | |
US4698441A (en) | Process for producing glyoxylic acid | |
CN104860843B (en) | Synthesis method of ketazine | |
JPH02172954A (en) | Preparation of cyclopropylamine | |
JP4395949B2 (en) | Method for producing 3-chloro-2-hydroxypropyltrimethylammonium chloride aqueous solution | |
CN112225653B (en) | Green synthesis method of natural benzaldehyde | |
JPH07216082A (en) | Production of polyglycerin | |
JP2671152B2 (en) | Method for purifying 1-aminopropanediol | |
CN114369036B (en) | Method for reducing amine byproducts in glycine surfactant | |
CN113474327B (en) | Method for treating acesulfame potassium waste liquid | |
JP4210600B2 (en) | Monochloroacetic acid production method | |
US6825389B2 (en) | Process for manufacturing diiodoperfluoroalkanes | |
CN115417744B (en) | Method for preparing 1-chloro-1, 1-difluoroethane | |
US6452046B2 (en) | Process for producing 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid | |
JPH0115505B2 (en) | ||
JPS6154021B2 (en) | ||
JPH06329607A (en) | Production of iminodisuccinic acid metal salt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110913 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4827473 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |