[go: up one dir, main page]

JP4822591B2 - Method for producing thermoplastic resin composition - Google Patents

Method for producing thermoplastic resin composition Download PDF

Info

Publication number
JP4822591B2
JP4822591B2 JP2001034727A JP2001034727A JP4822591B2 JP 4822591 B2 JP4822591 B2 JP 4822591B2 JP 2001034727 A JP2001034727 A JP 2001034727A JP 2001034727 A JP2001034727 A JP 2001034727A JP 4822591 B2 JP4822591 B2 JP 4822591B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
mass
clay mineral
resin composition
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001034727A
Other languages
Japanese (ja)
Other versions
JP2002234948A (en
Inventor
信成 國峯
啓三 鈴木
智敏 和田
洋之 榎戸
学 野村
薫 和田
卓 栗山
隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Kunimine Industries Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Kunimine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Kunimine Industries Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2001034727A priority Critical patent/JP4822591B2/en
Publication of JP2002234948A publication Critical patent/JP2002234948A/en
Application granted granted Critical
Publication of JP4822591B2 publication Critical patent/JP4822591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂組成物の製造方法に関する。さらに詳しくは、本発明は、層状化合物がサブミクロンからナノメートルオーダーで分散してなる熱可塑性樹脂組成物を製造する方法に関するものである。
【0002】
【従来の技術】
近年、熱可塑性樹脂中に、層状無機化合物をナノメートルオーダーで分散させてなるナノコンポジットが提案され、注目されている。このナノコンポジットは、従来の無機フィラーを充填した複合材料に比較して、少量の無機フィラーによって、より高い弾性率や耐熱性を付与し得る上、軽量化が可能であると共に、ガラス繊維の代替も可能であって、リサイクルも容易になり、環境問題からも注目されている。また、ガスバリヤー性や難燃性も付与されることが報告されている。
しかしながら、熱可塑性樹脂中に、層状無機化合物をナノオーダーで分散させることは容易ではなく、これまで様々に工夫した技術が提案されている。例えば、層状無機化合物に、四級アンモニウム塩などで代表される有機カチオンをインターカレーションしたのち、層間にモノマーを取り入れ、重合させる方法(特開昭63−215775号公報)、有機化された層状無機化合物を有機溶媒に分散させると共に、熱可塑性樹脂を溶媒に溶解させ、両者を溶液混合する方法(特開平6−93133号公報)、有機化された層状無機化合物を有機溶媒に分散させ、熱可塑性樹脂が溶融しているところに注入し、混練する方法(特開平8−302062号公報)、有機化された層状無機化合物を用い、特定の条件で溶融混練する方法(特開平9−217012号公報)、有機化された層状無機化合物と官能基を有するオリゴマーを混練したのち、さらに樹脂と混練する方法(特開平10−182892号公報)、層状無機化合物を水に膨潤させたもの若しくは有機化された層状無機化合物を有機溶媒に膨潤させたものを、樹脂と共に特定条件の下で混練する方法(特開平9−183910号公報)、熱可塑性樹脂と、多量の水又はプロトン供与体を含む溶媒含有クレイスラリーを二軸押出機にかけることにより、多量の水が押出機内で高圧雰囲気を形成し、樹脂内に微分散することが開示されている(特開2000−239397公報)などが提案されている。
しかしながら、これらの方法で使用する層状無機化合物はいずれも乾燥した粘土製品を採用するもので、二次凝集を起こしているものも多く、これを再度溶媒分散する工程を経るので、経済的に不利であり、層間はかなり広がっているものの、樹脂中に分散した組成物では、まだX線回折で層間距離が測定されており、ナノオーダーの分散が充分であるといえない。特にポリオレフィンに代表される極性のない樹脂に関しては、充分に満足し得る技術は、まだ見出されていないのが実状である。
【0003】
【発明が解決しようとする課題】
本発明は、このような状況下で、粘土鉱物がサブミクロンからナノメートルオーダーで分散してなる機械的性質や耐熱性などに優れる均質な熱可塑性樹脂組成物を、簡便な工程で、安価で工業的に有利に製造する方法、及び上記特性を有する熱可塑性樹脂組成物を提供することを目的とするものであり、熱可塑性樹脂と混練する粘土鉱物の多層構造の層間距離を簡単な手段で広げ保持し、混練時にその層間に熱可塑性樹脂の導入が容易且つ効果的に行われ、その微細で均一な分散を充分に発揮させようとするものである。
【0004】
【課題を解決するための手段】
本発明者らは、粘土鉱物がナノメートルオーダーで分散してなる熱可塑性樹脂組成物を簡便な工程で廉価に製造する方法について鋭意研究を重ねた結果、以下の知見を得た。
粘土鉱物は、一般に水には分散するものの、有機溶媒には分散せず、一方有機化した粘土鉱物は、有機溶媒には分散するものの、水には分散し難いことが知られている。ところが、層状無機化合物として粘土原石をそのまま精選処理して有機化処理に供給すれば溶媒分散の工程時間が短縮化され、かつ低粘度のスラリー液が得られ、そのうえ有機化処理もきわめて容易に遂行することができ親水性の粘土鉱物は疎水性に変化される。そして、固液分離処理をした有機化粘土鉱物は、有機化剤により多層構造の層間距離は広く保持されていること、かつ、分散媒を保持しながら層間部分は親水性から疎水性に変化しているので、この状態である程度以上低分子量の重合体を含む熱可塑性樹脂と混練することにより層間に保持された分散媒が樹脂と比較的容易に置換され、X線回折では、ピークが観察されない程度のサブミクロンからナノメートルオーダーで粘土鉱物が分散された熱可塑性樹脂組成物が容易に得られることを見出した。
【0005】
本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)粘土鉱物原石を水性溶媒を用いて精製したスラリー液を得、これに有機化剤を添加し有機化して粘土鉱物の層間に有機物をインターカレーションさせた有機化粘土鉱物分散液を調製し、次いで固液分離処理によりケーキ状含水有機化粘土鉱物を得、このケーキ状含水有機化粘土鉱物と熱可塑性樹脂とを合わせて溶融混練するとともに、前記粘土鉱物の層間の分散媒を熱可塑性樹脂と置換させる熱可塑性樹脂組成物の製造方法、
(2)前記スラリー液が固形分濃度0.1〜50.0質量%であり、前記ケーキ状含水有機化粘土鉱物の固形分濃度が5.0〜90.0質量%である(1)に記載の熱可塑性樹脂組成物の製造方法、
(3)前記固液分離処理を、遠心分離又はフィルタープレスで行う(1)又は(2)記載の熱可塑性樹脂組成物の製造方法、
(4)熱可塑性樹脂が、ポリオレフィン系樹脂を含むものである(1)〜(3)のいずれか1項に記載の熱可塑性樹脂組成物の製造方法、
(5)全樹脂量の少なくとも5質量%の質量平均分子量5万以下のポリオレフィン系樹脂と、ケーキ状含水有機化粘土鉱物とを合わせて溶融混練後、さらにこのものと、残余の他のポリオレフィン系樹脂とを合わせて溶融混練する(4)記載の熱可塑性樹脂組成物の製造方法、および、
(6)熱可塑性樹脂に含まれるポリオレフィン系樹脂の少なくとも一部が極性を有するものである(4)又は(5)記載の熱可塑性樹脂組成物の製造方法
提供するものである。
【0006】
【発明の実施の形態】
本発明の熱可塑性樹脂組成物の製造方法において、用いられる熱可塑性樹脂としては、熱可塑性の高分子化合物であればよく、特に制限されないが、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレン、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合樹脂)、AS樹脂(アクリロニトリル−スチレン共重合樹脂)、ポリメチルメタクリレート、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリサルフォン、ポリエーテルサルフォン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド、天然ゴム、イソプレンゴム、クロロプレンゴム、スチレンゴム、ニトリルゴム、エチレン−プロピレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、ブチルゴム、エピクロルヒドリンゴム、アクリルゴム、ウレタンゴム、フッ素ゴム、シリコーンゴムなどを用いることが好ましい。これらは一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
なお、粘土鉱物を高濃度で含む本発明の目的物である熱可塑性樹脂組成物が得られれば、マスターバッチとして、任意量の粘土鉱物を含ませる場合に便利である。このような組成物を調製する場合には、質量平均分子量が5万以下の熱可塑性樹脂を選択するのが有利であり、さらに極性基をもち、質量平均分子量が5万以下の熱可塑性樹脂を選択するのが有利である。特に、本来極性基を持たないポリオレフィン系樹脂を選択する場合には、例えば無水マレイン酸などで変性した極性基をもつポリオレフィン系樹脂を選択することが、粘土鉱物との混和性が良くなり、該層状化合物の凝集を抑制し得るので有利である。
【0007】
出発原料として用いられる粘土鉱物原石の主成分、例えばモンモリロナイトは、層状構造をもつケイ酸塩鉱物で、例えば、ケイ酸で構成される四面体シート層−AlやMgなどを含む八面体シート層−ケイ酸で構成される四面体シート層が積み重なって結合し一枚の結晶層を形成し、その結晶層が積層されている層状構造を有する物質である。厚さが約1ナノメートルで、面としての大きさが縦横平均で約100〜1000ナノメートルである結晶層の間に金属カチオンが介在し、この金属カチオンは容易に他のカチオンと交換することができる。
このような粘土鉱物原石としては、天然の粘土であるベントナイト、酸性白土など親水性で層状構造をもつモンモリロナイトを主成分とするものの他、サポナイト、ヘクトライト、パイデライト、スティブンサイト、ノントロナイト、バーミキュライト、マイカ、フッ素化マイカなどを主成分とするものが挙げらる。このような原石は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
水性溶媒は、水又はプロトン供与体を含む溶媒で、特に制限はなく、例えば、水、アセトン、メタノール、エタノール、プロパノール、ジエチレングリコール、エチレングリコール、プロピレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノアセチレート、エチレングリコールジアセチレート、ポリエチレングリコール、ポリプロピレングリコールなどが挙げられる。これらは一種を単独で、あるいは二種以上を混合して用いてもよいが、特に水が好適であり、水100容量部にこれら有機物を一種もしくは数種0〜100容量部混合したものも好ましい。なお、水又はプロトン供与体を含む溶媒は、本発明の目的が損なわれない範囲で、所望により水又はプロトン供与体以外の溶媒、添加剤を含んでいてもよい。
【0008】
あらかじめ水簸用に0.1〜20mm径に粗砕処理した粘土鉱物原石1部に対し、水溶性溶媒5〜30部、好ましくは10〜15部をタンク内にて混合し、0〜80℃の温度範囲で1〜10時間、好ましくは2〜3時間撹拌処理し、混合分散溶液を得る。この混合分散溶液から遠心分離機を用いて不純物を分離除去し、粘土鉱物を主成分とするスラリー液を得る。
【0009】
こうして得られるスラリー中の粘土鉱物の濃度としては、充分に分散可能な濃度であればよく、特に制限はないが、通常0.1〜20質量%、好ましくは1〜10質量%、特に好ましくは1〜5質量%の範囲である。粘土鉱物の濃度が0.1質量%未満では必要量のケーキ状含水有機化粘土鉱物を得るのに工程が多くなるか、スラリーを調製する容器が大きくなって、設備面でコスト高になり、好ましくない。また、該濃度が20質量%を超えるとスラリーの粘性が上がり、撹拌が困難になる。
【0010】
モンモリロナイト等の粘土鉱物のみを含むスラリー液に有機化剤を加え5〜60分撹拌することによって、インターカレーションにより該粘土鉱物を有機化するが、反応を高めるため必要に応じて30〜80℃に加温する。この操作により、粘土鉱物の層間に有機化剤が入り込み疎水性となり、粘土鉱物は膨潤し、その層間が広げられる。
この方法によれば、原石から直接得た精選品を用いるため、精製乾燥の粘土鉱物を原料として溶媒分散する方法に比べ、極めて短時間(従来の約1/8以下)で粘度の低いスラリー液が調製でき、有機化剤の導入を円滑化し、それにより目的の樹脂組成物が効率的に製造できる。
モンモリロナイト等の粘土鉱物スラリー液への有機化剤の添加量は、粘土鉱物の持つカチオン交換量(C.E.C)の0.1〜5倍、好ましくは0.5〜1.5倍の範囲である。有機化剤の添加量が0.1倍未満では粘土鉱物の有機化が不十分で層間が広がりにくく、該粘土鉱物が充分に微分散した樹脂組成物が得られないおそれがあり、5倍を超えるとそれ以上の効果は期待できず、むしろ経済的に不利となり、好ましくない。
【0011】
有機化剤としては、分子量が10〜10,000,000の範囲、好ましくは200〜10,000の範囲の有機化合物を用いることができる。分子量が10より小さい化合物では、粘土鉱物と樹脂との混練時に揮発するおそれがあり、10,000,000より大きい化合物では、該混練時の粘性が高くなりすぎ、均質な混合ができなくなるおそれがある。
この有機化剤としては、例えば(1)スルホン酸の金属塩、ホスホン酸の金属塩、カルボン酸の金属塩、(2)オニウム塩の中から選ばれる少なくとも一種を挙げることができる。これらの有機化剤は、粘土鉱物を分散させる作用(熱可塑性樹脂中に粘土鉱物を、均質にかつ微細に分散させる)をもつことができる。
【0012】
前記(1)の化合物の具体例としては、ドデシルスルホン酸ナトリウム等のアルキルスルホン酸塩、アルキルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩、ベンゼンスルホン酸ナトリウム等のアリールスルホン酸塩、ドデシルホスホン酸ナトリウム等のアルキルホスホン酸塩、アルキルベンゼンホスホン酸ナトリウム等のアルキルアリールホスホン酸塩、ベンゼンホスホン酸ナトリウム等のアリールホスホン酸塩等が挙げられる。また、金属塩における金属としては、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウムなどが好ましい。
前記(2)のオニウム塩の具体例としては、オクチルアンモニウムクロリド、オクチルアンモニウムブロミド、ドデシルアンモニウムクロリド、ドデシルアンモニウムブロミド、オクタデシルアンモニウムクロリド、オクタデシルアンモニウムブロミド、アミノドデカン酸塩などのアンモニウム塩、ホスホニウム塩などが挙げられる。
【0013】
次いで、粘土鉱物を有機化した有機化粘土鉱物含有液を遠心分離機やフィルタープレスにかけて脱溶媒処理を行い、陽イオン交換で層間より押し出された金属陽イオン及び未反応の有機化剤を除去し、広い層間距離を有し、樹脂との混和性が良く混練操作の容易なケーキ状含水有機化粘土鉱物を得る。このケーキ状含水有機化粘土鉱物の固形分濃度は、5〜90質量%、好ましくは20〜85質量%、より好ましくは35〜70質量%の範囲である。固形分濃度が5質量%未満では必要量の粘土鉱物を熱可塑性樹脂に混練する際、蒸発水分が多量となり過大なエネルギーが必要となるうえ、広い層間距離を持たないものとなる。また、固形分濃度が90質量%を超えると熱可塑性樹脂と溶融混練しても、得られる樹脂組成物は粘土鉱物の層間に樹脂が介入することが少なく、粘土鉱物の分散性が不充分であって、その分散効果が現れず特性が劣るものとなる。
このようにして得られたケーキ状含水有機化粘土鉱物と熱可塑性樹脂を合わせて、二軸混練機などで溶融混練することにより、疎水性の高められた層状構造をもつ粘土鉱物の層間に保持されていた分散媒と熱可塑性樹脂との置換が従来例よりスムースに行われ、樹脂中への粘土鉱物の微細な分散状態がみられ、所望の熱可塑性樹脂組成物が得られる。溶融混練は熱可塑性樹脂の溶融温度以上で樹脂の変質しない温度下で行い、熱可塑性樹脂が溶融して流動性を示し粘土鉱物を分散させる。さらに、置換により排出された分散媒体は蒸発により系から除去されるが、ケーキ状含水有機化粘土鉱物の固形分濃度が5〜90質量%であるため、分散媒体の蒸発に伴い粘土鉱物層間に空間が生じ、熱可塑性樹脂が導入されるのに適合したものとなると思われる。これにより、粘土鉱物の分散はより微細なものとなる。
この際、熱可塑性樹脂と、ケーキ状含水有機化粘土鉱物との配合割合は、熱可塑性樹脂100質量部に対し、原料の粘土鉱物として0.01〜100質量部、好ましくは0.03〜50質量部、より好ましくは0.5〜10質量部になるように選ぶのがよい。
【0014】
この混練においては、熱可塑性樹脂として、ポリオレフィン系樹脂を含むものを用いるのが好ましい。そして、熱可塑性樹脂成分である質量平均分子量が5万以下のポリオレフィン系樹脂と、ケーキ状膨潤粘土鉱物とを合わせて溶融混練し、マスターバッチを作製後、さらにこのものと、他のポリオレフィン系樹脂とを合わせ溶融混練することもできる。
また、上記樹脂成分の質量平均分子量5万以下のポリオレフィン系樹脂は、熱可塑性樹脂組成物中に、5質量%以上含むものが有利である。質量平均分子量が5万を超えると、ポリオレフィンが粘土鉱物を構成する層間に入りにくくなるため、粘土鉱物が分散しにくくなる。又、5質量%以上ないと、該ポリオレフィン系樹脂を用いる効果が小さい。
熱可塑性樹脂に含まれる上記ポリオレフィン系樹脂は、前述のように、その少なくとも一部が極性を有するものであることが好ましい。
本発明の製造方法はまた、前記の熱可塑性樹脂と、その100質量部当たり、粘土鉱物0.01〜100質量部を含み、かつX線回折にて粘土鉱物に起因する明瞭なピークが観察されることがない熱可塑性樹脂組成物をも提供する。
このように、樹脂中に厚さ1〜20ナノメートル、長さ50〜1000ナノメートルの粘土粒子がランダムに分散してなる熱可塑性樹脂組成物は、前述の本発明の方法により、簡便な工程で安価に製造することができる。そして、その優れた機械的特性や熱的特性、ガスバリア性等を持ち、自動車バンパー用、食品フィルム用などに使用される。
【0015】
【実施例】
次に、本発明を実施例により、さらに詳しく説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例で得られた樹脂組成物のX線回折及び曲げ弾性率の測定は、下記の方法に従って行った。
(1)X線回折
X線回折装置を用いて、Cu-Kαの特性X線を使用し、スキャニング速度1°/分、2θ=0.8〜40°の範囲で行った。
(2)曲げ弾性率
JIS K7203に準拠して測定を行った。
実施例1
山形産ベントナイト原石(主成分組成モンモリロナイト)1質量部を水性溶媒(水のみ)10質量部中に混合し、タンク内で20℃にて2時間撹拌し分散させた後、遠心分離機を用いて固形分濃度3%のモンモリロナイト主成分のみのスラリー液を調製した。このスラリー液の粘度は45mPa・sec[B型粘度汁B8M(株式会社東京計器製)で回転数60rpmにて測定]であった。これにシリコーン第四級アンモニウム塩1.5質量部を加えて撹拌し有機化した後フィルタープレスにより脱水処理をした。得られたケーキ状物の固形分濃度は48質量%であった。
次に質量平均分子量17000のポリプロピレン(質量平均分子量73000のポリプロピレンに有機過酸化物0.3質量を加え、低分子量化したもの)100質量部と、上記ケーキ状物18質量部を二軸混練機を用いて、250℃にて混練し、樹脂組成物を調製した。
得られた樹脂組成物は、5.3質量%のモンモリロナイトを含んでいた。
この組成物のプレスシートを作製し、そのX線回折を行った。
【0016】
実施例2
山形産ベントナイト原石(主成分組成モンモリロナイト)1質量部を水性溶媒(水のみ)10質量部中に混合し、タンク内で25℃にて2時間撹拌し分散させた後、遠心分離機を用いて固形分濃度5%のモンモリロナイト主成分のみのスラリー液を調製した。これにジメチルジステアリルアンモニウムクロリド3質量部を加えて60℃で60分撹拌し有機化した後フィルタープレスにより脱溶媒処理をした。得られたケーキ状物の固形分濃度は60質量%であった。
次に質量平均分子量21000のポリプロピレン(三洋化成工業(株)製、商品名:ユーメックス1010)45質量部とメルトインデックス(MI)30g/10分のポリプロピレン55質量部と、上記ケーキ状物17質量部を、二軸混練機を用いて、250℃にて混練し、樹脂組成物を調製した。
得られた樹脂組成物は、4.8質量%のモンモリロナイトを含んでいた。
この組成物のプレスシートを作製し、そのX線回折を行った。また、射出成形により試験片を作製し、曲げ試験を行った。結果を表1に示す。
【0017】
参考例として、市販の精製乾燥された粘土鉱物を使用した例を示す。
参考例1
モンモリロナイト(クニミネ工業(株)製、商品名:クニピアF)3質量部を水97質量部に加え、24時間撹拌し分散させた。分散の終了は導電率によった。この分散液の粘度は102mPa・sec[実施例1と同様に測定]であった。この分散液にジメチルジステアリルアンモニウムクロリド3質量部を加えて60℃で80分撹拌し有機化したのち、フィルタ−プレスにより脱水処理した。得られたケーキ状物の固形分濃度は60質量%であった。
次に、質量平均分子量17000ポリプロピレン(質量平均分子量73000のポリプロピレンに有機過酸化物0.3質量%を加え、低分子量化したもの)100質量部と、上記ケーキ状物18質量部を二軸混練機を用いて、250℃にて混練し、樹脂組成物を調製した。この組成物のプレスシートを作製し、そのX線回折を行った。また、射出成形により試験片を作製し、曲げ試験を行った。結果を表1に示す。
【0018】
参考例2
モンモリロナイト(クニミネ工業(株)製、商品名:クニピアF)4質量部を水96質量部に加え、24時間撹拌し分散させた。分散の終了は導電率によった。この分散液にシリコーン第四級アンモニウム塩4質量部を加えて60℃で80分撹拌し有機化したのち、フィルタープレスにより脱水処理した。得られたケーキ状物の固形分濃度は66質量%であった。
次に、質量平均分子量21000のポリプロピレン(前出)50質量部と、上記ケーキ状物152質量部を、二軸混練機を用いて、250℃にて混練し、マスターバッチを作製した。次いで、MI10g/10分のポリプロピレン84質量部と上記マスターバッチ16質量部をブレンドし、二軸混練機にて250℃で混練し、樹脂組成物を調製した。
この組成物のプレスシートを作製し、そのX線回折を行った。また、射出成形により試験片を作成し、曲げ試験を行った。結果を表1に示す。
【0019】
比較例1
モンモリロナイト(クニミネ工業(株)製、商品名:クニピアF)3質量部を水97質量部に撹拌分散させたのち、ジメチルステアリルアンモニウムクロリド3質量部を加えて65℃で80分撹拌し有機化した後、フィルタープレスにより脱水処理した。得られたケーキ状物を乾燥したのち、粉砕して有機化モンモリロナイトを得た。
次に、質量平均分子量21000のポリプロピレン(前出)45質量部と、MI30g/10分のポリプロピレン50質量部と、上記有機化モンモリロナイト12質量部とを、二軸混練機を用いて、250℃にて混練し、樹脂組成物を調整した。
この組成物のプレスシートを作製し、そのX線回折を行った。また、射出成形により、試験片を作製し、曲げ試験を行った。結果を表1に示す。
【0020】
比較例2
モンモリロナイト(クニミネ工業(株)製、商品名:クニピアF)3質量部を水97質量部に撹拌分散させたのち、ジメチルステアリルアンモニウムクロリド3質量部を加えて60℃で80分撹拌し有機化し、有機化モンモリロナイトエマルジョンを得た。
次に、質量平均分子量21000のポリプロピレン(前出)45質量部と、MI30g/10分のポリプロピレン50質量部と、上記有機化モンモリロナイトエマルジョン166質量部を混ぜ、二軸混練機にて150℃で混練した。しかし、水が多すぎ、吐出量が極端に少なく、量産化は困難であると考えられる。
わずかに得られたペレットを用いてプレスシートを作製し、そのX線回折を行った。また、射出成形により、試験片を作製し、曲げ試験を行った。結果を表1に示す。
X線回折の結果、非常にブロードな曲線を示し、38Åのところに、僅かなピークが観察された。このことは、様々なレベルの層間距離の粘土鉱物が存在していることを示している。水が多く、そのため樹脂量が少なく、充分な剪断力がかからなかったためと考えられる。
【0021】
比較例3
モンモリロナイト(クニミネ工業(株)製、商品名:クニピアF)4質量部を水96質量部に撹拌分散させたのち、ジメチルステアリルアンモニウムクロリド2質量部を加えて比較例2と同様に有機化したのち、フィルタープレスにより脱水処理した。得られたケーキ状物を乾燥したのち、粉砕して有機化モンモリロナイトを得た。
次に、質量平均分子量21000のポリプロピレン(前出)50質量部と、上記有機化モンモリロナイト75質量部を、二軸混練機を用いて、180℃にて混練し、マスターバッチを作製した。次いで、MI10g/10分のポリプロピレン87質量部と上記マスターバッチ13質量部をブレンドし、二軸混練機にて250℃で混練し、樹脂組成物を調製した。
この組成物のプレスシートを作製し、そのX線回折を行った。また、射出成形により、試験片を作製し、曲げ試験を行った。結果を表1に示す。
【0022】
比較例4
モンモリロナイト(クニミネ工業(株)製、商品名:クニピアF)20質量部と水80質量部を、ミキサーにて撹拌混合し、水で膨潤したモンモリロナイトを得た。
次に、質量平均分子量21000のポリプロピレン(前出)45質量部と、MI30g/10分のポリプロピレン50質量部と、上記の水で膨潤したモンモリロナイト30質量部とを、二軸混練機を用いて、180℃にて混練し、樹脂組成物を調製した。
この組成物のプレスシートを作製し、そのX線回折を行った。また、射出成形により、試験片を作製し、曲げ試験を行った。結果を表1に示す。
【0023】
【表1】

Figure 0004822591
【0024】
以上の各例および表1からわかるように、本発明の実施例1、実施例2と参考例1、参考例2は、いずれもX線回折においてピークがみられず、分散が極めて良好であり、また、曲げ試験の結果も実施例2、参考例1、参考例2は、比較例のものに比べて優れている。
そして、本発明の実施例1、実施例2は、参考例1、参考例2に比較し出発原料が相違するので、その低粘度のスラリー液を得るまでの時間が大幅に短縮できる。
比較例1及び比較例3をみると、有機化粘土鉱物と樹脂との混練は実施例と同様であるが、その分散性は悪く、曲げ弾性率は低い。これは、本発明のケーキ状含水有機化粘土鉱物と樹脂との混練が重要であることを示している。
参考例2及び比較例3は、いずれも有機化モンモリロナイトを高濃度に含むマスターバッチを作製し、それをポリプロピレンと合わせて、所定量のモンモリロナイトを含む樹脂組成物を製造する例であるが、本発明においても同様にして製造することができる。
実施例1、2と比較例2を比較した場合、有機化モンモリロナイトエマルジョンと混練する比較例2は製造効率が著しく劣る上、最終的に得られる組成物もモンモリロナイトの分散性に劣り、かつ曲げ弾性率も低い。
水で膨潤したのみで有機化処理を行わない粘土鉱物との組成物である比較例4をみると、モンモリロナイト含有量は多いが分散性は悪く、曲げ弾性率も極めて低い。
【0025】
【発明の効果】
本発明によれば、粘土鉱物の層間に熱可塑性樹脂が導入され,粘土鉱物がサブミクロンからナノメートルオーダーで分散してなる熱可塑性樹脂組成物を簡便な工程で短時間に生産性良く、工業的に有利に製造することができ、その得られる熱可塑性樹脂組成物は機械的性質や耐熱性、ガスバリア性などに優れ、組成物全体が均質であり、自動車用のバンパー、食品用のフィルム等各種の用途がある。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for producing a thermoplastic resin compositionTo the lawRelated. More specifically, the present invention relates to a method for producing a thermoplastic resin composition in which a layered compound is dispersed in a submicron to nanometer order.To the lawIt is related.
[0002]
[Prior art]
In recent years, a nanocomposite in which a layered inorganic compound is dispersed in a nanometer order in a thermoplastic resin has been proposed and attracted attention. Compared to conventional composite materials filled with inorganic fillers, this nanocomposite can provide higher elastic modulus and heat resistance with a small amount of inorganic fillers, and can be reduced in weight and can replace glass fibers. It is also possible to recycle and attracts attention from environmental issues. It has also been reported that gas barrier properties and flame retardancy are imparted.
However, it is not easy to disperse the layered inorganic compound in the thermoplastic resin on the nano order, and various devised techniques have been proposed so far. For example, a method in which an organic cation represented by a quaternary ammonium salt is intercalated into a layered inorganic compound and then a monomer is introduced between the layers and polymerized (Japanese Patent Laid-Open No. 63-215775). A method in which an inorganic compound is dispersed in an organic solvent, a thermoplastic resin is dissolved in the solvent, and both are mixed in solution (Japanese Patent Laid-Open No. 6-93133). An organic layered inorganic compound is dispersed in the organic solvent and heated. A method of injecting and kneading into a place where the plastic resin is melted (JP-A-8-302062), a method of melt-kneading under specific conditions using an organic layered inorganic compound (JP-A-9-2117012) Japanese Laid-Open Patent Publication No. 10-1828), a method in which an organically layered inorganic compound and an oligomer having a functional group are kneaded and then kneaded with a resin. No. 2), a method in which a layered inorganic compound swollen in water or an organic layered inorganic compound swollen in an organic solvent is kneaded together with a resin under specific conditions (Japanese Patent Laid-Open No. 9-183910) Gazette), by applying a solvent-containing clay slurry containing a thermoplastic resin and a large amount of water or a proton donor to a twin-screw extruder, a large amount of water forms a high-pressure atmosphere in the extruder and is finely dispersed in the resin. (Japanese Patent Laid-Open No. 2000-239397) and the like have been proposed.
However, all of the layered inorganic compounds used in these methods employ a dry clay product, and many of them cause secondary agglomeration, and this undergoes a step of solvent dispersion again, which is economically disadvantageous. However, although the interlayer is considerably widened, in the composition dispersed in the resin, the interlayer distance is still measured by X-ray diffraction, and it cannot be said that nano-order dispersion is sufficient. In particular, regarding a nonpolar resin typified by polyolefin, a sufficiently satisfactory technique has not yet been found.
[0003]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a homogeneous thermoplastic resin composition excellent in mechanical properties and heat resistance, in which clay minerals are dispersed in the order of submicron to nanometer, in a simple process, at low cost. An object of the present invention is to provide an industrially advantageous production method and a thermoplastic resin composition having the above-mentioned characteristics. By using simple means, the interlayer distance of a multilayer structure of clay minerals to be kneaded with a thermoplastic resin can be reduced. The thermoplastic resin is easily and effectively introduced between the layers at the time of kneading while being spread, and the fine and uniform dispersion is sufficiently exerted.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on a method for inexpensively producing a thermoplastic resin composition in which a clay mineral is dispersed on the nanometer order, the inventors have obtained the following knowledge.
Although clay minerals are generally dispersed in water, they are not dispersed in organic solvents, while organic clay minerals are known to be dispersed in organic solvents but difficult to disperse in water. However, if the raw clay as a layered inorganic compound is carefully selected and supplied to the organic treatment, the solvent dispersion process time is shortened and a low-viscosity slurry is obtained, and the organic treatment is also very easily performed. Hydrophilic clay minerals can be changed to hydrophobic. The organic clay mineral that has been subjected to the solid-liquid separation treatment has a multilayer structure with a wide interlayer distance maintained by the organic agent, and the interlayer portion changes from hydrophilic to hydrophobic while retaining the dispersion medium. Therefore, in this state, the dispersion medium held between the layers is relatively easily replaced with the resin by kneading with a thermoplastic resin containing a polymer having a low molecular weight to some extent, and no peak is observed in X-ray diffraction. It has been found that a thermoplastic resin composition in which clay mineral is dispersed on the order of submicron to nanometer order can be easily obtained.
[0005]
  The present invention has been completed based on such findings.
  That is, the present invention
(1) A slurry liquid obtained by refining clay mineral ore using an aqueous solvent is obtained, and an organicizing agent is added to the slurry to make it organic, and an organic clay mineral dispersion liquid in which organic substances are intercalated between clay mineral layers is prepared. Next, a cake-like water-containing organic clay mineral is obtained by solid-liquid separation treatment. The cake-like water-containing organic clay mineral and the thermoplastic resin are combined and melt-kneaded, and the dispersion medium between the clay minerals is thermoplastic. A method for producing a thermoplastic resin composition to be substituted with a resin;
(2) In (1), the slurry liquid has a solid content concentration of 0.1 to 50.0% by mass, and the cake-like hydrous organized clay mineral has a solid content concentration of 5.0 to 90.0% by mass. A method for producing the thermoplastic resin composition according to claim 1,
(3) The method for producing a thermoplastic resin composition according to (1) or (2), wherein the solid-liquid separation treatment is performed by centrifugation or a filter press.
(4) The method for producing a thermoplastic resin composition according to any one of (1) to (3), wherein the thermoplastic resin contains a polyolefin resin,
(5) After melt-kneading a polyolefin resin having a mass average molecular weight of 50,000 or less, which is at least 5% by mass of the total resin amount, and a cake-like water-containing organic clay clay mineral, this product and the remaining other polyolefin resin (4) The method for producing a thermoplastic resin composition according to (4), wherein the resin is melt-kneaded togetherand,
(6) The method for producing a thermoplastic resin composition according to (4) or (5), wherein at least a part of the polyolefin resin contained in the thermoplastic resin has polarity.,
TheIt is to provide.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
  Method for producing the thermoplastic resin composition of the present inventionTo the lawThe thermoplastic resin used is not particularly limited as long as it is a thermoplastic polymer compound. For example, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyethylene terephthalate, polybutylene terephthalate, polystyrene, and ABS are used. Resin (acrylonitrile-butadiene-styrene copolymer resin), AS resin (acrylonitrile-styrene copolymer resin), polymethyl methacrylate, polyamide, polyacetal, polycarbonate, polyphenylene sulfide, polyphenylene ether, polyether ether ketone, polysulfone, polyether sulfone , Polyamideimide, polyetherimide, thermoplastic polyimide, natural rubber, isoprene rubber, chloroprene rubber, styrene rubber, nitrile Beam, ethylene - propylene rubber, butadiene rubber, styrene - butadiene rubber, butyl rubber, epichlorohydrin rubber, acrylic rubber, urethane rubber, fluorine rubber, the use of silicone rubber or the like preferred. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  In addition, the present invention containing a high concentration of clay mineralsTarget thermoplastic resinIf the composition is obtained, it is convenient to include an arbitrary amount of clay mineral as a masterbatch. In the case of preparing such a composition, it is advantageous to select a thermoplastic resin having a mass average molecular weight of 50,000 or less. Further, a thermoplastic resin having a polar group and having a mass average molecular weight of 50,000 or less is selected. It is advantageous to choose. In particular, when selecting a polyolefin resin that does not inherently have a polar group, selecting a polyolefin resin having a polar group modified with, for example, maleic anhydride improves the miscibility with clay minerals, and This is advantageous because aggregation of the layered compound can be suppressed.
[0007]
The main component of the raw clay mineral used as a starting material, for example, montmorillonite, is a silicate mineral having a layered structure, for example, a tetrahedral sheet layer composed of silicic acid-an octahedral sheet layer containing Al, Mg, etc.- It is a substance having a layered structure in which tetrahedral sheet layers made of silicic acid are stacked and bonded to form a single crystal layer, and the crystal layers are laminated. A metal cation intervenes between crystal layers having a thickness of about 1 nanometer and a surface size of about 100 to 1000 nanometers in average in length and width, and this metal cation can easily exchange with other cations. Can do.
As such clay mineral ore, in addition to those mainly composed of montmorillonite having a hydrophilic and layered structure such as bentonite and acid clay, which are natural clays, saponite, hectorite, piderite, stevensite, nontronite, Examples thereof include vermiculite, mica, and fluorinated mica. Such raw stones may be used alone or in combination of two or more.
The aqueous solvent is a solvent containing water or a proton donor and is not particularly limited. For example, water, acetone, methanol, ethanol, propanol, diethylene glycol, ethylene glycol, propylene glycol, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, Examples include ethylene glycol monoacetylate, ethylene glycol diacetylate, polyethylene glycol, and polypropylene glycol. These may be used singly or in combination of two or more, but water is particularly preferred, and those in which one or several to 100 parts by volume of these organic substances are mixed with 100 parts by volume of water are also preferred. . In addition, the solvent containing water or a proton donor may contain a solvent or an additive other than water or the proton donor as desired, as long as the object of the present invention is not impaired.
[0008]
5 parts by weight of a water-soluble solvent, preferably 10-15 parts, are mixed in a tank with respect to 1 part of a clay mineral ore that has been crushed to a diameter of 0.1 to 20 mm in advance for water tanks. The mixture is stirred for 1 to 10 hours, preferably 2 to 3 hours, to obtain a mixed dispersion solution. Impurities are separated and removed from the mixed dispersion solution using a centrifugal separator to obtain a slurry liquid mainly composed of clay minerals.
[0009]
The concentration of the clay mineral in the slurry thus obtained is not particularly limited as long as it is a sufficiently dispersible concentration, but is usually 0.1 to 20% by mass, preferably 1 to 10% by mass, particularly preferably. It is the range of 1-5 mass%. If the concentration of the clay mineral is less than 0.1% by mass, more processes are required to obtain the required amount of cake-like water-containing organic clay clay, or the container for preparing the slurry becomes larger, which increases the cost in terms of equipment, It is not preferable. On the other hand, when the concentration exceeds 20% by mass, the viscosity of the slurry increases and stirring becomes difficult.
[0010]
An organic agent is added to a slurry liquid containing only clay minerals such as montmorillonite, and the mixture is stirred for 5 to 60 minutes to make the clay minerals organic by intercalation. Heat to. By this operation, the organic agent enters the interlayer of the clay mineral and becomes hydrophobic, and the clay mineral swells and the interlayer is expanded.
According to this method, since a carefully selected product obtained directly from the raw stone is used, a slurry solution having a low viscosity in a very short time (about 1/8 or less of the conventional one) as compared with a method in which solvent is dispersed using a refined and dried clay mineral Can be prepared, and the introduction of the organic agent can be facilitated, whereby the desired resin composition can be efficiently produced.
The amount of the organic agent added to the clay mineral slurry liquid such as montmorillonite is 0.1 to 5 times, preferably 0.5 to 1.5 times the cation exchange amount (CEC) of the clay mineral. It is a range. If the addition amount of the organic agent is less than 0.1 times, the clay mineral is insufficiently organized and the interlayer is difficult to spread, and there is a possibility that a resin composition in which the clay mineral is sufficiently finely dispersed may not be obtained. If it exceeds, the effect beyond it cannot be expected, but it becomes disadvantageous economically, and is not preferable.
[0011]
As the organic agent, an organic compound having a molecular weight in the range of 10 to 10,000,000, preferably in the range of 200 to 10,000 can be used. If the compound has a molecular weight of less than 10, there is a risk of volatilization when the clay mineral and the resin are kneaded. If the compound is greater than 10,000,000, the viscosity at the time of kneading becomes too high, and there is a risk that homogeneous mixing may not be possible. is there.
Examples of the organic agent include at least one selected from (1) a metal salt of sulfonic acid, a metal salt of phosphonic acid, a metal salt of carboxylic acid, and (2) an onium salt. These organic agents can have a function of dispersing clay minerals (dispersing clay minerals uniformly and finely in a thermoplastic resin).
[0012]
Specific examples of the compound (1) include alkyl sulfonates such as sodium dodecyl sulfonate, alkyl aryl sulfonates such as sodium alkyl benzene sulfonate, aryl sulfonates such as sodium benzene sulfonate, sodium dodecyl phosphonate. Alkyl phosphonates such as sodium alkyl benzene phosphonate, aryl phosphonates such as sodium benzene phosphonate, and the like. The metal in the metal salt is preferably sodium, potassium, calcium, magnesium, aluminum or the like.
Specific examples of the onium salt (2) include octylammonium chloride, octylammonium bromide, dodecylammonium chloride, dodecylammonium bromide, octadecylammonium chloride, octadecylammonium bromide, aminododecanoate and other ammonium salts, phosphonium salts and the like. Can be mentioned.
[0013]
Next, the organic clay mineral-containing liquid obtained by organizing the clay mineral is subjected to a solvent removal treatment by applying a centrifuge or a filter press to remove the metal cation extruded from the interlayer and the unreacted organic agent by cation exchange. A cake-like water-containing organic clay mineral having a wide interlayer distance and good miscibility with the resin and easy kneading operation is obtained. The solid content concentration of the cake-like hydrous organized clay mineral is in the range of 5 to 90% by mass, preferably 20 to 85% by mass, more preferably 35 to 70% by mass. If the solid content concentration is less than 5% by mass, when a necessary amount of clay mineral is kneaded into the thermoplastic resin, a large amount of evaporated water is required and excessive energy is required, and a wide interlayer distance is not provided. In addition, when the solid content concentration exceeds 90% by mass, even when melt-kneaded with a thermoplastic resin, the resin composition obtained is less likely to intervene between the layers of the clay mineral, and the dispersibility of the clay mineral is insufficient. Therefore, the dispersion effect does not appear and the characteristics are inferior.
The cake-like water-containing organic clay clay thus obtained and the thermoplastic resin are combined and melt-kneaded with a twin-screw kneader or the like to maintain the layer between clay minerals having a layered structure with increased hydrophobicity. The replacement of the dispersion medium and the thermoplastic resin thus made is performed more smoothly than in the conventional example, and a fine dispersion state of the clay mineral in the resin is observed, and a desired thermoplastic resin composition is obtained. The melt kneading is performed at a temperature not lower than the melting temperature of the thermoplastic resin so that the resin does not change, and the thermoplastic resin melts and exhibits fluidity to disperse the clay mineral. Furthermore, although the dispersion medium discharged by the substitution is removed from the system by evaporation, since the solid content concentration of the cake-like water-containing organic clay mineral is 5 to 90% by mass, between the clay mineral layers as the dispersion medium evaporates. It appears that space is created and adapted to the introduction of the thermoplastic resin. Thereby, the dispersion of the clay mineral becomes finer.
At this time, the blending ratio of the thermoplastic resin and the cake-like water-containing organic clay mineral is 0.01 to 100 parts by mass, preferably 0.03 to 50 parts as a raw clay mineral with respect to 100 parts by mass of the thermoplastic resin. It is good to choose so that it may become a mass part, More preferably, it is 0.5-10 mass part.
[0014]
  In this kneading, it is preferable to use a thermoplastic resin containing a polyolefin resin. Then, a polyolefin resin having a mass average molecular weight of 50,000 or less, which is a thermoplastic resin component, and a cake-like swollen clay mineral are combined and melt-kneaded to prepare a masterbatch, and this and another polyolefin resin Can be melt-kneaded together.
  The polyolefin resin having a mass average molecular weight of 50,000 or less of the resin component is advantageously one containing 5% by mass or more in the thermoplastic resin composition. When the mass average molecular weight exceeds 50,000, it becomes difficult for the polyolefin to enter between the layers constituting the clay mineral, so that the clay mineral is difficult to disperse. Moreover, if it is not 5 mass% or more, the effect using this polyolefin resin is small.
  As described above, it is preferable that at least a part of the polyolefin-based resin contained in the thermoplastic resin has polarity.
  The present inventionManufacturing methodIs a heat which contains 0.01 to 100 parts by mass of the clay mineral per 100 parts by mass of the thermoplastic resin and in which no clear peak due to the clay mineral is observed by X-ray diffraction. A plastic resin composition is also provided.
  Thus, the thermoplastic resin composition in which clay particles having a thickness of 1 to 20 nanometers and a length of 50 to 1000 nanometers are randomly dispersed in the resin is a simple process by the method of the present invention described above. And can be manufactured inexpensively. It has excellent mechanical and thermal properties, gas barrier properties, etc., and is used for automobile bumpers, food films and the like.
[0015]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the measurement of the X-ray diffraction and bending elastic modulus of the resin composition obtained in each example was performed according to the following method.
(1) X-ray diffraction
Using an X-ray diffractometer, the characteristic X-ray of Cu—Kα was used, and the scanning speed was 1 ° / min and 2θ = 0.8 to 40 °.
(2) Flexural modulus
Measurement was performed in accordance with JIS K7203.
Example 1
After mixing 1 part by mass of Yamagata rough bentonite (main component composition montmorillonite) in 10 parts by mass of an aqueous solvent (water only), stirring and dispersing in a tank at 20 ° C. for 2 hours, using a centrifuge A slurry liquid containing only a montmorillonite main component having a solid content concentration of 3% was prepared. The viscosity of this slurry liquid was 45 mPa · sec [measured at a rotational speed of 60 rpm with a B-type viscous juice B8M (manufactured by Tokyo Keiki Co., Ltd.)]. To this, 1.5 parts by mass of a silicone quaternary ammonium salt was added and stirred to make it organic, and then dehydrated by a filter press. The cake-like product obtained had a solid content of 48% by mass.
Next, 100 parts by weight of polypropylene having a weight average molecular weight of 17000 (a polypropylene having a weight average molecular weight of 73,000 added with 0.3 mass of organic peroxide to lower the molecular weight) and 18 parts by weight of the cake-like product were mixed into a biaxial kneader. And kneaded at 250 ° C. to prepare a resin composition.
The obtained resin composition contained 5.3% by mass of montmorillonite.
A press sheet of this composition was prepared and X-ray diffraction was performed.
[0016]
Example 2
After mixing 1 part by weight of Yamagata rough bentonite (main component montmorillonite) in 10 parts by weight of an aqueous solvent (water only), stirring and dispersing in a tank at 25 ° C. for 2 hours, using a centrifuge A slurry liquid containing only a montmorillonite main component having a solid content concentration of 5% was prepared. To this was added 3 parts by mass of dimethyl distearyl ammonium chloride, and the mixture was stirred for 60 minutes at 60 ° C. to make it organic, and then the solvent was removed by a filter press. The cake-like product obtained had a solid content concentration of 60% by mass.
Next, 45 parts by mass of polypropylene having a mass average molecular weight of 21000 (manufactured by Sanyo Chemical Industries, Ltd., trade name: Yumex 1010), 55 parts by mass of polypropylene having a melt index (MI) of 30 g / 10 min, and 17 parts by mass of the cake-like product Was kneaded at 250 ° C. using a biaxial kneader to prepare a resin composition.
The obtained resin composition contained 4.8% by mass of montmorillonite.
A press sheet of this composition was prepared and X-ray diffraction was performed. Moreover, the test piece was produced by injection molding and the bending test was done. The results are shown in Table 1.
[0017]
As a reference example, an example using a commercially available refined and dried clay mineral is shown.
Reference example 1
3 parts by mass of montmorillonite (Kunimine Kogyo Co., Ltd., trade name: Kunipia F) was added to 97 parts by mass of water, and the mixture was stirred and dispersed for 24 hours. The end of dispersion depends on the conductivity. The viscosity of this dispersion was 102 mPa · sec [measured in the same manner as in Example 1]. 3 parts by mass of dimethyl distearyl ammonium chloride was added to this dispersion, and the mixture was stirred at 60 ° C. for 80 minutes to be organic, and then dehydrated by a filter press. The cake-like product obtained had a solid content concentration of 60% by mass.
Next, 100 parts by mass of polypropylene having a mass average molecular weight of 17,000 (a polypropylene having a mass average molecular weight of 73,000 added with 0.3% by mass of an organic peroxide to lower the molecular weight) and 18 parts by mass of the cake are biaxially kneaded. A resin composition was prepared by kneading at 250 ° C. using a machine. A press sheet of this composition was prepared and X-ray diffraction was performed. Moreover, the test piece was produced by injection molding and the bending test was done. The results are shown in Table 1.
[0018]
Reference example 2
4 parts by mass of montmorillonite (Kunimine Kogyo Co., Ltd., trade name: Kunipia F) was added to 96 parts by mass of water, and the mixture was stirred and dispersed for 24 hours. The end of dispersion depends on the conductivity. 4 parts by mass of a silicone quaternary ammonium salt was added to this dispersion and stirred for 80 minutes at 60 ° C. to make it organic, and then dehydrated by a filter press. The cake-like product obtained had a solid content concentration of 66% by mass.
Next, 50 parts by mass of polypropylene having a mass average molecular weight of 21,000 (described above) and 152 parts by mass of the cake-like product were kneaded at 250 ° C. using a biaxial kneader to prepare a master batch. Next, 84 parts by mass of polypropylene of 10 g / 10 min and 16 parts by mass of the master batch were blended and kneaded at 250 ° C. with a biaxial kneader to prepare a resin composition.
A press sheet of this composition was prepared and X-ray diffraction was performed. Moreover, the test piece was created by injection molding and the bending test was done. The results are shown in Table 1.
[0019]
Comparative Example 1
3 parts by mass of montmorillonite (Kunimine Kogyo Co., Ltd., trade name: Kunipia F) was stirred and dispersed in 97 parts by mass of water, 3 parts by mass of dimethylstearyl ammonium chloride was added, and the mixture was stirred for 80 minutes at 65 ° C. to make it organic. Then, it dehydrated with the filter press. The obtained cake was dried and then pulverized to obtain organic montmorillonite.
Next, 45 parts by mass of polypropylene having a mass average molecular weight of 21000 (supra), 50 parts by mass of polypropylene of 30 g / 10 min, and 12 parts by mass of the above-mentioned organic montmorillonite are heated to 250 ° C. using a biaxial kneader. And kneaded to prepare a resin composition.
A press sheet of this composition was prepared and X-ray diffraction was performed. Moreover, the test piece was produced by injection molding and the bending test was done. The results are shown in Table 1.
[0020]
Comparative Example 2
After 3 parts by mass of montmorillonite (Kunimine Kogyo Co., Ltd., trade name: Kunipia F) was stirred and dispersed in 97 parts by mass of water, 3 parts by mass of dimethylstearyl ammonium chloride was added and stirred at 60 ° C. for 80 minutes to make it organic. An organic montmorillonite emulsion was obtained.
Next, 45 parts by mass of polypropylene having a mass average molecular weight of 21,000 (supra), 50 parts by mass of polypropylene of 30 g / 10 min, and 166 parts by mass of the above organic montmorillonite emulsion were mixed and kneaded at 150 ° C. with a twin-screw kneader. did. However, it is considered that mass production is difficult because there is too much water and the discharge amount is extremely small.
A press sheet was prepared using the slightly obtained pellets, and X-ray diffraction was performed. Moreover, the test piece was produced by injection molding and the bending test was done. The results are shown in Table 1.
As a result of X-ray diffraction, a very broad curve was shown, and a slight peak was observed at 38 °. This indicates the presence of clay minerals at various levels of interlayer distance. This is probably because there was a lot of water, so the amount of resin was small, and sufficient shearing force was not applied.
[0021]
Comparative Example 3
After 4 parts by mass of montmorillonite (Kunimine Kogyo Co., Ltd., trade name: Kunipia F) was stirred and dispersed in 96 parts by mass of water, 2 parts by mass of dimethylstearylammonium chloride was added and the mixture was made organic as in Comparative Example 2. And dehydrated by a filter press. The obtained cake was dried and then pulverized to obtain organic montmorillonite.
Next, 50 parts by mass of polypropylene having a mass average molecular weight of 21,000 (described above) and 75 parts by mass of the above-mentioned organic montmorillonite were kneaded at 180 ° C. using a biaxial kneader to prepare a master batch. Next, 87 parts by mass of polypropylene of MI 10 g / 10 min and 13 parts by mass of the master batch were blended and kneaded at 250 ° C. with a biaxial kneader to prepare a resin composition.
A press sheet of this composition was prepared and X-ray diffraction was performed. Moreover, the test piece was produced by injection molding and the bending test was done. The results are shown in Table 1.
[0022]
Comparative Example 4
20 parts by mass of montmorillonite (Kunimine Kogyo Co., Ltd., trade name: Kunipia F) and 80 parts by mass of water were stirred and mixed with a mixer to obtain montmorillonite swollen with water.
Next, using a biaxial kneader, 45 parts by mass of polypropylene having a mass average molecular weight of 21,000 (supra), 50 parts by mass of polypropylene of MI 30 g / 10 min, and 30 parts by mass of montmorillonite swollen with water described above, The resin composition was prepared by kneading at 180 ° C.
A press sheet of this composition was prepared and X-ray diffraction was performed. Moreover, the test piece was produced by injection molding and the bending test was done. The results are shown in Table 1.
[0023]
[Table 1]
Figure 0004822591
[0024]
As can be seen from each of the above examples and Table 1, none of Examples 1 and 2 of the present invention, Reference Example 1 and Reference Example 2 show a peak in X-ray diffraction, and the dispersion is extremely good. In addition, the results of the bending test are excellent in Example 2, Reference Example 1, and Reference Example 2 as compared with the comparative example.
And since Example 1 and Example 2 of this invention differ in a starting raw material compared with the reference example 1 and the reference example 2, the time until the low-viscosity slurry liquid is obtained can be reduced significantly.
In Comparative Example 1 and Comparative Example 3, the kneading of the organized clay mineral and the resin is the same as in the example, but the dispersibility is poor and the flexural modulus is low. This indicates that kneading the cake-like hydrous organic clay mineral of the present invention with a resin is important.
Reference Example 2 and Comparative Example 3 are both examples in which a masterbatch containing organic montmorillonite at a high concentration is prepared and combined with polypropylene to produce a resin composition containing a predetermined amount of montmorillonite. In the invention, it can be produced in the same manner.
When Examples 1 and 2 were compared with Comparative Example 2, Comparative Example 2 kneaded with the organic montmorillonite emulsion was extremely inferior in production efficiency, and the composition finally obtained was also inferior in dispersibility of montmorillonite and flexural elasticity. The rate is also low.
Looking at Comparative Example 4, which is a composition with clay mineral that is swollen only by water and not subjected to organic treatment, the content of montmorillonite is large but the dispersibility is poor, and the flexural modulus is also extremely low.
[0025]
【The invention's effect】
According to the present invention, a thermoplastic resin is introduced between layers of clay minerals, and a thermoplastic resin composition in which clay minerals are dispersed on the order of submicrons to nanometers is produced in a simple process with good productivity in a short time. The resulting thermoplastic resin composition is excellent in mechanical properties, heat resistance, gas barrier properties, etc., and the entire composition is homogeneous, such as bumpers for automobiles, films for foods, etc. There are various uses.

Claims (6)

粘土鉱物原石を水性溶媒を用いて精製したスラリー液を得、これに有機化剤を添加し有機化して粘土鉱物の層間に有機物をインターカレーションさせた有機化粘土鉱物分散液を調製し、次いで固液分離処理によりケーキ状含水有機化粘土鉱物を得、このケーキ状含水有機化粘土鉱物と熱可塑性樹脂とを合わせて溶融混練するとともに、前記粘土鉱物の層間の分散媒を熱可塑性樹脂と置換させることを特徴とする熱可塑性樹脂組成物の製造方法。  A slurry liquid obtained by refining a clay mineral ore using an aqueous solvent is obtained, and an organicizing agent is added to the slurry liquid to prepare an organic clay mineral dispersion liquid in which organic substances are intercalated between clay mineral layers. A cake-like water-containing organic clay mineral is obtained by solid-liquid separation, and the cake-like water-containing organic clay mineral and the thermoplastic resin are combined and melt-kneaded, and the dispersion medium between the clay mineral layers is replaced with a thermoplastic resin. A method for producing a thermoplastic resin composition, characterized by comprising: 前記スラリー液が固形分濃度0.1〜50.0質量%であり、前記ケーキ状含水有機化粘土鉱物の固形分濃度が5.0〜90.0質量%であることを特徴とする請求項1に記載の熱可塑性樹脂組成物の製造方法。  The slurry liquid has a solid content concentration of 0.1 to 50.0 mass%, and the solid content concentration of the cake-like water-containing organic clay mineral is 5.0 to 90.0 mass%. A method for producing the thermoplastic resin composition according to 1. 前記固液分離処理を、遠心分離又はフィルタープレスで行うことを特徴とする請求項1又は2記載の熱可塑性樹脂組成物の製造方法。  The method for producing a thermoplastic resin composition according to claim 1 or 2, wherein the solid-liquid separation treatment is performed by centrifugation or a filter press. 熱可塑性樹脂が、ポリオレフィン系樹脂を含むものであることを特徴とする請求項1〜3のいずれか1項に記載の熱可塑性樹脂組成物の製造方法。  The method for producing a thermoplastic resin composition according to any one of claims 1 to 3, wherein the thermoplastic resin contains a polyolefin resin. 全樹脂量の少なくとも5質量%の質量平均分子量5万以下のポリオレフィン系樹脂と、ケーキ状含水有機化粘土鉱物とを合わせて溶融混練後、さらにこのものと、残余の他のポリオレフィン系樹脂とを合わせて溶融混練することを特徴とする請求項4記載の熱可塑性樹脂組成物の製造方法。  After melt-kneading a polyolefin resin having a mass average molecular weight of 50,000 or less, which is at least 5% by mass of the total resin amount, and a cake-like water-containing organic clay mineral, further, this and other remaining polyolefin resin The method for producing a thermoplastic resin composition according to claim 4, wherein melt kneading is performed together. 熱可塑性樹脂に含まれるポリオレフィン系樹脂の少なくとも一部が極性を有するものであることを特徴とする請求項4又は5記載の熱可塑性樹脂組成物の製造方法 6. The method for producing a thermoplastic resin composition according to claim 4, wherein at least a part of the polyolefin-based resin contained in the thermoplastic resin has polarity .
JP2001034727A 2001-02-09 2001-02-09 Method for producing thermoplastic resin composition Expired - Fee Related JP4822591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034727A JP4822591B2 (en) 2001-02-09 2001-02-09 Method for producing thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034727A JP4822591B2 (en) 2001-02-09 2001-02-09 Method for producing thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2002234948A JP2002234948A (en) 2002-08-23
JP4822591B2 true JP4822591B2 (en) 2011-11-24

Family

ID=18898279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034727A Expired - Fee Related JP4822591B2 (en) 2001-02-09 2001-02-09 Method for producing thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP4822591B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085255A (en) * 2007-09-28 2009-04-23 Hitachi Appliances Inc Vacuum insulation material and equipment using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723211B2 (en) * 1992-03-09 1995-03-15 豊順鉱業株式会社 Modified bentonite
JP2000159941A (en) * 1998-11-27 2000-06-13 Kanegafuchi Chem Ind Co Ltd Polyolefin resin composition
JP2000281847A (en) * 1999-01-26 2000-10-10 Nippon Polyolefin Kk Masterbatch composition for modifying polypropylene resin
JP4843134B2 (en) * 2000-11-21 2011-12-21 出光興産株式会社 Method for producing thermoplastic resin composition and thermoplastic resin composition

Also Published As

Publication number Publication date
JP2002234948A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
Olad Polymer/clay nanocomposites
Fischer Polymer nanocomposites: from fundamental research to specific applications
US7223359B2 (en) Method of producing an exfoliated polymer-clay nanocomposite through solid-state shear pulverization
Park et al. Preparation and properties of biodegradable thermoplastic starch/clay hybrids
JP5333723B2 (en) Rubber composition
CN101472987A (en) Polymer composites, polymer nanocomposites and methods
CN111065671B (en) Barrier additives
Wang et al. Shear rheology and melt compounding of compatibilized‐polypropylene nanocomposites: Effect of compatibilizer molecular weight
Anjana et al. Reinforcing effect of nano kaolin clay on PP/HDPE blends
US7691932B2 (en) Method of making a composition and nanocomposites therefrom
Fedullo et al. Nanocomposites from untreated clay: a myth?
JPH0641346A (en) Composite material, its production and resin molding material containing the same
JP4822591B2 (en) Method for producing thermoplastic resin composition
WO2015018281A1 (en) Continuous manufacturing process for rubber masterbatch and rubber masterbatch prepared therefrom
JP4843134B2 (en) Method for producing thermoplastic resin composition and thermoplastic resin composition
Mazrouaa Polypropylene nanocomposites
Abdelaal et al. An overview on polysulphone/clay nanocomposites
US6812273B1 (en) Manufacturing inorganic polymer hybrids
JP4060131B2 (en) Organized layered inorganic compound and method for producing thermoplastic resin composition in which it is dispersed
Tarantili et al. Composites of engineering plastics with layered silicate nanofillers: preparation and study of microstructure and thermomechanical properties
JP2002088261A5 (en)
Varghese et al. Layered silicate/rubber nanocomposites via latex and solution intercalations
JP2002088261A (en) Hybrid structure, and its production method
Sanchez-Olivares et al. Clay Minerals and Clay Mineral Water Dispersions—Properties and Applications
Ghanbari et al. Morphology and gas barrier properties of polymer nanocomposites

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees