[go: up one dir, main page]

JP4818763B2 - Preionization electrode for gas laser - Google Patents

Preionization electrode for gas laser Download PDF

Info

Publication number
JP4818763B2
JP4818763B2 JP2006074664A JP2006074664A JP4818763B2 JP 4818763 B2 JP4818763 B2 JP 4818763B2 JP 2006074664 A JP2006074664 A JP 2006074664A JP 2006074664 A JP2006074664 A JP 2006074664A JP 4818763 B2 JP4818763 B2 JP 4818763B2
Authority
JP
Japan
Prior art keywords
electrode
main discharge
longitudinal direction
dielectric
preionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006074664A
Other languages
Japanese (ja)
Other versions
JP2007250992A (en
Inventor
司 堀
弘司 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Ushio Denki KK
Original Assignee
Komatsu Ltd
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Ushio Denki KK filed Critical Komatsu Ltd
Priority to JP2006074664A priority Critical patent/JP4818763B2/en
Publication of JP2007250992A publication Critical patent/JP2007250992A/en
Application granted granted Critical
Publication of JP4818763B2 publication Critical patent/JP4818763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Description

本発明は、レーザガスを励起する一対の主放電電極の長手方向に並行して設けられるガスレーザ用予備電離電極に関し、特に予備電離電極の構造に関する。   The present invention relates to a preionization electrode for a gas laser provided in parallel with the longitudinal direction of a pair of main discharge electrodes for exciting a laser gas, and more particularly to the structure of the preionization electrode.

半導体集積回路の微細化、高集積化につれて、半導体露光装置においては解像力の向上が要請されている。このため露光用光源から放出される光の短波長化が進められている。露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられている。現在、露光用のガスレーザ装置としては、波長248nmの紫外線を放出するKrFエキシマレーザが用いられている。さらに、次世代の半導体露光用光源として、波長193nmのArFエキシマレーザ装置及び波長157nmのフッ素(F2 )レーザ装置等の紫外線を放出するガスレーザ装置が有力である。   As semiconductor integrated circuits are miniaturized and highly integrated, improvement in resolving power is demanded in semiconductor exposure apparatuses. For this reason, the wavelength of light emitted from the exposure light source is being shortened. As a light source for exposure, a gas laser device is used instead of a conventional mercury lamp. At present, a KrF excimer laser that emits ultraviolet light having a wavelength of 248 nm is used as a gas laser device for exposure. Further, as a next-generation light source for semiconductor exposure, gas laser devices that emit ultraviolet rays, such as an ArF excimer laser device having a wavelength of 193 nm and a fluorine (F2) laser device having a wavelength of 157 nm, are promising.

ガスレーザ装置は、両側の壁面にウィンドウがそれぞれ設けられたレーザチャンバと、レーザチャンバ外部の光軸上にあってレーザチャンバの両側に配置された共振器とを有する。レーザチャンバには各種レーザガスが数百kPaの気圧で封入されている。このレーザチャンバ内でレーザガスが励起されて安定状態に遷移する際に光が放出される。光は一方のウィンドウからレーザチャンバ外部に出力され、一方の共振器で反射し、一方のウィンドウからレーザチャンバ内部に入力される。そして、他方のウィンドウからレーザチャンバ外部に出力され、他方の共振器で反射し、他方のウィンドウからレーザチャンバ内部に入力される。このように光は共振器間を往復し、レーザチャンバ内で増幅される。そして共振器外部にレーザ光が出力される。   The gas laser device includes a laser chamber in which windows are provided on both wall surfaces, and resonators disposed on both sides of the laser chamber on an optical axis outside the laser chamber. Various laser gases are sealed in the laser chamber at a pressure of several hundred kPa. Light is emitted when the laser gas is excited in this laser chamber and transitions to a stable state. Light is output from one window to the outside of the laser chamber, reflected by one resonator, and input from one window to the inside of the laser chamber. Then, the light is output from the other window to the outside of the laser chamber, reflected by the other resonator, and input from the other window to the inside of the laser chamber. In this way, light reciprocates between the resonators and is amplified in the laser chamber. Laser light is output outside the resonator.

レーザガスの励起方法としては放電が利用されている。図5に示すように、レーザチャンバ1内にはレーザガスを放電によって励起する一対の主放電電極2、3が設けられている。一対の主放電電極2、3は互いの長手方向が平行になるように且つ互いの放電面が所定距離だけ離間して対向するように配置されている。この一対の主放電電極2、3間に高電圧が印加され、電圧がある値(ブレークダウン電圧)に達すると、主放電電極2、3間のレーザガスが絶縁破壊する。すると主放電電極2、3間で主放電が発生し、レーザガスが励起される。   Discharge is used as a laser gas excitation method. As shown in FIG. 5, a pair of main discharge electrodes 2 and 3 are provided in the laser chamber 1 to excite laser gas by discharge. The pair of main discharge electrodes 2 and 3 are arranged so that their longitudinal directions are parallel to each other and their discharge surfaces are spaced apart from each other by a predetermined distance. When a high voltage is applied between the pair of main discharge electrodes 2 and 3 and the voltage reaches a certain value (breakdown voltage), the laser gas between the main discharge electrodes 2 and 3 breaks down. Then, a main discharge is generated between the main discharge electrodes 2 and 3, and the laser gas is excited.

主放電電極2、3の近傍には、この主放電電極2、3の長手方向に並行して予備電離電極10が配置されている。予備電離電極10は、パイプ状の誘電体11と、誘電体11の内周面側で誘電体11の長手方向に沿う内電極12と、誘電体11の外周面側で誘電体11の長手方向に沿う外電極13と、を有する。内電極12に高電圧が印加されると、誘電体11と外電極13の接触部を起点にして誘電体11の外周面にコロナ放電が発生する。このコロナ放電によって主放電電極2、3間のレーザガスが予備電離され、主放電が生じ易くなる。 In the vicinity of the main discharge electrodes 2 and 3, a preionization electrode 10 is arranged in parallel with the longitudinal direction of the main discharge electrodes 2 and 3. The preliminary ionization electrode 10 includes a pipe-shaped dielectric 11, an inner electrode 12 along the longitudinal direction of the dielectric 11 on the inner peripheral surface side of the dielectric 11, and a longitudinal direction of the dielectric 11 on the outer peripheral surface side of the dielectric 11. And an outer electrode 13 extending along the line. When a high voltage is applied to the inner electrode 12, corona discharge is generated on the outer peripheral surface of the dielectric 11 starting from the contact portion between the dielectric 11 and the outer electrode 13. This corona discharge preliminarily ionizes the laser gas between the main discharge electrodes 2 and 3 and the main discharge is likely to occur.

ガスレーザ装置はこうした予備電離及び主放電を繰り返すことによってパルス状のレーザ光を出力する。現在、半導体露光に使用されるレーザ光の繰り返し周波数は約2kHzから約4kHzに移行している。   The gas laser device outputs pulsed laser light by repeating such preliminary ionization and main discharge. Currently, the repetition frequency of laser light used for semiconductor exposure is shifted from about 2 kHz to about 4 kHz.

ここで、主放電電極2、3の形状、予備電離電極10の構造及び両者の配置をさらに説明する。
図6は主放電電極及び従来の予備電離電極を示している。図6で示されているのは、主放電電極に関しては長手方向及び放電方向と平行し中心軸を通る断面の形状であり、予備電離電極に関しては長手方向と平行し中心軸を通る断面の構造である。なお、図6は、主放電電極と予備電離電極の長手方向すなわち図面左右方向の相対的な位置を示すものであって、図面上下方向及び前後方向の相対的な位置を示すものではない。
Here, the shape of the main discharge electrodes 2 and 3, the structure of the preionization electrode 10, and the arrangement of both will be further described.
FIG. 6 shows a main discharge electrode and a conventional preionization electrode. FIG. 6 shows the shape of the cross section passing through the central axis parallel to the longitudinal direction and the discharge direction with respect to the main discharge electrode, and the structure of the cross section passing through the central axis parallel to the longitudinal direction with respect to the preionization electrode. It is. FIG. 6 shows the relative positions in the longitudinal direction of the main discharge electrode and the preionization electrode, that is, the horizontal direction in the drawing, and does not show the relative positions in the vertical direction and the front-back direction in the drawing.

図6で示すように、主放電電極2、3は、長手方向に対して放電面が平坦である平坦部2f、3fと、この平坦部2f、3fの両側にあって長手方向端部ほど厚みが薄くなるようにに放電面が傾斜する傾斜部2s、3sと、からなる。傾斜部2s、3sが形成される理由は、主放電空間(主放電電極2、3間)の長手方向両端に所謂放電の逃げの領域をつくるためである。この放電の逃げの領域を作ることによって、電界強度は主放電空間端部に進むにつれて緩やかに減衰することになり、主放電も主放電空間端部側に進むにつれて緩やかに減衰する。その結果、アークやストリーマなどの異常放電を起こすことなく、安定した放電が作られる。   As shown in FIG. 6, the main discharge electrodes 2 and 3 have flat portions 2f and 3f whose discharge surfaces are flat with respect to the longitudinal direction, and thicknesses on both sides of the flat portions 2f and 3f toward the longitudinal ends. The slopes 2s and 3s are inclined so that the discharge surface is slanted. The reason why the inclined portions 2s and 3s are formed is to create so-called discharge escape regions at both ends in the longitudinal direction of the main discharge space (between the main discharge electrodes 2 and 3). By creating this discharge escape region, the electric field intensity gradually attenuates as it advances toward the main discharge space end, and the main discharge also attenuates gradually as it advances toward the main discharge space end. As a result, a stable discharge can be produced without causing an abnormal discharge such as an arc or streamer.

図6で示すように、予備電離電極10の外電極13は、主放電電極2、3の長さと同じ、若しくは主放電電極2、3の長さよりも長い。また、内電極12は大部分が径φ1の大径部で占められるが、端部付近で縮径し、端部付近が径φ2の小径部になる。内電極12の小径部の外周側であって誘電体11の両端にはパイプ状の絶縁用セラミック14が誘電体11及び内電極12と同軸となるように埋設されている。この絶縁用セラミック14によって内電極12とレーザチャンバの内壁面との絶縁が確保される。 As shown in FIG. 6, the outer electrode 13 of the preliminary ionization electrode 10 is the same as the length of the main discharge electrodes 2 and 3 or longer than the length of the main discharge electrodes 2 and 3. Further, most of the inner electrode 12 is occupied by the large diameter portion having the diameter φ1, but the diameter is reduced near the end portion, and the vicinity of the end portion becomes a small diameter portion having the diameter φ2. A pipe-like insulating ceramic 14 is embedded on both ends of the dielectric 11 on the outer peripheral side of the small diameter portion of the inner electrode 12 so as to be coaxial with the dielectric 11 and the inner electrode 12. The insulating ceramic 14 ensures insulation between the inner electrode 12 and the inner wall surface of the laser chamber.

予備電離の領域は外電極13の配置に応じて決まる。すなわち、外電極13が存在する部分では予備電離が発生し、外電極13が存在しない部分では予備電離が発生しない。一般に予備電離の強度は放電の逃げの領域を含む主放電空間一帯にわたって一定にされているために、図6に示すように、外電極13の長さは主電極2、3の長さと同等若しくは長くされている。   The preionization region is determined according to the arrangement of the outer electrode 13. That is, preliminary ionization occurs in a portion where the outer electrode 13 exists, and no preliminary ionization occurs in a portion where the outer electrode 13 does not exist. In general, since the intensity of preionization is constant over the entire main discharge space including the discharge escape region, the length of the outer electrode 13 is equal to the length of the main electrodes 2 and 3 as shown in FIG. Have been long.

ところで、近年はスループットの増加や露光量のバラツキ減少のために、さらなる繰り返し周波数の増加やレーザ光の高出力化が望まれている。現在、繰り返し周波数は約6kHz以上の実現化が研究されている。またレーザ光の高出力化のためには、2つのチャンバを備えたダブルチャンバ式レーザ装置が開発されている。ダブルチャンバ式レーザ装置は、レーザ光を出力する発振段と、発振段から出力されたレーザ光をさらに増幅して出力する増幅段とを備える。発振段と増幅段はそれぞれ主放電電極と予備電離電極とを有するレーザチャンバ(発振用チャンバ、増幅用チャンバ)を備える。   By the way, in recent years, in order to increase throughput and reduce variations in exposure amount, further increase in repetition frequency and higher output of laser light are desired. Currently, the realization of a repetition frequency of about 6 kHz or more is being studied. In order to increase the output of laser light, a double chamber type laser apparatus having two chambers has been developed. The double chamber laser device includes an oscillation stage that outputs laser light and an amplification stage that further amplifies and outputs laser light output from the oscillation stage. Each of the oscillation stage and the amplification stage includes a laser chamber (oscillation chamber, amplification chamber) having a main discharge electrode and a preionization electrode.

ダブルチャンバ式レーザ装置の方式としては、増幅段における増幅の手段が異なるMOPO方式とMOPA方式の2種類が知られている。MOPOは、Master Oscillator, Power Oscillatorの略であり、インジェクションロック方式とも呼ばれる。この方式では増幅用チャンバを間に挟んで共振器が設けられ、レーザ光が増幅用チャンバを複数回通過して増幅される。MOPAは、Master Oscillator, Power Amplifierの略である。この方式では増幅用チャンバを間に挟んで共振器が設けられず、レーザ光が増幅用チャンバを1回又は2回通過して増幅される。   There are two known types of double-chamber laser devices, the MOPO method and the MOPA method, which have different amplification means in the amplification stage. MOPO is an abbreviation for Master Oscillator and Power Oscillator, and is also called an injection lock system. In this system, a resonator is provided with an amplification chamber interposed therebetween, and laser light passes through the amplification chamber a plurality of times and is amplified. MOPA is an abbreviation for Master Oscillator and Power Amplifier. In this system, a resonator is not provided with an amplification chamber interposed therebetween, and laser light is amplified by passing through the amplification chamber once or twice.

しかしながら、ダブルチャンバ式レーザ装置において繰り返し周波数を6kHz程度まで増加させたところ、増幅段チャンバで異常な放電が発生することが解った。放電状態の悪化はレーザ光の品質の悪化を招き、半導体の露光に悪影響を及ぼすため、異常な放電を防止する必要がある。   However, when the repetition frequency was increased to about 6 kHz in the double chamber laser device, it was found that abnormal discharge occurred in the amplification stage chamber. Since the deterioration of the discharge state causes the deterioration of the quality of the laser beam and adversely affects the exposure of the semiconductor, it is necessary to prevent abnormal discharge.

本発明者は、繰り返し周波数の増加に伴い主放電空間端部で発生するアークやストリーマなどの不均一な放電が成長して主放電の安定性を損なわせることによって、異常な放電が発生するのではないかと考えた。本発明者の実験によると、特にパルス発振繰り返し数が4KHzを超える高繰り返しレーザ発振動作では、主放電電極端部付近で放電安定性が悪化することが解った。   The inventors have found that abnormal discharge occurs when non-uniform discharges such as arcs and streamers generated at the ends of the main discharge space grow as the repetition frequency increases and the stability of the main discharge is impaired. I thought that. According to the experiments by the present inventors, it was found that the discharge stability deteriorates in the vicinity of the end portion of the main discharge electrode, particularly in the high repetition laser oscillation operation in which the pulse oscillation repetition number exceeds 4 KHz.

異常な放電について、予備電離に関していえば次のようなことが考えられる。放電の逃げの領域では主放電を発生させることを意図していないものの、従来の構造では放電の逃げの領域を含む主放電空間一帯に同程度の強度の予備電離が発生するため、結果として放電の逃げの領域にも相当強度の主放電が発生する。さらに、放電の逃げの領域の主放電強度は本来の主放電強度に比べて弱い。このような電界強度の弱い部分に発生した放電は、電界強度の強い部分に発生した放電に比べて不安定である。そのため6KHzのような高繰り返し動作時には、アークやストリーマといった不均一放電に移行しやすくなる。したがって、放電の逃げの領域で発生する予備電離が、6KHzを超える高繰り返し動作時に放電の安定性を損なう原因となっている。 Regarding abnormal discharge, the following can be considered regarding preionization. Although it is not intended to generate the main discharge in the discharge escape region, the conventional structure generates pre-ionization with the same intensity in the entire main discharge space including the discharge escape region. The main discharge of considerable intensity also occurs in the escape area. Further, the main discharge intensity in the discharge escape region is weaker than the original main discharge intensity. A discharge generated in such a portion having a low electric field strength is more unstable than a discharge generated in a portion having a high electric field strength. Therefore, during a high repetition operation such as 6 KHz, it becomes easy to shift to non-uniform discharge such as an arc or streamer. Therefore, the preionization that occurs in the discharge escape region is a cause of impairing the stability of the discharge during a high repetitive operation exceeding 6 KHz.

そこで、本発明者は、電極端部付近の放電の逃げの領域等、端部処理を6KHz以上の高繰り返し動作に対して最適化する必要があり、予備電離領域を最適化することが最も有効であると考えた。   Therefore, the present inventor needs to optimize the end treatment for the high repetition operation of 6 KHz or more, such as the discharge escape region near the electrode end, and it is most effective to optimize the preionization region I thought.

本発明はこうした実状に鑑みてなされたものであり、主放電空間の長手方向両端付近における予備電離の強度分布を変えることによって、高周波・高出力のレーザ装置であっても異常な主放電が発生しないようにし、ひいては半導体露光を安定して行えるようにすることを目的とするものである。   The present invention has been made in view of such circumstances, and abnormal main discharge is generated even in a high-frequency / high-power laser device by changing the intensity distribution of preionization near both longitudinal ends of the main discharge space. Therefore, the object is to enable stable semiconductor exposure.

第1発明は、
パルス発振繰り返し数が4KHzを超えるガスレーザ装置のチャンバ内に備えられ、
パイプ状の誘電体(11)と、前記誘電体(11)の内周面側で当該誘電体(11)の長手方向に沿う内電極(12)と、前記誘電体(11)の外周面側で当該誘電体(11)の長手方向に沿う外電極(13)と、を有し、
長手方向に対して放電面が平坦である平坦部(2f、3f)と、この平坦部(2f、3f)の両側にあって長手方向端部ほど厚みが薄くなるように放電面が傾斜する傾斜部(2s、3s)と、からなる一対の主放電電極(2、3)の長手方向に並行して設けられるガスレーザ用予備電離電極において、
前記平坦部(2f、3f)の長手方向の長さをL1とし、
一対の主放電電極(2、3)の対向する平坦部(2f、3f)の間隔をD1とし、
一対の主放電電極(2、3)の対向する傾斜部(2s、3s)の間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔をD2とした場合に、
前記外電極(13)の長手方向の長さがL1以上、D2以下であること
を特徴とする。
The first invention is
Provided in a chamber of a gas laser device having a pulse oscillation repetition rate exceeding 4 KHz,
A pipe-shaped dielectric (11), an inner electrode (12) along the longitudinal direction of the dielectric (11) on the inner peripheral surface of the dielectric (11), and an outer peripheral surface of the dielectric (11) And an outer electrode (13) along the longitudinal direction of the dielectric (11),
A flat portion (2f, 3f) having a flat discharge surface with respect to the longitudinal direction, and an inclination at which the discharge surface is inclined so as to be thinner at both ends of the flat portion (2f, 3f) in the longitudinal direction. In the preliminary ionization electrode for gas laser provided in parallel with the longitudinal direction of the pair of main discharge electrodes (2, 3) consisting of a portion (2s, 3s),
The length of the flat portion (2f, 3f) in the longitudinal direction is L1,
The distance between the opposing flat portions (2f, 3f) of the pair of main discharge electrodes (2, 3) is D1,
Between the position on one side in the longitudinal direction and the position on the other side where the distance between the inclined portions (2s, 3s) facing the pair of main discharge electrodes (2, 3) is any value of 1.1D1 to 1.2D1 When the interval is D2,
The length of the outer electrode (13) in the longitudinal direction is not less than L1 and not more than D2.

第2発明は、第1発明において、
長手方向と直交する断面の形状が前記外電極(13)の形状と略同一であって、当該外電極(13)の長手方向端部に当接し、また前記誘電体(11)の外周面に当接するレーザガス整流用の誘電体(15、16)を有すること
を特徴とする。
The second invention is the first invention,
The shape of the cross section orthogonal to the longitudinal direction is substantially the same as the shape of the outer electrode (13), which is in contact with the longitudinal end of the outer electrode (13) and on the outer peripheral surface of the dielectric (11). It has a dielectric (15, 16) for laser gas rectification that abuts.

従来は予備電離電極のうちの外電極の長さは主放電電極の長さと等しか若しくは長かったが、第1発明の外電極13の長さは主放電電極2、3の長さよりも短い。具体的には、主放電電極2、3の平坦部2f、3fの長手方向の長さをL1とし、互いに対向する平坦部2f、3fの間隔をD1とし、互いに対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔をD2とした場合に、外電極13の長さはL1以上、D2以下である。 Conventionally, the length of the outer electrode of the preionized electrodes is equal to or longer than the length of the main discharge electrode, but the length of the outer electrode 13 of the first invention is shorter than the length of the main discharge electrodes 2 and 3. Specifically, the length of the flat portions 2f and 3f of the main discharge electrodes 2 and 3 in the longitudinal direction is L1, the interval between the flat portions 2f and 3f facing each other is D1, and the inclined portions 2s and 3s facing each other are arranged. When the distance between the position on the one side in the longitudinal direction and the position on the other side where the distance is any value between 1.1D1 and 1.2D1 is D2, the length of the outer electrode 13 is not less than L1 and not more than D2. is there.

また、第2発明では、従来外電極が存在していた部分にレーザガス整流用の誘電体15、16が設けられる。外電極はレーザガスの流路を形成するものでもあるが、外電極が短くなることによってレーザガスの流路が一部欠落することになる。レーザガス整流用の誘電体15、16はこの欠落する流路を補填するものである。   In the second invention, the dielectrics 15 and 16 for laser gas rectification are provided in the portion where the conventional outer electrode is present. Although the outer electrode also forms a laser gas flow path, the laser gas flow path is partially lost by shortening the outer electrode. The dielectrics 15 and 16 for laser gas rectification make up for the missing flow path.

第3発明は、
パルス発振繰り返し数が4KHzを超えるガスレーザ装置のチャンバ内に備えられ、
パイプ状の誘電体(11)と、前記誘電体(11)の内周面側で当該誘電体(11)の長手方向に沿う内電極(12)と、前記誘電体(11)の外周面側で当該誘電体(11)の長手方向に沿う外電極(13)と、を有し、
長手方向に対して放電面が平坦である平坦部(2f、3f)と、この平坦部(2f、3f)の両側にあって長手方向端部ほど厚みが薄くなるように放電面が傾斜する傾斜部(2s、3s)と、からなる一対の主放電電極(2、3)の長手方向に並行して設けられるガスレーザ用予備電離電極において、
前記内電極(12)は大径部と当該大径部の両側に位置する小径部とを有し、
前記平坦部(2f、3f)の長手方向の長さをL1とし、
一対の主放電電極(2、3)の対向する平坦部(2f、3f)の間隔をD1とし、
一対の主放電電極(2、3)の対向する傾斜部(2s、3s)の間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔をD2とした場合に、
前記内電極(12)の大径部の長手方向の長さがL1以上、D2以下であること
を特徴とする。
The third invention is
Provided in a chamber of a gas laser device having a pulse oscillation repetition rate exceeding 4 KHz,
A pipe-shaped dielectric (11), an inner electrode (12) along the longitudinal direction of the dielectric (11) on the inner peripheral surface of the dielectric (11), and an outer peripheral surface of the dielectric (11) And an outer electrode (13) along the longitudinal direction of the dielectric (11),
A flat portion (2f, 3f) having a flat discharge surface with respect to the longitudinal direction, and an inclination at which the discharge surface is inclined so as to be thinner at both ends of the flat portion (2f, 3f) in the longitudinal direction. In the preliminary ionization electrode for gas laser provided in parallel with the longitudinal direction of the pair of main discharge electrodes (2, 3) consisting of a portion (2s, 3s),
The inner electrode (12) has a large diameter portion and small diameter portions located on both sides of the large diameter portion,
The length of the flat portion (2f, 3f) in the longitudinal direction is L1,
The distance between the opposing flat portions (2f, 3f) of the pair of main discharge electrodes (2, 3) is D1,
Between the position on one side in the longitudinal direction and the position on the other side where the distance between the inclined portions (2s, 3s) facing the pair of main discharge electrodes (2, 3) is any value of 1.1D1 to 1.2D1 When the interval is D2,
The length in the longitudinal direction of the large diameter portion of the inner electrode (12) is not less than L1 and not more than D2.

従来は予備電離電極のうちの内電極の大径部の長さは主放電電極の長さと等しか若しくは長かったが、第3発明の内電極12の大径部の長さは主放電電極2、3の長さよりも短い。具体的には、主放電電極2、3の平坦部2f、3fの長手方向の長さをL1とし、互いに対向する平坦部2f、3fの間隔をD1とし、互いに対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔をD2とした場合に、内電極12の大径部の長さはL1以上、D2以下である。 Conventionally, the length of the large-diameter portion of the inner electrode of the preionized electrodes is equal to or longer than the length of the main discharge electrode. However, the length of the large-diameter portion of the inner electrode 12 of the third invention is the main discharge electrode 2. Shorter than 3. Specifically, the length of the flat portions 2f and 3f of the main discharge electrodes 2 and 3 in the longitudinal direction is L1, the interval between the flat portions 2f and 3f facing each other is D1, and the inclined portions 2s and 3s facing each other are arranged. When the distance between the position on the one side in the longitudinal direction and the position on the other side where the distance is any value between 1.1D1 and 1.2D1 is D2, the length of the large diameter portion of the inner electrode 12 is L1 or more. , D2 or less.

第1発明によれば、従来よりも外電極が短いため、主放電電極両端部付近の予備電離強度が大幅に減少するに伴い、主放電空間の長手方向端部での主放電も大幅に減少する。したがって、パルス発振繰り返し数が6KHz以上の高繰り返し動作が行われても異常な放電を抑制し放電の安定性を向上させることができるため、半導体露光を安定して行えるようになる。   According to the first invention, since the outer electrode is shorter than the conventional one, the main discharge at the longitudinal end of the main discharge space is also greatly reduced as the preionization intensity near both ends of the main discharge electrode is greatly reduced. To do. Therefore, even if a high repetition operation with a pulse oscillation repetition rate of 6 KHz or more is performed, abnormal discharge can be suppressed and discharge stability can be improved, so that semiconductor exposure can be performed stably.

第3発明によれば、従来よりも内電極の大径部が短いため、主放電電極両端部付近の予備電離強度が大幅に減少するに伴い、主放電空間の長手方向端部での主放電も大幅に減少する。したがって、パルス発振繰り返し数が6KHz以上の高繰り返し動作が行われても異常な放電を抑制し放電の安定性を向上させることができるため、半導体露光を安定して行えるようになる。   According to the third invention, since the large-diameter portion of the inner electrode is shorter than before, the main discharge at the longitudinal end portion of the main discharge space is greatly reduced as the preionization intensity in the vicinity of both ends of the main discharge electrode is greatly reduced. Is also significantly reduced. Therefore, even if a high repetition operation with a pulse oscillation repetition rate of 6 KHz or more is performed, abnormal discharge can be suppressed and discharge stability can be improved, so that semiconductor exposure can be performed stably.

以下、本発明の実施の形態について図面を参照して説明する。
なお、以下の各実施形態では、約6kHz以上の高繰り返し数で発振するダブルチャンバ式レーザ装置の増幅段に具えられる主放電電極及び予備電離電極を想定している。また各実施形態の説明で使用する「長手方向」というのは、主放電電極及び予備電離電極の長手方向のことをいう。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following embodiments, a main discharge electrode and a preionization electrode provided in an amplification stage of a double chamber laser apparatus that oscillates at a high repetition rate of about 6 kHz or more are assumed. The “longitudinal direction” used in the description of each embodiment refers to the longitudinal direction of the main discharge electrode and the preionization electrode.

主放電電極間の予備電離強度は、予備電離電極のうちの外電極の形態に影響を受ける。第1の実施形態は外電極の形態に関するものである。   The preionization intensity between the main discharge electrodes is affected by the form of the outer electrode among the preionization electrodes. The first embodiment relates to the form of the outer electrode.

図1は主放電電極及び第1の実施形態に係る予備電離電極を示している。図1で示されているのは、主放電電極に関しては長手方向及び放電方向と平行し中心軸を通る断面の形状であり、予備電離電極に関しては長手方向と平行し中心軸を通る断面の構造である。なお、図1は、主放電電極と予備電離電極の長手方向すなわち図面左右方向の相対的な位置を示すものであって、図面上下方向及び前後方向の相対的な位置を示すものではない。   FIG. 1 shows a main discharge electrode and a preionization electrode according to the first embodiment. FIG. 1 shows a cross-sectional shape that passes through the central axis parallel to the longitudinal direction and the discharge direction for the main discharge electrode, and a cross-sectional structure that passes through the central axis parallel to the longitudinal direction for the preionization electrode. It is. FIG. 1 shows the relative positions in the longitudinal direction of the main discharge electrode and the preionization electrode, that is, the horizontal direction in the drawing, and does not show the relative positions in the vertical direction and the front-back direction in the drawing.

図1に示す第1の実施形態に係る主放電電極の各構成要素と図6に示す従来の主放電電極の各構成要素は同じである。このため、図1に示す主放電電極の各構成要素には、図6に示す主放電電極の各構成要素と同一の符号を付す。また、図1に示す第1の実施形態に係る予備電離電極の各構成要素と図6に示す従来の予備電離電極の各構成要素は長さ等の一部要素を除いて同じである。このため、図1に示す予備電離電極の各構成要素には、図6に示す予備電離電極の各構成要素と同一の符号を付す。すなわち、予備電離電極10は、パイプ状の誘電体11と、誘電体11の内周面側で誘電体11の長手方向に沿う内電極12と、誘電体11の外周面側で誘電体11の長手方向に沿う外電極13と、を有する。また図示しないが、誘電体11及び内電極12と同軸となるように誘電体11の両端に埋設されるパイプ状の絶縁用セラミックを有する。   Each component of the main discharge electrode according to the first embodiment shown in FIG. 1 is the same as each component of the conventional main discharge electrode shown in FIG. For this reason, each component of the main discharge electrode shown in FIG. 1 is assigned the same reference numeral as each component of the main discharge electrode shown in FIG. Further, the constituent elements of the preionization electrode according to the first embodiment shown in FIG. 1 and the constituent elements of the conventional preionization electrode shown in FIG. 6 are the same except for some elements such as the length. For this reason, each component of the preionization electrode shown in FIG. 1 is assigned the same reference numeral as each component of the preionization electrode shown in FIG. That is, the preliminary ionization electrode 10 includes a pipe-shaped dielectric 11, an inner electrode 12 along the longitudinal direction of the dielectric 11 on the inner peripheral surface side of the dielectric 11, and the dielectric 11 on the outer peripheral surface side of the dielectric 11. And an outer electrode 13 along the longitudinal direction. Although not shown in the figure, it has a pipe-like insulating ceramic embedded in both ends of the dielectric 11 so as to be coaxial with the dielectric 11 and the inner electrode 12.

ここで、本実施形態の説明で使用する各部の長さ及び基準とする平面を定義する。
L1:平坦部2f、3fの長手方向の長さ。
D1:一対の主放電電極2、3の対向する平坦部2f、3fの間隔。
D2:一対の主放電電極2、3の対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔。
P1:主放電電極2、3の長手方向と直交し且つ主放電電極2、3の平坦部2f、3fの一端部2fa、3faが位置する仮想の平面。
P2:主放電電極2、3の長手方向と直交し且つ主放電電極2、3の平坦部2f、3fの他端部2fb、3fbが位置する仮想の平面。
P3:一対の主放電電極2、3の対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置を含む仮想の平面。
P4:一対の主放電電極2、3の対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向他方側の位置を含む仮想の平面。
Here, the length of each part used in the description of the present embodiment and the reference plane are defined.
L1: Length in the longitudinal direction of the flat portions 2f and 3f.
D1: A distance between the flat portions 2f and 3f facing each other of the pair of main discharge electrodes 2 and 3.
D2: A distance between a position on one side in the longitudinal direction and a position on the other side where the distance between the opposed inclined portions 2s, 3s of the pair of main discharge electrodes 2, 3 is any value of 1.1D1 to 1.2D1 .
P1: An imaginary plane that is orthogonal to the longitudinal direction of the main discharge electrodes 2 and 3 and on which one end portions 2fa and 3fa of the flat portions 2f and 3f of the main discharge electrodes 2 and 3 are located.
P2: An imaginary plane orthogonal to the longitudinal direction of the main discharge electrodes 2 and 3 and where the other end portions 2fb and 3fb of the flat portions 2f and 3f of the main discharge electrodes 2 and 3 are located.
P3: An imaginary plane including a position on one side in the longitudinal direction in which the interval between the inclined portions 2s, 3s facing each other of the pair of main discharge electrodes 2, 3 is any value of 1.1D1 to 1.2D1 .
P4: An imaginary plane including a position on the other side in the longitudinal direction in which the interval between the inclined portions 2s, 3s facing each other of the pair of main discharge electrodes 2, 3 is any value of 1.1D1 to 1.2D1 .

図1に示すように、外電極13の一端部13aは平面P1と平面P3の間に位置し、外電極13の他端部13bは平面P2と平面P4の間に位置する。平面P1と平面P2の間隔は、主放電電極2、3の平坦部2f、3fの長さL1と等しく、平面P2と平面P4の間隔は、主放電電極2、3の対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔D2そのものである。つまり外電極13の長手方向の長さはL1以上、D2以下である。 As shown in FIG. 1, one end 13a of the outer electrode 13 is located between the plane P1 and the plane P3, and the other end 13b of the outer electrode 13 is located between the plane P2 and the plane P4. The interval between the plane P1 and the plane P2 is equal to the length L1 of the flat portions 2f and 3f of the main discharge electrodes 2 and 3, and the interval between the plane P2 and the plane P4 is the inclined portion 2s facing the main discharge electrodes 2 and 3, This is the distance D2 itself between the position on the one side in the longitudinal direction and the position on the other side in which the distance of 3s takes any value between 1.1D1 and 1.2D1 . That is, the length of the outer electrode 13 in the longitudinal direction is not less than L1 and not more than D2.

また、本実施形態の予備電離電極10は、長手方向と直交する断面の形状が外電極13の形状と略同一であって、外電極13の一端部13aに当接し且つ誘電体11の外周面に当接するレーザガス整流用の誘電体15と、外電極13の他端部13aに当接し且つ誘電体11の外周面に当接するレーザガス整流用の誘電体16と、を有する。   In addition, the preionization electrode 10 of the present embodiment has a cross-sectional shape orthogonal to the longitudinal direction substantially the same as the shape of the outer electrode 13, is in contact with one end portion 13 a of the outer electrode 13, and is an outer peripheral surface of the dielectric 11. And a laser gas rectifying dielectric 16 in contact with the other end 13 a of the outer electrode 13 and in contact with the outer peripheral surface of the dielectric 11.

この誘電体15、16について説明する。
図1に示すように、主放電電極2、3の長さよりも外電極13の長さは短い。このような構成では主放電電極2、3間の端部付近でレーザガス流が乱れ、レーザガス流の均一性が低下する。ガス放電を励起源とするレーザでは、放電に使用されたガスが次の放電に影響を与えないようにするために、主放電空間のレーザガスを放電後に速やかに置換する必要があり、主放電電極間に高速のレーザガス流を発生させている。図5から解るように、外電極13には、予備電離を起こす役目があると共に、パイプ状の誘電体11と主放電電極3との間にレーザガスの流路を形成し、レーザガス流をスムースにするという役目もある。外電極13を短くすると主放電電極3と誘電体11との間にレーザガス流路が一部欠落することになり、レーザガスに乱れが生じレーザガスがスムースに流れなくなる。
The dielectrics 15 and 16 will be described.
As shown in FIG. 1, the length of the outer electrode 13 is shorter than the length of the main discharge electrodes 2 and 3. In such a configuration, the laser gas flow is disturbed near the end portion between the main discharge electrodes 2 and 3, and the uniformity of the laser gas flow is reduced. In a laser using a gas discharge as an excitation source, it is necessary to replace the laser gas in the main discharge space immediately after the discharge in order to prevent the gas used for the discharge from affecting the next discharge. A high-speed laser gas flow is generated between them. As can be seen from FIG. 5, the outer electrode 13 has a role of causing preionization, and a laser gas flow path is formed between the pipe-shaped dielectric 11 and the main discharge electrode 3, so that the laser gas flow is smooth. There is also a role to do. If the outer electrode 13 is shortened, a part of the laser gas flow path is lost between the main discharge electrode 3 and the dielectric 11, and the laser gas is disturbed and the laser gas does not flow smoothly.

主放電電極2、3の端部では特に放電が不安定になり易いので、主放電電極2、3の端部付近でのガス流速低下を避けることが望ましい。そこで、本実施形態では外電極13を短くすると共に、外電極13の長手方向両側に長手方向に直交する断面形状が外電極13の断面形状と一致する誘電体15、16を配置することにした。誘電体15、16はレーザガスの汚染を避けるためにアルミナセラミックス等のセラミックス材で構成することが望ましい。   Since the discharge tends to become unstable particularly at the ends of the main discharge electrodes 2 and 3, it is desirable to avoid a decrease in gas flow rate near the ends of the main discharge electrodes 2 and 3. Therefore, in the present embodiment, the outer electrode 13 is shortened, and the dielectrics 15 and 16 whose cross-sectional shape orthogonal to the longitudinal direction coincides with the cross-sectional shape of the outer electrode 13 are arranged on both sides in the longitudinal direction of the outer electrode 13. . The dielectrics 15 and 16 are preferably composed of a ceramic material such as alumina ceramics in order to avoid contamination of the laser gas.

なお、主放電電極2、3の両端部付近の予備電離強度を大幅に減少させるということにのみ着目するのであれば、図2に示すように、外電極13の一端部13aが平面P1と平面P3との間に位置するようにし、また外電極13の他端部13bが平面P2と平面P4との間に位置するようにするのみでよく、外電極13の両側に誘電体を設けなくてもよい。   If attention is paid only to the fact that the preionization intensity in the vicinity of both ends of the main discharge electrodes 2 and 3 is significantly reduced, as shown in FIG. 2, the one end 13a of the outer electrode 13 is flat with the plane P1. It is only necessary to be positioned between P3 and the other end 13b of the outer electrode 13 is positioned between the plane P2 and the plane P4, and no dielectric is provided on both sides of the outer electrode 13. Also good.

本実施形態によれば、従来よりも外電極が短いため、主放電電極両端部付近の予備電離強度が大幅に減少するに伴い、主放電空間の長手方向端部での主放電も大幅に減少する。したがって、パルス発振繰り返し数が6KHz以上の高繰り返し動作が行われても異常な放電を抑制し放電の安定性を向上させることができるため、半導体露光を安定して行えるようになる。   According to the present embodiment, since the outer electrode is shorter than the conventional one, the main discharge at the longitudinal end of the main discharge space is also greatly reduced as the preionization intensity near both ends of the main discharge electrode is greatly reduced. To do. Therefore, even if a high repetition operation with a pulse oscillation repetition rate of 6 KHz or more is performed, abnormal discharge can be suppressed and discharge stability can be improved, so that semiconductor exposure can be performed stably.

主放電電極間の予備電離強度は、予備電離電極のうちの内電極の形態に影響を受ける。第2の実施形態は内電極の形態に関するものである。   The preionization intensity between the main discharge electrodes is affected by the form of the inner electrode among the preionization electrodes. The second embodiment relates to the form of the inner electrode.

図3は主放電電極及び第2の実施形態に係る予備電離電極を示している。図3で示されているのは、主放電電極に関しては長手方向及び放電方向と平行し中心軸を通る断面の形状であり、予備電離電極に関しては長手方向と平行し中心軸を通る断面の構造である。なお、図3は、主放電電極と予備電離電極の長手方向すなわち図面左右方向の相対的な位置を示すものであって、図面上下方向及び前後方向の相対的な位置を示すものではない。   FIG. 3 shows the main discharge electrode and the preionization electrode according to the second embodiment. FIG. 3 shows the shape of a cross section passing through the central axis parallel to the longitudinal direction and the discharge direction with respect to the main discharge electrode, and the structure of the cross section passing through the central axis parallel to the longitudinal direction with respect to the preionization electrode. It is. FIG. 3 shows the relative positions in the longitudinal direction of the main discharge electrode and the preliminary ionization electrode, that is, the horizontal direction in the drawing, and does not show the relative positions in the vertical direction and the front-back direction in the drawing.

図3に示す第2の実施形態に係る主放電電極の各構成要素と図6に示す従来の主放電電極の各構成要素は同じである。このため、図3に示す主放電電極の各構成要素には、図6に示す主放電電極の各構成要素と同一の符号を付す。また、図3に示す第2の実施形態に係る予備電離電極の各構成要素と図6に示す従来の予備電離電極の各構成要素は長さ等の一部要素を除いて同じである。このため、図3に示す予備電離電極の各構成要素には、図6に示す予備電離電極の各構成要素と同一の符号を付す。すなわち、予備電離電極10は、パイプ状の誘電体11と、誘電体11の内周面側で誘電体11の長手方向に沿う内電極12と、誘電体11の外周面側で誘電体11の長手方向に沿う外電極13と、誘電体11及び内電極12と同軸となるように誘電体11の両端に埋設されるパイプ状の絶縁用セラミック14と、を有する。   Each component of the main discharge electrode according to the second embodiment shown in FIG. 3 is the same as each component of the conventional main discharge electrode shown in FIG. For this reason, each component of the main discharge electrode shown in FIG. 3 is assigned the same reference numeral as each component of the main discharge electrode shown in FIG. Moreover, each component of the preionization electrode according to the second embodiment shown in FIG. 3 and each component of the conventional preionization electrode shown in FIG. 6 are the same except for some elements such as length. For this reason, each component of the preionization electrode shown in FIG. 3 is given the same reference numeral as each component of the preionization electrode shown in FIG. That is, the preliminary ionization electrode 10 includes a pipe-shaped dielectric 11, an inner electrode 12 along the longitudinal direction of the dielectric 11 on the inner peripheral surface side of the dielectric 11, and the dielectric 11 on the outer peripheral surface side of the dielectric 11. It has the outer electrode 13 along a longitudinal direction, and the pipe-shaped insulation ceramic 14 embed | buried under the both ends of the dielectric material 11 so that it may become coaxial with the dielectric material 11 and the inner electrode 12. FIG.

本実施形態の説明で使用する各部の長さ及び基準とする位置は、第1の実施形態と共通するものもあるが、ここで改めて定義する。
L1:平坦部2f、3fの長手方向の長さ。
D1:一対の主放電電極2、3の対向する平坦部2f、3fの間隔。
D2:一対の主放電電極2、3の対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔。
φ1:内電極12の大径部の径。
φ2:内電極12の小径部の径。
P1:主放電電極2、3の長手方向と直交し且つ主放電電極2、3の平坦部2f、3fの一端部2fa、3faが位置する仮想の平面。
P2:主放電電極2、3の長手方向と直交し且つ主放電電極2、3の平坦部2f、3fの他端部2fb、3fbが位置する仮想の平面。
P3:一対の主放電電極2、3の対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置を含む仮想の平面。
P4:一対の主放電電極2、3の対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向他方側の位置を含む仮想の平面。
The length of each part and the reference position used in the description of this embodiment are common to those of the first embodiment, but are defined here again.
L1: Length in the longitudinal direction of the flat portions 2f and 3f.
D1: A distance between the flat portions 2f and 3f facing each other of the pair of main discharge electrodes 2 and 3.
D2: A distance between a position on one side in the longitudinal direction and a position on the other side where the distance between the opposed inclined portions 2s, 3s of the pair of main discharge electrodes 2, 3 is any value of 1.1D1 to 1.2D1 .
φ1: The diameter of the large diameter portion of the inner electrode 12.
φ2: Diameter of the small diameter portion of the inner electrode 12.
P1: An imaginary plane that is orthogonal to the longitudinal direction of the main discharge electrodes 2 and 3 and on which one end portions 2fa and 3fa of the flat portions 2f and 3f of the main discharge electrodes 2 and 3 are located.
P2: An imaginary plane orthogonal to the longitudinal direction of the main discharge electrodes 2 and 3 and where the other end portions 2fb and 3fb of the flat portions 2f and 3f of the main discharge electrodes 2 and 3 are located.
P3: An imaginary plane including a position on one side in the longitudinal direction in which the interval between the inclined portions 2s, 3s facing each other of the pair of main discharge electrodes 2, 3 is any value of 1.1D1 to 1.2D1 .
P4: An imaginary plane including a position on the other side in the longitudinal direction in which the interval between the inclined portions 2s, 3s facing each other of the pair of main discharge electrodes 2, 3 is any value of 1.1D1 to 1.2D1 .

図3に示すように、内電極12の大径部の一端部12aは平面P1と平面P3との間に位置し、内電極12の大径部の他端部12bは平面P2と平面P4との間に位置する。平面P1と平面P2の間隔は、主放電電極2、3の平坦部2f、3fの長さL1と等しく、平面P2と平面P4の間隔は、主放電電極2、3の対向する傾斜部2s、3sの間隔が1.1D1〜1.2D1のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔D2そのものである。つまり内電極12の大径部の長手方向の長さはL1以上、D2以下である。 As shown in FIG. 3, one end portion 12a of the large-diameter portion of the inner electrode 12 is located between the plane P1 and the plane P3, and the other end portion 12b of the large-diameter portion of the inner electrode 12 is formed between the plane P2 and the plane P4. Located between. The interval between the plane P1 and the plane P2 is equal to the length L1 of the flat portions 2f and 3f of the main discharge electrodes 2 and 3, and the interval between the plane P2 and the plane P4 is the inclined portion 2s facing the main discharge electrodes 2 and 3, This is the distance D2 itself between the position on the one side in the longitudinal direction and the position on the other side in which the distance of 3s takes any value between 1.1D1 and 1.2D1 . That is, the length in the longitudinal direction of the large diameter portion of the inner electrode 12 is not less than L1 and not more than D2.

本実施形態によれば、従来よりも内電極の大径部が短いため、主放電電極両端部付近の予備電離強度が大幅に減少するに伴い、主放電空間の長手方向端部での主放電も大幅に減少する。したがって、パルス発振繰り返し数が6KHz以上の高繰り返し動作が行われても異常な放電を抑制し放電の安定性を向上させることができるため、半導体露光を安定して行えるようになる。   According to this embodiment, since the large-diameter portion of the inner electrode is shorter than in the prior art, the main discharge at the longitudinal ends of the main discharge space is greatly reduced as the preionization intensity near both ends of the main discharge electrode is greatly reduced. Is also significantly reduced. Therefore, even if a high repetition operation with a pulse oscillation repetition rate of 6 KHz or more is performed, abnormal discharge can be suppressed and discharge stability can be improved, so that semiconductor exposure can be performed stably.

第3の実施形態は外電極及び内電極の形態に関するものである。   The third embodiment relates to the form of the outer electrode and the inner electrode.

図4は主放電電極及び第3の実施形態に係る予備電離電極を示している。図4で示されているのは、主放電電極に関しては長手方向及び放電方向と平行し中心軸を通る断面の形状であり、予備電離電極に関しては長手方向と平行し中心軸を通る断面の構造である。なお、図4は、主放電電極と予備電離電極の長手方向すなわち図面左右方向の相対的な位置を示すものであって、図面上下方向及び前後方向の相対的な位置を示すものではない。   FIG. 4 shows the main discharge electrode and the preionization electrode according to the third embodiment. FIG. 4 shows the shape of a cross section passing through the central axis parallel to the longitudinal direction and the discharge direction with respect to the main discharge electrode, and the structure of the cross section passing through the central axis parallel to the longitudinal direction with respect to the preionization electrode. It is. FIG. 4 shows the relative positions in the longitudinal direction of the main discharge electrode and the preionization electrode, that is, the horizontal direction in the drawing, and does not show the relative positions in the vertical direction and the front-back direction in the drawing.

本実施形態は、図1、図2に示す第1の実施形態の外電極13と、図3に示す第2の実施形態の内電極12と、図1に示す誘電体15、16と、を組み合わせたものである。本実施形態は第1、第2の実施形態よりも主放電電極両端部付近の予備電離強度を減少させることができる。   This embodiment includes the outer electrode 13 of the first embodiment shown in FIGS. 1 and 2, the inner electrode 12 of the second embodiment shown in FIG. 3, and the dielectrics 15 and 16 shown in FIG. It is a combination. This embodiment can reduce the preionization intensity in the vicinity of both ends of the main discharge electrode, compared to the first and second embodiments.

本実施形態によれば、従来よりも内電極の大径部が短いため、主放電電極両端部付近の予備電離強度が大幅に減少するに伴い、主放電空間の長手方向端部での主放電も大幅に減少する。したがって、パルス発振繰り返し数が6KHz以上の高繰り返し動作が行われても異常な放電を抑制し放電の安定性を向上させることができるため、半導体露光を安定して行えるようになる。   According to this embodiment, since the large-diameter portion of the inner electrode is shorter than in the prior art, the main discharge at the longitudinal ends of the main discharge space is greatly reduced as the preionization intensity near both ends of the main discharge electrode is greatly reduced. Is also significantly reduced. Therefore, even if a high repetition operation with a pulse oscillation repetition rate of 6 KHz or more is performed, abnormal discharge can be suppressed and discharge stability can be improved, so that semiconductor exposure can be performed stably.

なお、各実施形態では、約6kHz以上の高繰り返し数で発振するダブルチャンバ式のレーザ装置の増幅段に予備電離電極10を適用することを想定しているが、予備電離電極10を発振段に適用してもよいし、シングルチャンバ式のレーザ装置に適用してもよい。また約6kHz以下で発振するレーザ装置に予備電離電極10を適用してもよい。パルス発振繰り返し数が4KHz以上であれば、異常な放電を抑制するという効果が得られる。 In each embodiment, it is assumed that the preliminary ionization electrode 10 is applied to the amplification stage of the double chamber type laser device that oscillates at a high repetition rate of about 6 kHz or more. However, the preliminary ionization electrode 10 is used as the oscillation stage. The present invention may be applied to a single chamber type laser apparatus. Further, the preionization electrode 10 may be applied to a laser device that oscillates at about 6 kHz or less. When the pulse oscillation repetition number is 4 KHz or more, an effect of suppressing abnormal discharge can be obtained.

図1は主放電電極及び第1の実施形態に係る予備電離電極を示す図である。FIG. 1 is a diagram showing a main discharge electrode and a preionization electrode according to the first embodiment. 図2は主放電電極及び第1の実施形態に係る予備電離電極の別形態を示す図である。FIG. 2 is a diagram showing another embodiment of the main discharge electrode and the preionization electrode according to the first embodiment. 図3は主放電電極及び第2の実施形態に係る予備電離電極を示す図である。FIG. 3 shows the main discharge electrode and the preionization electrode according to the second embodiment. 図4は主放電電極及び第3の実施形態に係る予備電離電極を示す図である。FIG. 4 is a view showing the main discharge electrode and the preionization electrode according to the third embodiment. 図5はレーザチャンバ内の構造を示す図である。FIG. 5 is a view showing the structure in the laser chamber. 図6は主放電電極及び従来の実施形態に係る予備電離電極を示す図である。FIG. 6 is a diagram showing a main discharge electrode and a preionization electrode according to a conventional embodiment.

符号の説明Explanation of symbols

2、3…主放電電極
2f、3f…平坦部
2s、3s…傾斜部
10…予備電離電極
11…誘電体
12…内電極
13…外電極
15、16…誘電体
2, 3 ... Main discharge electrode 2f, 3f ... Flat part 2s, 3s ... Inclined part 10 ... Preionization electrode 11 ... Dielectric 12 ... Inner electrode 13 ... Outer electrode 15, 16 ... Dielectric

Claims (1)

パルス発振繰り返し数が4kHzを越えるガスレーザ装置において、
ガスレーザ装置のチャンバ内に設けられた一対の主放電電極(2、3)であって、長手方向に対して放電面が平坦である平坦部(2f、3f)と、この平坦部(2f、3f)の両側にあって長手方向端部ほど厚みが薄くなるように放電面が傾斜する傾斜部(2s、3s)とからなる一対の主放電電極(2、3)と、
前記一対の主放電電極(2、3)の長手方向に並行して設けられたガスレーザ用予備電離電極(10)と
が備えられ、
前記ガスレーザ用予備電離電極(10)は、
パイプ状の誘電体(11)と、前記誘電体(11)の内周面側で当該誘電体(11)の長手方向に沿う内電極(12)と、前記誘電体(11)の外周面側で当該誘電体(11)の長手方向に沿う外電極(13)とを有し、
前記内電極(12)は大径部と当該大径部の両側に位置する小径部とを有し、
前記一対の主放電電極(2、3)の平坦部(2f、3f)の長手方向の長さをL1とし、
前記一対の主放電電極(2、3)の対向する平坦部(2f、3f)の間隔をD1とし、
前記一対の主放電電極(2、3)の対向する傾斜部(2s、3s)の間隔が1.1D1〜1.2D1の間のいずれかの値となる長手方向一方側の位置と他方側の位置との間隔をD2とした場合に、
前記内電極(12)の大径部の長手方向の長さがL1以上、D2以下になっており、
前記内電極(12)の長手方向の長さは、前記一対の主放電電極(2、3)の長手方向の長さよりも長くなっていること
を特徴とするガスレーザ装置。
In a gas laser device with a pulse oscillation repetition rate exceeding 4 kHz,
A pair of main discharge electrodes (2, 3) provided in the chamber of the gas laser device, the flat portions (2f, 3f) having a flat discharge surface in the longitudinal direction, and the flat portions (2f, 3f) ) And a pair of main discharge electrodes (2, 3) comprising inclined portions (2s, 3s) in which the discharge surface is inclined so that the thickness is thinner toward the end in the longitudinal direction;
A gas laser preionization electrode (10) provided in parallel with the longitudinal direction of the pair of main discharge electrodes (2, 3),
The gas laser preionization electrode (10) is:
A pipe-shaped dielectric (11), an inner electrode (12) along the longitudinal direction of the dielectric (11) on the inner peripheral surface of the dielectric (11), and an outer peripheral surface of the dielectric (11) And having an outer electrode (13) along the longitudinal direction of the dielectric (11),
The inner electrode (12) has a large diameter portion and small diameter portions located on both sides of the large diameter portion,
The length in the longitudinal direction of the flat portions (2f, 3f) of the pair of main discharge electrodes (2, 3) is L1,
The distance between the opposing flat portions (2f, 3f) of the pair of main discharge electrodes (2, 3) is D1,
The distance between the inclined portions (2s, 3s) facing the pair of main discharge electrodes (2, 3) is any value between 1.1D1 and 1.2D1, and the position on one side in the longitudinal direction and the other side When the distance from the position is D2,
The length in the longitudinal direction of the large diameter portion of the inner electrode (12) is not less than L1 and not more than D2.
The length of the longitudinal direction of the inner electrode (12) is longer than the length of the pair of main discharge electrodes (2, 3) in the longitudinal direction.
JP2006074664A 2006-03-17 2006-03-17 Preionization electrode for gas laser Active JP4818763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074664A JP4818763B2 (en) 2006-03-17 2006-03-17 Preionization electrode for gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074664A JP4818763B2 (en) 2006-03-17 2006-03-17 Preionization electrode for gas laser

Publications (2)

Publication Number Publication Date
JP2007250992A JP2007250992A (en) 2007-09-27
JP4818763B2 true JP4818763B2 (en) 2011-11-16

Family

ID=38594940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074664A Active JP4818763B2 (en) 2006-03-17 2006-03-17 Preionization electrode for gas laser

Country Status (1)

Country Link
JP (1) JP4818763B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197370A (en) * 1987-02-12 1988-08-16 Fujitsu Ltd Semiconductor device and its manufacturing method
JPH0716050B2 (en) * 1990-06-11 1995-02-22 株式会社東芝 Gas laser equipment
JP3910733B2 (en) * 1997-06-16 2007-04-25 株式会社小松製作所 Corona preionization electrode
JP2000058944A (en) * 1998-05-20 2000-02-25 Cymer Inc Highly reliable modular manufacture high-quality narrow band high repeat rate f2 laser
US6370174B1 (en) * 1999-10-20 2002-04-09 Cymer, Inc. Injection seeded F2 lithography laser
JP2001230473A (en) * 2000-02-17 2001-08-24 Ushio Inc Gas laser equipment
JP2003298155A (en) * 2002-04-03 2003-10-17 Gigaphoton Inc Pulse oscillation type discharge pumped laser device

Also Published As

Publication number Publication date
JP2007250992A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
US6430205B2 (en) Discharge unit for a high repetition rate excimer or molecular fluorine laser
JP2000236128A (en) Gas laser pre-ionization device
JP3399517B2 (en) Gas laser device that emits ultraviolet light
JPH04324986A (en) Discharge excitation pulse laser oscillation device
JP2003060270A (en) Pulse oscillation gas laser device
JPH06120592A (en) Laser device
JP4818763B2 (en) Preionization electrode for gas laser
US7215695B2 (en) Discharge excitation type pulse laser apparatus
JP4326172B2 (en) Low-pressure axial excitation type F2 laser device
JP3796038B2 (en) Gas laser oscillator
JP5454842B2 (en) High repetition rate high power excimer laser equipment
JP2009111313A (en) Cooling mechanism of preliminary ionization mechanism in discharge-excited gas laser apparatus
JP2874350B2 (en) Excimer laser equipment
JP4312395B2 (en) Axial pumped gas laser device and injection-locked gas laser device
JP3779031B2 (en) Corona preionization electrode
JPH06112554A (en) Laser device
JP4049347B2 (en) Discharge excitation laser equipment
JP4481298B2 (en) Control of spatial and temporal uniformity of pulsed gas laser beam
JP3159528B2 (en) Discharge pumped excimer laser device
JPH04268778A (en) Discharge excitation excimer laser device
JP2002151768A (en) Fluorine laser device for exposure
JP2006229136A (en) Pulse oscillation type discharge excitation laser equipment
JP2001230473A (en) Gas laser equipment
JPS61188982A (en) Discharge excitation type short pulse laser device
US20170214210A1 (en) Laser resonator with parasitic mode suppression

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250