JP4817749B2 - Method for producing high-strength galvannealed steel sheet with excellent workability - Google Patents
Method for producing high-strength galvannealed steel sheet with excellent workabilityInfo
- Publication number
- JP4817749B2 JP4817749B2 JP2005226362A JP2005226362A JP4817749B2 JP 4817749 B2 JP4817749 B2 JP 4817749B2 JP 2005226362 A JP2005226362 A JP 2005226362A JP 2005226362 A JP2005226362 A JP 2005226362A JP 4817749 B2 JP4817749 B2 JP 4817749B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- mass
- less
- steel sheet
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 47
- 239000010959 steel Substances 0.000 title claims description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000007747 plating Methods 0.000 claims description 79
- 238000001816 cooling Methods 0.000 claims description 14
- 238000000137 annealing Methods 0.000 claims description 13
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 9
- 239000008397 galvanized steel Substances 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 description 46
- 238000005275 alloying Methods 0.000 description 37
- 239000010410 layer Substances 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 229910052748 manganese Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 229910001562 pearlite Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910017135 Fe—O Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車,建築,電気機器等の部材として有用な高強度鋼板、特に加工性に優れた高強度の合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present invention relates to a method for producing a high-strength steel sheet useful as a member for automobiles, buildings, electrical equipment, and the like, particularly a high-strength galvannealed steel sheet having excellent workability.
合金化溶融亜鉛めっき鋼板は、耐食性,塗装性,塗装後密着性,溶接性に優れていることから、自動車用車体,家電製品を始めとする種々の分野で防錆鋼板として汎用されている。このような用途では、通常プレス成形により必要形状に加工して使用されることから,耐食性に加えて加工性に優れていることも重要である。
合金化溶融亜鉛めっき鋼板は、溶融Znめっきした後、加熱合金化処理することにより製造されている。加熱合金化処理には、一般にバーナ加熱方式,高周波誘導加熱方式,両者を併用する加熱方式等を採用した合金化処理炉が使用されている。
Alloyed hot-dip galvanized steel sheets are widely used as rust-proof steel sheets in various fields including automobile bodies and home appliances because they are excellent in corrosion resistance, paintability, adhesion after coating, and weldability. In such an application, since it is usually processed into a required shape by press molding, it is important to have excellent workability in addition to corrosion resistance.
The alloyed hot-dip galvanized steel sheet is manufactured by hot alloying after hot-dip Zn plating. For the heat alloying treatment, an alloying treatment furnace employing a burner heating method, a high frequency induction heating method, a heating method using both in combination, or the like is generally used.
特に、自動車車体を軽量化するため多用されるようになってきた合金化溶融亜鉛めっき高強度鋼板では、延性の小さな高張力鋼をめっき原板に使用していることから、プレス成形性に及ぼすめっき層表面の摺動性の影響が大きく、多量のζ相が残存するとめっき層の剥離だけでなく、板破断が発生し、プレス成形ができなくなることがある。
そこで、本発明者等は、特許文献1で、合金化熱処理時にζ相を残存させず、しかもΓ相の成長を抑制して加工性に優れた合金化溶融亜鉛めっき鋼板を得るために、めっき原板の表面に実質的にFeからなる層を形成した後、溶融Znめっきを施し、その後合金化熱処理することにより、δ1相,Γ1相及び層厚1μm以下のΓ相からなるめっき層を有する合金化溶融亜鉛めっき高強度鋼板を製造する方法を提案した。
In particular, alloyed hot-dip galvanized high-strength steel sheets that have come to be used frequently to reduce the weight of automobile bodies are made of high-tensile steel with low ductility. The effect of the slidability of the layer surface is great, and if a large amount of ζ phase remains, not only peeling of the plating layer but also plate breakage may occur, and press molding may not be possible.
Therefore, the inventors of the present invention disclosed in Patent Document 1 in order to obtain an alloyed hot-dip galvanized steel sheet that does not leave the ζ phase at the time of alloying heat treatment and suppresses the growth of the Γ phase and has excellent workability. After forming a layer consisting essentially of Fe on the surface of the original plate, by applying hot-dip Zn plating, and then alloying heat treatment, a plating layer consisting of δ 1 phase, Γ 1 phase and Γ phase with a layer thickness of 1 μm or less A method of manufacturing alloyed hot-dip galvanized high strength steel sheet was proposed.
同じく、本発明者等は、特許文献2で、溶融Znめっきを施す前のプレめっきとしてFe系のめっき層を形成しておくことにより、溶融Znめっき後の合金化処理温度を低くして鋼中におけるパーライトや炭化物の生成を抑制し、鋼材自身の機械的特性、特に延性の低下を抑えることを提案した。
ところで、特許文献1で提案した製造方法でζ相の生成・残存を防ぐためには、合金化熱処理を530℃以上の高い温度で行う必要があった。
しかしながら、特許文献1で示されたように、多量のSi、Mnを含有させた鋼板に溶融Znめっきした後、高温で合金加熱処理を施すと鋼板中にパーライトを形成するために、鋼板自身の強度及び伸びは著しく低下する。また、高い温度で合金加熱処理を施すためにめっき合金層にΓ相が形成しやすくなっている。
さらに、特許文献2で提案した、溶融Znめっきを施す前のプレめっきとしてFe系のめっき層を形成して合金化処理温度を低くする技術を採用しても、その後の合金加熱処理時にη−Zn相やζ相が出現しやすい。
By the way, in order to prevent the formation and remaining of the ζ phase in the manufacturing method proposed in Patent Document 1, it is necessary to perform the alloying heat treatment at a high temperature of 530 ° C. or higher.
However, as shown in Patent Document 1, in order to form pearlite in the steel sheet by hot-dip alloy plating at a high temperature after hot-dip Zn plating on a steel sheet containing a large amount of Si and Mn, Strength and elongation are significantly reduced. Further, since the alloy heat treatment is performed at a high temperature, a Γ phase is easily formed in the plated alloy layer.
Further, even if the technique proposed in Patent Document 2 for forming a Fe-based plating layer and reducing the alloying treatment temperature as the pre-plating before the hot-dip Zn plating is applied, η− Zn phase and ζ phase are likely to appear.
めっき合金層に、これらΓ相やη−Zn相,ζ相が出現すると、パウダリングやフレーキングを起してめっき鋼板の加工性を低下させる。
本発明は、このような問題を解消すべく案出されたものであり、多量のSi、Mnを含有する鋼板を原板として、プレFe系めっき及び溶融Znめっき、並びにその後に合金化熱処理する際、めっき原板の表面に形成するプレFe系めっき層を、Znめっき付着量とFe系めっき付着量を特定の関係で調整し、Si,Mnを含まないFeとZnのめっき層を合金化させて、高強度でしかも加工性に優れた合金化溶融亜鉛めっき鋼板を得ることを目的とする。
When these Γ phase, η-Zn phase, and ζ phase appear in the plated alloy layer, powdering and flaking are caused and workability of the plated steel sheet is lowered.
The present invention has been devised to solve such problems. When a steel plate containing a large amount of Si and Mn is used as a base plate, pre-Fe plating, hot-dip Zn plating, and subsequent alloying heat treatment are performed. The pre-Fe plating layer formed on the surface of the plating base plate is adjusted with a specific relationship between the Zn plating adhesion amount and the Fe plating adhesion amount, and the Fe and Zn plating layers not containing Si and Mn are alloyed. An object of the present invention is to obtain an galvannealed steel sheet having high strength and excellent workability.
本発明の加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法は、その目的を達成するため、C:0.05〜0.25質量%,Si:0.6〜2.0質量%,Mn:0.8〜3.0質量%を含み、残部:Fe及び不可避的不純物の組成をもつ鋼板にFe系めっきを施した後、700〜900℃で焼鈍し、その後、2〜200℃/秒の平均冷却速度で350〜500℃まで冷却し、その温度域に0〜20分保持しもしくは保持することなく、下記式(1)を満たす付着量で溶融Znめっきを施し、460〜530℃の温度域で2秒〜2分保持後、5℃/秒以上の冷却速度で250℃以下に冷却して、δ1相単相の合金化めっき層を形成することを特徴とする。
0.08≦[Fe付着量]/([Fe付着量]+[Zn付着量])≦0.15 ・・・(1)
In order to achieve the object, the method for producing a high-strength galvannealed steel sheet excellent in workability according to the present invention has C: 0.05 to 0.25 mass%, Si: 0.6 to 2.0 mass. %, Mn: 0.8 to 3.0% by mass, the remainder: Fe-based plating is applied to a steel sheet having a composition of Fe and inevitable impurities, and then annealed at 700 to 900 ° C., and thereafter 2 to 200 It cools to 350-500 degreeC with the average cooling rate of (degreeC) / second, and does not hold | maintain for 0 to 20 minutes in the temperature range, but does hot Zn plating with the adhesion amount which satisfy | fills following formula (1), 460- It is held at a temperature range of 530 ° C. for 2 seconds to 2 minutes, and then cooled to 250 ° C. or lower at a cooling rate of 5 ° C./second or more to form a δ 1 phase single phase alloyed plating layer.
0.08 ≦ [Fe adhesion amount] / ([Fe adhesion amount] + [Zn adhesion amount]) ≦ 0.15 (1)
鋼板としては、鋼中にさらにTi:0.04〜0.2質量%,Nb:0.003〜0.2質量%,V:0.5質量%以下の少なくとも1種以上、或いはB:0.01質量%以下,Mo:1.0質量%以下,Cr:1.0質量%以下,Ni:2.0質量%以下,Co:1.0質量%以下の少なくとも1種以上を含むものでも良い。 As the steel plate, at least one of Ti: 0.04 to 0.2% by mass, Nb: 0.003 to 0.2% by mass, V: 0.5% by mass or less, or B: 0 in steel. .01% by mass or less, Mo: 1.0% by mass or less, Cr: 1.0% by mass or less, Ni: 2.0% by mass or less, Co: 1.0% by mass or less good.
本発明で提供される高強度合金化溶融亜鉛めっき鋼板は、Mn,Siを含有する鋼板に合金化溶融Znめっきを施す際に、予めFe系のプレめっきを施したものにFe系めっき付着量とZnめっき付着量を所定の関係でコントロールしつつ溶融Znめっきを施しているので、めっき後の合金化熱処理を低温度域で行え、しかも合金化めっき層にΓ相,η−Zn相或いはζ相がない、δ1単相のめっき層を得ることができる。
このため、強度や伸びの低下がなく、しかも加工時にフレーキングやパウダリングを起すことのない、加工性に優れた溶融めっき鋼板を得ることができる。
The high strength alloyed hot dip galvanized steel sheet provided by the present invention is the amount of Fe-based plating applied to a pre-plated Fe-based material when alloyed hot-dip Zn plating is performed on a steel sheet containing Mn and Si. Since the hot-dip Zn plating is performed while controlling the adhesion amount of Zn and the Zn plating in a predetermined relationship, the alloying heat treatment after plating can be performed in a low temperature range, and the galvanized phase, η-Zn phase or ζ A δ 1 single-phase plating layer having no phase can be obtained.
For this reason, there can be obtained a hot-dip plated steel sheet that is free from strength and elongation, and that does not cause flaking or powdering during processing and has excellent workability.
本発明者等は、SiやMnを多量に含む鋼板を原板とした際の、溶融Znめっきとその後の合金化熱処理による鋼板の強度及び延性の低下が、高温の合金化温度を必要としたことにあること、合金化熱処理した後のめっき鋼板の加工性低下が、めっき層にΓ相,η−Zn相或いはζ相が出現したことにあることを見出し、その対策について種々検討を重ねてきた。 The inventors of the present invention, when using a steel plate containing a large amount of Si or Mn as a base plate, reduced the strength and ductility of the steel plate by hot-dip Zn plating and subsequent alloying heat treatment required a high alloying temperature. It has been found that the decrease in workability of the plated steel sheet after the heat treatment for alloying is that the Γ phase, η-Zn phase or ζ phase has appeared in the plating layer, and various measures have been studied for countermeasures. .
検討を重ねる過程で、溶融Znめっきを施す前のプレめっきとしてFe系のめっき層を形成しておくと、溶融Znめっき後の合金化処理温度を低く、あるいは溶融Znめっき時に合金化が行えて、Γ相を生成させることがなく、しかも鋼材自身の機械的特性、特に延性の低下を抑えることができることを見出した。
さらに、Fe系プレめっきを施す際のFe系めっき付着量をZnめっき付着量との関係で調整しておくと、表層に合金化を抑制するMnやSiが存在せず、しかも十分なFeが存在する層が形成され、合金化温度が低くてもη−Zn相やζ相を生成させずδ1相のみを形成する合金化熱処理が可能となることを見出した。
In the process of repeated examination, if an Fe-based plating layer is formed as pre-plating before applying hot-dip Zn plating, the alloying temperature after hot-dip Zn plating can be lowered, or alloying can be performed during hot-dip Zn plating. It has been found that the Γ phase is not generated, and that the mechanical properties of the steel material itself, in particular, the ductility can be suppressed.
Furthermore, if the Fe-based plating adhesion amount in performing Fe-based pre-plating is adjusted in relation to the Zn plating adhesion amount, there is no Mn or Si that suppresses alloying on the surface layer, and sufficient Fe is present. It has been found that an existing layer is formed, and even if the alloying temperature is low, alloying heat treatment that does not generate η-Zn phase or ζ phase and forms only δ 1 phase is possible.
以下にその詳細を説明する。
本発明で使用されるめっき原板としては、C:0.05〜0.25質量%,Si:0.6〜2.0質量%,Mn:0.8〜3.0質量%を含み、さらに必要に応じてTi:0.04〜0.2質量%,Nb:0.003〜0.2質量%,V:0.5質量%以下の少なくとも1種以上、或いはB:0.01質量%以下,Mo:1.0質量%以下,Cr:1.0質量%以下,Ni:2.0質量%以下,Co:1.0質量%以下の少なくとも1種以上を含み、残部がFe及び不可避的不純物からなるものが使用される。
なお、「%」表示は、特に示さない限り「質量%」を意味する。
Details will be described below.
The plating base plate used in the present invention includes C: 0.05 to 0.25% by mass, Si: 0.6 to 2.0% by mass, Mn: 0.8 to 3.0% by mass, If necessary, at least one of Ti: 0.04 to 0.2 mass%, Nb: 0.003 to 0.2 mass%, V: 0.5 mass% or less, or B: 0.01 mass% Hereinafter, at least one of Mo: 1.0 mass% or less, Cr: 1.0 mass% or less, Ni: 2.0 mass% or less, Co: 1.0 mass% or less, with the balance being Fe and inevitable Those made of mechanical impurities are used.
The “%” display means “mass%” unless otherwise specified.
C:0.05〜0.25%
Cは高強度化に有効である。0.05%未満ではその効果が得られない。またCは溶接性に大きな影響を与える元素でもあり、0.25%を超えると、鋼板のスポット溶接性が著しく低下する。
Si:0.6〜2.0%
Siは高強度化に有効な他、セメンタイトの析出を抑制する作用を有しており、鋼中のパーライト等の生成を抑える効果がある元素である。0.6%未満ではその効果が十分に発揮されない。また、2.0%を超える濃度にした場合、その効果が飽和するとともに、焼鈍時におけるSiの拡散現象が著しくなってFe系めっきを施しても表層にSi酸化膜層が形成してしまい、めっき密着性が低下する。
C: 0.05-0.25%
C is effective for increasing the strength. If it is less than 0.05%, the effect cannot be obtained. C is also an element having a great influence on weldability, and if it exceeds 0.25%, the spot weldability of the steel sheet is significantly lowered.
Si: 0.6-2.0%
In addition to being effective for increasing the strength, Si has an effect of suppressing the precipitation of cementite and is an element that has the effect of suppressing the formation of pearlite and the like in steel. If it is less than 0.6%, the effect is not sufficiently exhibited. In addition, when the concentration exceeds 2.0%, the effect is saturated, and the Si diffusion phenomenon becomes remarkable during annealing, and even if Fe-based plating is performed, a Si oxide film layer is formed on the surface layer. Plating adhesion decreases.
Mn:0.8〜3.0%
Mnは焼入れ性を向上させ、高強度化に有効な元素である。0.8%未満ではその効果が発揮されない。また、3.0%を超える濃度では、多量のマルテンサイト組織となり、伸びを著しく低下させる。
Mn: 0.8 to 3.0%
Mn is an element that improves hardenability and is effective in increasing strength. If it is less than 0.8%, the effect is not exhibited. On the other hand, if the concentration exceeds 3.0%, a large amount of martensite structure is formed, and the elongation is significantly reduced.
Ti:0.003〜0.2%
Nb:0.003〜0.2%
V:0.5%以下
Ti,Nb,Vは組織を微細化し、高強度化に有効である他、鋼板の穴拡げ性を向上させる作用を有している。Ti,Nbいずれの場合も、0.003%未満ではその効果が発揮されない。また、0.2%を超えると効果が飽和し、工業上のコストが高くなるだけである。Vも0.5%を超える濃度では、効果が飽和し、工業上のコストが高くなるだけである。
Ti: 0.003-0.2%
Nb: 0.003 to 0.2%
V: 0.5% or less Ti, Nb, and V are effective for increasing the strength by refining the structure and improving the hole expandability of the steel sheet. In both cases of Ti and Nb, the effect is not exhibited at less than 0.003%. On the other hand, if it exceeds 0.2%, the effect is saturated and the industrial cost is only increased. If the concentration of V exceeds 0.5%, the effect is saturated and the industrial cost only increases.
B:0.01%以下
Mo:1.0%以下
Cr:1.0%以下
Ni:2.0%以下
Co:1.0%以下
これらは、焼入れ性を向上させて高強度化するのに有効な元素である。1種もしくは2種以上を適宜添加できる。しかし、B:0.01%,Mo:1.0%,Cr:1.0%,Ni:2.0%,Co:1.0%を超えて添加してもかえって延性の低下が大きくなり、工業上のコストが高くなるだけである。
B: 0.01% or less
Mo: 1.0% or less
Cr: 1.0% or less
Ni: 2.0% or less
Co: 1.0% or less These are effective elements for improving the hardenability and increasing the strength. 1 type (s) or 2 or more types can be added suitably. However, B: 0.01%, Mo: 1.0%, Cr: 1.0%, Ni: 2.0%, Co: exceeding 1.0%, on the contrary, the decrease in ductility increases. It only increases the industrial cost.
Fe系プレめっき層としては、純Feの他に、Fe−B,Fe−C,Fe−P,Fe−N,Fe−O等のめっき層が使用できる。Fe系プレめっき層に含まれる微量のB,C,P,N,Oは、Si,Mnの濃化を抑制する作用を呈する。
Fe系プレめっき層は、電気めっき法で形成されるが、所要の付着量が得られる限り電気めっき液の種類,浴組成,めっき条件等に特段の制約が加わるものではない。上記条件の設定により所定量のFe系プレめっき層を付着させる。Fe系プレめっきは、電気めっきラインで実施できるが、溶融めっきラインのガス還元焼鈍炉の前に電気めっき設備を付設してFe系プレめっき及び溶融Znめっきを連続化することが生産性,コスト的に有利である。
As the Fe-based pre-plated layer, a plated layer of Fe-B, Fe-C, Fe-P, Fe-N, Fe-O or the like can be used in addition to pure Fe. A trace amount of B, C, P, N, and O contained in the Fe-based pre-plated layer exhibits an action of suppressing concentration of Si and Mn.
The Fe-based pre-plated layer is formed by electroplating, but there are no particular restrictions on the type of electroplating solution, bath composition, plating conditions, etc., as long as the required adhesion amount is obtained. A predetermined amount of the Fe-based pre-plated layer is deposited by setting the above conditions. Fe-based pre-plating can be carried out in the electroplating line, but it is necessary to install an electroplating facility in front of the gas reduction annealing furnace in the hot-dip plating line to make Fe-based pre-plating and hot-dip Zn plating continuous. Is advantageous.
また、後記するように、溶融Znめっき浴から引き上げられためっき原板に付着している溶融めっきZnの付着量を所要量に調整する。その調整は、通常のガスワイピング法で行うことが好ましい。
本発明では、Fe系のプレめっき付着量とその後の溶融Znめっき付着量の関係を調整することが重要になる。[Fe付着量]/([Fe付着量]+[Zn付着量])の値が0.08に満たないと、Feめっきの量が不足し、めっき層中にζ相又はη−Znが残存するか、高い合金化温度が必要になる。逆に、上記値が0.15を上回ると、Feめっきの量が過多になり、合金化に使用されないFeが残存するため、工業上のコストが高くなるだけである。
Further, as will be described later, the adhesion amount of the hot dip Zn adhering to the plating original plate pulled up from the hot dip Zn plating bath is adjusted to a required amount. The adjustment is preferably performed by a normal gas wiping method.
In the present invention, it is important to adjust the relationship between the Fe-based pre-plating adhesion amount and the subsequent hot-dip Zn plating adhesion amount. If the value of [Fe adhesion amount] / ([Fe adhesion amount] + [Zn adhesion amount]) is less than 0.08, the amount of Fe plating is insufficient, and ζ phase or η-Zn remains in the plating layer. Or a high alloying temperature is required. On the other hand, if the above value exceeds 0.15, the amount of Fe plating becomes excessive, and Fe that is not used for alloying remains, which only increases the industrial cost.
溶融Znめっき前のプレめっき鋼板の焼鈍条件によっても、合金化溶融亜鉛めっき鋼板の機械的特性は変化する。より高延性で高強度を得るための焼鈍条件について以下に説明する。
焼鈍の温度は700〜900℃の範囲にする。700℃未満では、再結晶が十分に行われず、機械的性質が低下する。900℃を超えると、Fe系めっき層中へSiやMnが拡散し、Feプレめっきの効果が減衰する。
焼鈍の雰囲気は還元雰囲気とする。ガス還元雰囲気とすることが好ましい。
ガス還元雰囲気であると、プレめっきされたFeが部分的に酸化されていても、ガス還元されて活性な表面状態になり、その後の溶融Znめっきの際めっき層が付着しやすくなる。さらにその後の合金化反応速度も大きくなる。
The mechanical properties of the galvannealed steel sheet also change depending on the annealing conditions of the pre-plated steel sheet before hot-dip Zn plating. The annealing conditions for obtaining higher strength with higher ductility will be described below.
The annealing temperature is in the range of 700 to 900 ° C. If it is less than 700 degreeC, recrystallization will not fully be performed but a mechanical property will fall. If it exceeds 900 ° C., Si and Mn diffuse into the Fe-based plating layer, and the effect of Fe pre-plating is attenuated.
The annealing atmosphere is a reducing atmosphere. A gas reducing atmosphere is preferable.
In the gas reducing atmosphere, even if the pre-plated Fe is partially oxidized, it is gas reduced to an active surface state, and the plating layer tends to adhere during subsequent hot-dip Zn plating. Furthermore, the subsequent alloying reaction rate also increases.
次に均熱後の平均冷却速度は2〜200℃/秒とする。平均冷却速度が2℃/秒に満たないと、パーライト変態が生じ強度−延性のバランスが悪くなる。逆に200℃/秒を超える平均冷却速度では、鋼板の幅方向,長手方向でのズレが大きくなり、均一な組織を得ることができなくなる。
また、冷却の終点温度は350〜500℃の範囲にする。冷却の終点が500℃を超えると、オーステナイトが炭化物に分解し、パーライトが形成されて強度−延性のバランスが悪くなる。350℃未満では、マルテンサイトが大量に生成するため、強度は向上するものの伸びが著しく低下し、成形性等が悪くなる。
保持時間については、長すぎるとセメンタイトが生成し、強度−延性のバランスが悪くなる。保持時間は20分以下が好ましい。
このような製法により、加工性の良好な高強度合金化溶融亜鉛めっき鋼板を得ることができる。
Next, the average cooling rate after soaking is set to 2 to 200 ° C./second. If the average cooling rate is less than 2 ° C./second, pearlite transformation occurs and the balance between strength and ductility is deteriorated. On the contrary, when the average cooling rate exceeds 200 ° C./second, the deviation in the width direction and the longitudinal direction of the steel sheet becomes large, and a uniform structure cannot be obtained.
Moreover, the end point temperature of cooling shall be 350-500 degreeC. When the end point of cooling exceeds 500 ° C., austenite is decomposed into carbides, pearlite is formed, and the balance between strength and ductility is deteriorated. If it is less than 350 ° C., a large amount of martensite is generated, so that the strength is improved, but the elongation is remarkably lowered, and the moldability and the like are deteriorated.
If the holding time is too long, cementite is produced, and the balance between strength and ductility is deteriorated. The holding time is preferably 20 minutes or less.
By such a manufacturing method, a high-strength galvannealed steel sheet having good workability can be obtained.
ガス還元焼鈍しためっき原板は、溶融Znめっき浴に導入される。
溶融Znめっき浴としては、浴温を420以上490℃未満に設定したものを使用する。420℃はめっき浴の凝固点であり、また490℃以上になると、めっき浴を入れている槽が激しく浸食され、頻繁な交換が必要となるなど、経済的に不利である。
溶融Znめっき浴から引き上げられためっき原板に付着している溶融めっき金属のめっき付着量をガスワイピングで調整する。必要とする付着量は前記した通りである。
The plating original plate subjected to gas reduction annealing is introduced into a molten Zn plating bath.
As the hot dip Zn plating bath, one having a bath temperature set to 420 or higher and lower than 490 ° C. is used. 420 ° C. is the freezing point of the plating bath, and if it exceeds 490 ° C., the bath containing the plating bath is eroded violently and requires frequent replacement, which is economically disadvantageous.
The plating adhesion amount of the hot dip metal adhering to the plating original plate pulled up from the hot dip Zn plating bath is adjusted by gas wiping. The amount of adhesion required is as described above.
ガスワイピング後、鋼板を460℃以上530℃未満の温度に2〜120秒加熱することにより合金化反応を進行させる。加熱温度が460℃未満だったり2秒に満たなかったりすると合金化が不十分でη−Zn層が残存することになる。530℃以上では、鋼中にパーライトが生成し、強度−延性のバランスが悪くなって、加工性の低下につながる。また合金化温度が530℃未満であっても、その温度が高いほど鋼中にパーライトが生成する恐れがあるから、合金化温度は490℃未満にすることが好ましい。120秒までには合金化は十分に行われ、それ以上の加熱は無意味である。 After gas wiping, the steel sheet is heated to a temperature of 460 ° C. or higher and lower than 530 ° C. for 2 to 120 seconds to advance the alloying reaction. If the heating temperature is less than 460 ° C. or less than 2 seconds, alloying is insufficient and the η-Zn layer remains. When the temperature is 530 ° C. or higher, pearlite is generated in the steel, and the balance between strength and ductility is deteriorated, resulting in a decrease in workability. Even if the alloying temperature is less than 530 ° C., the higher the temperature, the more likely pearlite is generated in the steel. Therefore, the alloying temperature is preferably less than 490 ° C. By 120 seconds, alloying is sufficiently performed, and further heating is meaningless.
460℃以上530℃未満×2〜120秒の加熱条件が満足される限り、加熱方式は特に制約されるものではなく、バーナー加熱方式,高周波誘導加熱方式,両者を併用した加熱方式等を採用した合金化処理炉が使用される。
合金化処理された鋼板は、板温が250℃に到達するまで鋼板を5℃/秒以上の冷却速度で冷却する。
As long as the heating condition of 460 ° C. or higher and lower than 530 ° C. × 2 to 120 seconds is satisfied, the heating method is not particularly limited, and a burner heating method, a high-frequency induction heating method, a heating method using both of them, etc. are adopted. An alloying furnace is used.
The alloyed steel sheet is cooled at a cooling rate of 5 ° C./second or more until the plate temperature reaches 250 ° C.
実施例1:
表1に示した組成をもつ低炭素鋼を溶製し、熱延,酸洗,冷延工程を経て板厚1.0mm,板幅1000mmの冷延鋼板を製造した。この冷延鋼板の表面に、表2に示すめっき条件で、Feプレめっき層を電気めっき法により形成した。
Feめっき鋼板を表3に示す条件で焼鈍した。
さらに、溶融Znめっきを行い、ガスワイピングの調整で、表4に示す付着量の溶融Znめっき層を得た。
Example 1:
A low carbon steel having the composition shown in Table 1 was melted, and a cold rolled steel sheet having a sheet thickness of 1.0 mm and a sheet width of 1000 mm was manufactured through hot rolling, pickling and cold rolling processes. An Fe pre-plated layer was formed on the surface of this cold-rolled steel sheet by electroplating under the plating conditions shown in Table 2.
The Fe-plated steel sheet was annealed under the conditions shown in Table 3.
Furthermore, hot-dip Zn plating was performed, and the hot-dip Zn plating layer having an adhesion amount shown in Table 4 was obtained by adjusting gas wiping.
次いで溶融Znめっき浴に浸漬し、ガスワイピングでめっき付着量を調整した。そのめっき付着量を表4に示す。その後、表4に示す条件で合金化熱処理を施した。
得られた合金化溶融亜鉛めっき鋼板について、合金化めっき層の断面組織を観察するとともに、引張試験を行った。
断面観察によりめっき層中にη−Zn相やζ相或いはΓ相がない場合を○とし、η−Zn相,ζ相或いはΓ相が認められたものを×と判定した。
引張試験は、圧延方向に垂直にJIS−5号試験片を採取し、引張試験した。
その評価結果を併せて表4に示す。
Next, it was immersed in a molten Zn plating bath, and the amount of plating adhered was adjusted by gas wiping. The plating adhesion amount is shown in Table 4. Thereafter, alloying heat treatment was performed under the conditions shown in Table 4.
The obtained alloyed hot-dip galvanized steel sheet was subjected to a tensile test while observing the cross-sectional structure of the alloyed plated layer.
A case where there was no η-Zn phase, ζ phase, or Γ phase in the plated layer by cross-sectional observation was evaluated as ◯, and a case where η-Zn phase, ζ phase, or Γ phase was observed was determined as x.
In the tensile test, a JIS-5 test piece was sampled perpendicularly to the rolling direction and subjected to a tensile test.
The evaluation results are also shown in Table 4.
表4に示す結果から、請求項の記載で特定した合金組成を有する鋼種A〜Kを用いた試験No.1〜11では、合金化熱処理後の合金化状態はいずれも良好で、引張強度と伸びのバランスがよい合金化溶融亜鉛めっき鋼板が得られている。
これに対して、式(1)が0.08未満で、合金化熱処理温度を上げた比較例No.12では、合金化できたもののΓ相が生成されていた。成形時の耐パウダリング性が低下すると予測される。また、同じく式(1)が0.08未満で、合金化熱処理温度を本発明例と同じ程度とした比較例No.13,14では十分な合金化ができず、η−Zn相がみられた。成形時の耐フレーキング性が低下すると予測される。
From the results shown in Table 4, test Nos. Using steel types A to K having the alloy composition specified in the claims. In Nos. 1 to 11, an alloyed hot-dip galvanized steel sheet in which the alloying state after the alloying heat treatment is good and the balance between tensile strength and elongation is good is obtained.
On the other hand, in the comparative example No. 12 in which the formula (1) was less than 0.08 and the alloying heat treatment temperature was raised, the Γ phase was generated although it could be alloyed. It is expected that the powdering resistance at the time of molding will decrease. Similarly, in Comparative Examples No. 13 and 14 in which the formula (1) is less than 0.08 and the alloying heat treatment temperature is the same as that of the present invention, sufficient alloying is not possible, and a η-Zn phase is observed. It was. It is expected that the flaking resistance during molding will be reduced.
実施例2:
表1に示した鋼種の内、鋼種Aを素材として、実施例1と全く同じ方法によりFe付着量6g/m2でFeプレめっき層を形成して溶融Znめっき原板を用意した。
このプレめっき鋼板に、表5に示す条件の焼鈍処理とZn付着量45g/m2溶融Znめっき、並びに合金化熱処理を施した。この際、前記式(1)は0.11となっている。
得られた合金化溶融亜鉛めっき鋼板について、実施例1と全く同じ手法で、合金化めっき層の断面組織を観察するとともに、引張試験を行った。
その評価結果を表5に併せて示す。
Example 2:
Among the steel types shown in Table 1, a steel sheet A was used as a raw material, and an Fe pre-plated layer was formed at an Fe deposition amount of 6 g / m 2 by the same method as in Example 1 to prepare a molten Zn-plated original sheet.
This pre-plated steel sheet was subjected to an annealing treatment under conditions shown in Table 5, a Zn adhesion amount of 45 g / m 2 hot-dip Zn plating, and an alloying heat treatment. At this time, the equation (1) is 0.11.
The obtained alloyed hot-dip galvanized steel sheet was subjected to a tensile test in the same manner as in Example 1 while observing the cross-sectional structure of the alloyed plated layer.
The evaluation results are also shown in Table 5.
表5に示す結果から、プレめっき鋼板に請求項の記載で特定した条件で焼鈍処理を施し、その後溶融Znめっきした鋼板に請求項の記載で特定した条件で合金化熱処理を施すと、合金化状態はいずれも良好で、引張強度と伸びのバランスがよい合金化溶融亜鉛めっき鋼板が得られている。
これに対して、プレめっき鋼板に施す焼鈍の温度が低かった比較例No.25では、再結晶が十分に進行せず、機械的特性が不十分であった。逆に焼鈍の温度が高すぎた比較例No.26では、Fe系めっき層中にSi,Mnの拡散が生じてFe系プレめっきの効果がなくなり、合金化熱処理によってη−Zn相が生成していた。成形時の耐フレーキング性が低下すると予測される。
また、焼鈍時の冷却速度が遅すぎた比較例No.27では、強度−伸びのバランスが悪くなっている。成形時の耐パウダリング性が低下すると予測される。さらに、焼鈍時の冷却終点温度が低すぎた比較例No.28,及び冷却終点温度が高すぎた比較例No.29も強度−伸びのバランスが悪くなっていた。さらにまた、合金化熱処理時の温度が高すぎた比較例No.30も同様に強度−伸びのバランスが悪くなっていた。いずれも成形性が低下すると予測される。
From the results shown in Table 5, when pre-plated steel sheet is annealed under the conditions specified in the claims, alloying heat treatment is performed on the hot-dip Zn-plated steel sheets under the conditions specified in the claims. An alloyed hot-dip galvanized steel sheet having a good balance between tensile strength and elongation is obtained.
On the other hand, in Comparative Example No. 25 where the annealing temperature applied to the pre-plated steel sheet was low, recrystallization did not proceed sufficiently and the mechanical properties were insufficient. On the other hand, in Comparative Example No. 26 where the annealing temperature was too high, diffusion of Si and Mn occurred in the Fe-based plating layer and the effect of Fe-based pre-plating was lost, and a η-Zn phase was generated by alloying heat treatment. It was. It is expected that the flaking resistance during molding will be reduced.
Further, in Comparative Example No. 27 in which the cooling rate during annealing was too slow, the balance between strength and elongation was poor. It is expected that the powdering resistance at the time of molding will decrease. Further, Comparative Example No. 28 in which the cooling end point temperature during annealing was too low and Comparative Example No. 29 in which the cooling end point temperature was too high also had a poor strength-elongation balance. Furthermore, Comparative Example No. 30, in which the temperature during the alloying heat treatment was too high, also had a poor strength-elongation balance. In any case, the moldability is expected to be lowered.
Claims (3)
0.08≦[Fe付着量]/([Fe付着量]+[Zn付着量])≦0.15 ・・・(1) C: 0.05 to 0.25% by mass, Si: 0.6 to 2.0% by mass, Mn: 0.8 to 3.0% by mass, balance: Fe and steel with inevitable impurities After applying Fe-based plating, annealing is performed at 700 to 900 ° C., followed by cooling to 350 to 500 ° C. at an average cooling rate of 2 to 200 ° C./second, and holding or holding in that temperature range for 0 to 20 minutes. Without applying, the hot-dip Zn plating is performed with an amount satisfying the following formula (1), held at a temperature range of 460 to 530 ° C. for 2 seconds to 2 minutes, and then cooled to 250 ° C. or less at a cooling rate of 5 ° C./second or more. Then, a method for producing a high-strength galvannealed steel sheet excellent in workability, characterized by forming a δ 1- phase single-phase alloyed plating layer .
0.08 ≦ [Fe adhesion amount] / ([Fe adhesion amount] + [Zn adhesion amount]) ≦ 0.15 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005226362A JP4817749B2 (en) | 2005-08-04 | 2005-08-04 | Method for producing high-strength galvannealed steel sheet with excellent workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005226362A JP4817749B2 (en) | 2005-08-04 | 2005-08-04 | Method for producing high-strength galvannealed steel sheet with excellent workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007039756A JP2007039756A (en) | 2007-02-15 |
JP4817749B2 true JP4817749B2 (en) | 2011-11-16 |
Family
ID=37798021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005226362A Active JP4817749B2 (en) | 2005-08-04 | 2005-08-04 | Method for producing high-strength galvannealed steel sheet with excellent workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4817749B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105803331B (en) * | 2016-05-31 | 2018-01-12 | 武汉钢铁有限公司 | A kind of directly AHSS plate of galvanizing and preparation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01127656A (en) * | 1987-11-12 | 1989-05-19 | Toyota Motor Corp | Manufacture of alloying-galvanized steel sheet |
JP2709173B2 (en) * | 1990-02-27 | 1998-02-04 | 日本鋼管株式会社 | Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and sliding properties |
JP3347152B2 (en) * | 1991-11-18 | 2002-11-20 | 日新製鋼株式会社 | Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion |
JPH06256857A (en) * | 1993-03-05 | 1994-09-13 | Nisshin Steel Co Ltd | Production of galvannealed steel sheet having excellent workability |
JP4702974B2 (en) * | 2000-03-28 | 2011-06-15 | 日新製鋼株式会社 | Alloyed hot-dip galvanized high-tensile steel plate with excellent workability and method for producing the same |
JP2002309358A (en) * | 2001-04-16 | 2002-10-23 | Kobe Steel Ltd | Galvannealed steel sheet with excellent workability |
JP2003253416A (en) * | 2002-02-27 | 2003-09-10 | Jfe Steel Kk | Hot-dip zincing steel sheet |
JP4140962B2 (en) * | 2003-10-02 | 2008-08-27 | 日新製鋼株式会社 | Manufacturing method of low yield ratio type high strength galvannealed steel sheet |
-
2005
- 2005-08-04 JP JP2005226362A patent/JP4817749B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007039756A (en) | 2007-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2009130B1 (en) | Process for producing alloyed hot-dip zinc-coated steel sheet satisfactory in processability, non-powdering property, and sliding property | |
CN103890202B (en) | The manufacture method of the high tensile steel plate of excellent processability | |
RU2684655C1 (en) | Extra high strength multiphase steel and method for production of cold-rolled steel strip from it | |
CN111433380A (en) | High-strength galvanized steel sheet and method for producing same | |
JP4837604B2 (en) | Alloy hot-dip galvanized steel sheet | |
CN110475899A (en) | Surface treated steel plate | |
JP5789208B2 (en) | High-strength galvannealed steel sheet with excellent chemical conversion and ductility and its manufacturing method | |
KR101647225B1 (en) | High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same | |
JP4299560B2 (en) | Method for producing high-strength galvannealed steel sheet with excellent workability | |
JP5315795B2 (en) | High-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet, and a method for producing the same | |
JP3889767B2 (en) | High strength steel plate for hot dip galvanizing | |
WO2013042356A1 (en) | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after coating | |
JP4781577B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP4716856B2 (en) | Method for producing high-strength galvannealed steel sheet with excellent ductility | |
KR20090119264A (en) | High strength hot dip galvanized steel plate with excellent plating property and manufacturing method | |
JP4702974B2 (en) | Alloyed hot-dip galvanized high-tensile steel plate with excellent workability and method for producing the same | |
JP6870338B2 (en) | Zn-Al plated steel sheet with excellent phosphate chemical conversion treatment and its manufacturing method | |
JP5556033B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet | |
KR100519854B1 (en) | The Method of developing high strength Hot Dip Galvannealed Steel Sheet with good adhesion and high formability | |
HUE029890T2 (en) | Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same | |
JP4975406B2 (en) | High-strength galvannealed steel sheet and method for producing the same | |
JP4817749B2 (en) | Method for producing high-strength galvannealed steel sheet with excellent workability | |
JP4592000B2 (en) | Manufacturing method of high-strength galvannealed steel sheet with excellent workability | |
JP2000109965A (en) | Production of hot dip galvanized high tensile strength steel sheet excellent in workability | |
JP3577930B2 (en) | High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110810 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110830 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4817749 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |