[go: up one dir, main page]

JP4817358B2 - Method for producing vinyl resin fine particles - Google Patents

Method for producing vinyl resin fine particles Download PDF

Info

Publication number
JP4817358B2
JP4817358B2 JP2005114417A JP2005114417A JP4817358B2 JP 4817358 B2 JP4817358 B2 JP 4817358B2 JP 2005114417 A JP2005114417 A JP 2005114417A JP 2005114417 A JP2005114417 A JP 2005114417A JP 4817358 B2 JP4817358 B2 JP 4817358B2
Authority
JP
Japan
Prior art keywords
fine particles
resin fine
vinyl monomer
vinyl
stirrer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005114417A
Other languages
Japanese (ja)
Other versions
JP2006291058A (en
Inventor
昌臣 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2005114417A priority Critical patent/JP4817358B2/en
Publication of JP2006291058A publication Critical patent/JP2006291058A/en
Application granted granted Critical
Publication of JP4817358B2 publication Critical patent/JP4817358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)

Description

本発明は、ビニル系樹脂微粒子の製造方法に関する。詳しくは、平均粒子径が数μm〜数十μm程度で、かつ粒子径分布が狭い樹脂微粒子の製造方法に関する。   The present invention relates to a method for producing vinyl resin fine particles. Specifically, the present invention relates to a method for producing resin fine particles having an average particle size of about several μm to several tens of μm and a narrow particle size distribution.

従来から平均粒子径が数十μm〜数百μmのビニル系樹脂微粒子を製造する方法として、懸濁重合法が知られている。近年、粒子径が更に小さい数μm〜数十μm程度であり粒子径分布が狭い樹脂微粒子は、光拡散剤、トナー、スペーサー等として使用されており、樹脂粒子径が小さくしかも粒子径分布が狭い樹脂微粒子が要望されている。
しかしながら、従来から行われている通常の懸濁重合法により、樹脂微粒子を得るには、水性媒体に対するビニル系単量体の重量比(O/W)を0.1程度として重合させることが必要であり、生産性に劣り、経済的に不利であるばかりではなく、平均粒子径が数μm〜数十μm程度で、かつ粒子径分布が狭い樹脂微粒子を製造することは難しいなどの欠点がある。
Conventionally, a suspension polymerization method is known as a method for producing vinyl resin fine particles having an average particle diameter of several tens of μm to several hundreds of μm. In recent years, resin fine particles having a smaller particle size of about several μm to several tens of μm and a narrow particle size distribution have been used as light diffusing agents, toners, spacers, etc., and the resin particle size is small and the particle size distribution is narrow. There is a demand for resin fine particles.
However, in order to obtain resin fine particles by a conventional suspension polymerization method that has been conventionally performed, it is necessary to perform polymerization by setting the weight ratio (O / W) of the vinyl monomer to the aqueous medium to about 0.1. In addition to being inferior in productivity and economically disadvantageous, there are drawbacks such as it is difficult to produce resin fine particles having an average particle size of several μm to several tens of μm and a narrow particle size distribution. .

一方、平均粒子径が数μm〜数十μm程度であり、粒子径分布が狭い樹脂微粒子を懸濁重合法により製造するために高速回転撹拌装置により1次混合液を調製し、該1次混合液をさらに加圧下でノズルから噴出させ2次混合液を調製して重合する方法(特許文献1)や超音波粉砕機にかけた懸濁剤を用いて重合する方法(特許文献2)などの技術が報告されている。
しかしながら、特許文献1、2記載の製造方法では、比較的粒子径分布の狭い樹脂微粒子を得ることができるが、製造工程が煩雑であることや、水性媒体に対するビニル系単量体の重量比(O/W)を大きくした条件では、粒子径分布の狭い樹脂微粒子が得られにくいという問題がある。
On the other hand, in order to produce resin fine particles having an average particle size of about several μm to several tens of μm and a narrow particle size distribution by suspension polymerization, a primary mixed solution is prepared by a high-speed rotary stirring device, and the primary mixing is performed. Techniques such as a method in which a liquid is further ejected from a nozzle under pressure to prepare and polymerize a secondary mixture (Patent Document 1), and a method in which a suspension is applied to an ultrasonic grinder (Patent Document 2). Has been reported.
However, in the production methods described in Patent Documents 1 and 2, resin fine particles having a relatively narrow particle size distribution can be obtained. However, the production process is complicated and the weight ratio of the vinyl monomer to the aqueous medium ( Under the condition of increasing (O / W), there is a problem that it is difficult to obtain resin fine particles having a narrow particle size distribution.

特開平4−156555号公報JP-A-4-156555 特開平7−188310号公報JP 7-188310 A

本発明は、上記従来の問題を解消し、煩雑な製造工程を必要とせず、水性媒体に対するビニル系単量体の重量比(O/W)が大きい場合でも、粒子径分布幅の狭いビニル系樹脂微粒子を効率よく製造することができるビニル系樹脂微粒子の製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, does not require a complicated manufacturing process, and has a narrow particle size distribution width even when the weight ratio (O / W) of the vinyl monomer to the aqueous medium is large. It aims at providing the manufacturing method of the vinyl resin fine particle which can manufacture resin fine particle efficiently.

すなわち、本発明は、(1)ビニル系単量体を含む水性懸濁液を、高速回転する撹拌機と該撹拌機の外側に配置されたリットをもつスクリーンで構成される乳化装置を備えた円筒状容器に供給し、撹拌機の先端周速度を少なくとも5m/secで撹拌を行い、ビニル系単量体の液滴を微細に分散させた混合液を製造し、次いで該混合液中のビニル系単量体の液滴を、重合反応槽の撹拌翼の先端周速度を0.5〜2m/secの範囲で撹拌しながら重合させることを特徴とするビニル系樹脂微粒子の製造方法に係り、好ましくは、(2)前記乳化装置を備えた円筒状容器内を液封状態にして、連続的にビニル系単量体の液滴を微細に分散させることを特徴とする上記(1)に記載のビニル系樹脂微粒子の製造方法、(3)前記乳化装置を備えた円筒状容器内を少なくとも0.005MPaに保持し、連続的にビニル系単量体の液滴を微細に分散させることを特徴とする上記(1)又は(2)に記載のビニル系樹脂微粒子の製造方法、(4)前記乳化装置を備えた円筒状容器内を5℃〜40℃に保持し、ビニル系単量体の液滴を微細に分散させることを特徴とする上記(1)〜(3)のいずれかに記載のビニル系樹脂微粒子の製造方法を要旨とする。 That is, the present invention comprises an emulsifier and a screen with slits of the aqueous suspension liquid, which is arranged outside the stirrer and the stirrer rotating at high speed comprising (1) a vinyl monomer The mixture is supplied to a cylindrical container, and stirred at a tip peripheral speed of at least 5 m / sec to produce a mixed liquid in which vinyl monomer droplets are finely dispersed. The present invention relates to a method for producing fine vinyl resin particles, characterized in that vinyl monomer droplets are polymerized while stirring at a tip peripheral speed of a stirring blade of a polymerization reaction tank in a range of 0.5 to 2 m / sec. Preferably, (2) the inside of the cylindrical container equipped with the emulsifying device is in a liquid-sealed state, and the vinyl monomer droplets are continuously finely dispersed. (3) The said emulsification apparatus is provided. The inside of the cylindrical container is kept at at least 0.005 MPa, and the vinyl monomer droplets according to the above (1) or (2) are continuously dispersed finely. (4) The above-described (1) to (1), wherein the inside of the cylindrical container equipped with the emulsifying device is kept at 5 ° C. to 40 ° C. and the vinyl monomer droplets are finely dispersed. the method of any manufacturing vinyl resin fine particles according to the 3), and the gist.

本発明の乳化装置を使用して乳化液の調製を行うことにより、乳化液はキャビテーション(局所的に圧力が低下した場合に、その溶存気体などが気泡化する現象)を起こすことがなく、ビニル系単量体の液滴の安定性が良好な混合液を調製することができ、水性媒体に対するビニル系単量体の重量比(O/W)が大きい条件でも、粒子径分布の狭い樹脂微粒子を効率よく製造することができる。   By preparing the emulsion using the emulsifier of the present invention, the emulsion does not cause cavitation (a phenomenon in which dissolved gas or the like is bubbled when the pressure is locally reduced), and vinyl. Resin mixture having a small particle size distribution even under conditions where the weight ratio (O / W) of the vinyl monomer to the aqueous medium is large. Can be manufactured efficiently.

本発明の方法において、「ビニル系樹脂を含む水性懸濁液」は、後述するように、水性媒体(通常脱イオン水)に、ビニル系単量体、懸濁剤、重合開始剤、界面活性剤等を混合した懸濁液で、以下これを「水性懸濁液」という。
本発明の方法は図1に示すように高速回転する撹拌機と該撹拌機の外側に配置された複数のスリットをもつスクリーンで構成される乳化装置を用い、撹拌機の先端速度を5m/sec以上で水性懸濁液を撹拌し、得られた混合液(乳化液)を重合反応器で反応槽の撹拌翼の先端周速度を0.5〜2m/secの範囲で撹拌しながら重合反応を行わせることによるビニル系樹脂粒子の製造方法である。尚、以降、筒状容器内に存在するまだ撹拌されていない水性懸濁液も、筒状容器内で撹拌が開始された状態の混合液と水性懸濁液の混合物も、撹拌が完了した混合液も便宜上「混合液」という。
上記製造方法により、水性媒体に対するビニル系単量体の重量比(O/W)が大きい条件でも、粒子径分布の狭い樹脂微粒子を効率よく製造することができる。
In the method of the present invention, the “aqueous suspension containing a vinyl resin” is, as described later, an aqueous medium (usually deionized water), a vinyl monomer, a suspending agent, a polymerization initiator, a surfactant. This is a suspension in which an agent or the like is mixed, and this is hereinafter referred to as an “aqueous suspension”.
The method of the present invention by means of an emulsifying machine and a screen having a plurality of slits arranged outside the stirrer and the stirrer rotating at high speed as shown in FIG. 1, the agitator tip peripheral speed 5 m / Stir the aqueous suspension at a sec. or more, and polymerize the resulting mixture (emulsion) while stirring the tip peripheral speed of the stirring blade of the reaction vessel in the range of 0.5-2 m / sec in the polymerization reactor. a method for producing a vinyl resin fine particles by causing the. In the following, both the aqueous suspension that has not been agitated in the cylindrical container and the mixture of the mixed liquid and the aqueous suspension that have been agitated in the cylindrical container are mixed after the agitation has been completed. The liquid is also referred to as “mixed liquid” for convenience.
By the above production method, resin fine particles having a narrow particle size distribution can be efficiently produced even under a condition where the weight ratio (O / W) of the vinyl monomer to the aqueous medium is large.

本発明の製造方法をさらに詳細に説明する。
本発明の特徴の一つは、図1に示すような構造からなる特定の乳化装置を使用して、ビニル系単量体の液滴を微細化することにある。
図1は本発明の方法に使用される乳化装置6の概念図を示す。本発明における乳化装置6は、図1に示すように、モーターMにより高速回転する撹拌機2と、撹拌機2の回転を阻害しないように少し間隔をおいて撹拌機2の外側を覆うように配置された複数のスリットをもつスクリーン3を有する。そして、乳化装置6の撹拌機2は円筒状容器1内に配置されている。図1において符号4は液(混合液)吸込み口を示し、符号5は液(混合液)吐出口(スリット)を示す。矢印7は液(混合液)の流れを示す。混合液は、液吸込み口4から導入され液吐出口5(スリット)から排出される。尚、図1においてスクリーン3は、撹拌機2と撹拌機2の回転軸が見えるように、一部切開した状態を示す。
図2に撹拌機2および該撹拌機2の回転による混合液の流れを説明する図を示す。図2(1)は撹拌機2の側面図を示す。符号21は撹拌機の翼を示す。また、図2(2)は、図2(1)に示す撹拌機2を回転させた時の混合液の流れの状態を説明する図で、aが軸方向流れ、bは遠心方向流れ、cは吐出方向流れを夫々示す。図2(3)は翼の形状が図2(1)のものとは異なる別の態様の撹拌機の側面図を示す。図3は、撹拌機の外側に配されるスクリーン3の側面外観図を示す。該スクリーン3は、小さな間隙(スリット幅:d3)を有するスリット5が複数設けられている。
図1において、h1は液面の高さ、d1は撹拌機の外径、d2は筒状容器の内径を示す。
The production method of the present invention will be described in more detail.
One of the features of the present invention is to use a specific emulsifying apparatus having a structure as shown in FIG.
FIG. 1 shows a conceptual diagram of an emulsifying device 6 used in the method of the present invention. As shown in FIG. 1, the emulsifying device 6 in the present invention covers the outside of the stirrer 2 with a slight interval so as not to hinder the rotation of the stirrer 2 and the stirrer 2 rotated at high speed by the motor M. It has a screen 3 with a plurality of slits arranged. The stirrer 2 of the emulsifying device 6 is disposed in the cylindrical container 1. In FIG. 1, reference numeral 4 indicates a liquid (mixed liquid) suction port, and reference numeral 5 indicates a liquid (mixed liquid) discharge port (slit). An arrow 7 indicates the flow of the liquid (mixed liquid). The liquid mixture is introduced from the liquid suction port 4 and discharged from the liquid discharge port 5 (slit). In addition, in FIG. 1, the screen 3 shows the state which cut in part so that the rotating shaft of the stirrer 2 and the stirrer 2 can be seen.
FIG. 2 is a view for explaining the flow of the mixed liquid by the rotation of the stirrer 2 and the stirrer 2. FIG. 2 (1) shows a side view of the agitator 2. Reference numeral 21 denotes a blade of a stirrer. 2 (2) is a diagram for explaining the flow of the mixed liquid when the agitator 2 shown in FIG. 2 (1) is rotated, where a is an axial flow, b is a centrifugal flow, c Indicates the flow in the discharge direction, respectively. FIG. 2 (3) shows a side view of a stirrer according to another embodiment having a blade shape different from that of FIG. 2 (1). FIG. 3 shows a side external view of the screen 3 arranged outside the stirrer. The screen 3 is provided with a plurality of slits 5 having a small gap (slit width: d3).
In FIG. 1, h1 is the height of the liquid surface, d1 is the outer diameter of the stirrer, and d2 is the inner diameter of the cylindrical container.

上記の構造を有する乳化装置により、撹拌機2の先端速度を5m/sec以上でビニル系単量体を含む混合液の撹拌を行うと、混合液は吸込み口4から回転する撹拌機の翼21上に取り込まれ、混合液が図2(2)に示す如き吐出方向流れcを形成して、図3に示すスクリーン3のスリット5を通過する際に速度が増加された混合液の流れがジェット流となって、スリット5を通って槽内の混合液中に連続的に放出される。その際、その速度の不規則な変動のために生じる速度界面で混合液同士のせん断力で、ビニル系単量体の液滴が微細化された混合液が得られる。   When the mixed liquid containing the vinyl monomer is stirred at the tip speed of the stirrer 5 of 5 m / sec or more by the emulsifying device having the above structure, the mixed liquid is rotated from the suction port 4 of the stirrer blade 21 The mixed liquid is taken in above and forms a discharge direction flow c as shown in FIG. 2 (2), and the flow of the mixed liquid whose speed is increased when passing through the slit 5 of the screen 3 shown in FIG. It becomes a flow and is continuously discharged into the mixed liquid in the tank through the slit 5. At this time, a liquid mixture in which droplets of the vinyl monomer are refined by a shearing force between the liquid mixtures at a speed interface generated due to irregular fluctuations in the speed is obtained.

従来、使用されている図5に示すような高速回転する撹拌機101とそれを取り囲むべく配置された固定環(ステータ)102とで構成される乳化装置においては、混合液は撹拌機101の回転に伴って液吸込口103から吸い込まれ、混合液と撹拌機101の周りに配置された固定環102の接触壁面とのせん断力で、吐出口104から排出され106の流路によってビニル系単量体が微細化された混合液が得られる。図5中符号100は筒状容器を示し、符号105は転流板を示す。
本発明の図1に示す構造の乳化装置では、図5に示す従来の装置に比べて、キャビテーション(局所的に圧力が低下した場合に、その溶存気体などが気泡化する現象)を起こすことがなく、ビニル系単量体の液滴の安定性が良好な混合液を調製することができ、水性媒体に対するビニル系単量体の重量比(O/W)が大きい条件であっても、粒子径分布の狭い樹脂微粒子を効率よく製造することができる。
In a conventional emulsifying apparatus composed of a stirrer 101 that rotates at a high speed as shown in FIG. 5 and a stationary ring (stator) 102 arranged to surround the stirrer 101, the mixed liquid is rotated by the stirrer 101. Accordingly, the vinyl-based monomer is sucked from the liquid suction port 103 and discharged from the discharge port 104 by the shearing force between the mixed liquid and the contact wall surface of the stationary ring 102 arranged around the stirrer 101. A liquid mixture with a refined body is obtained. In FIG. 5, reference numeral 100 indicates a cylindrical container, and reference numeral 105 indicates a commutation plate.
The emulsification apparatus having the structure shown in FIG. 1 of the present invention may cause cavitation (a phenomenon in which dissolved gas is bubbled when the pressure is locally reduced) as compared with the conventional apparatus shown in FIG. In addition, it is possible to prepare a liquid mixture in which the vinyl monomer droplets have good stability, and the particles even under the condition that the weight ratio (O / W) of the vinyl monomer to the aqueous medium is large. Resin fine particles having a narrow diameter distribution can be efficiently produced.

本発明における上記構造の乳化装置において、撹拌機2の先端周速度が5m/sec未満の場合には、ビニル系単量体の液滴を充分に微細化させることができず、重合反応で得られる重合体の平均粒子径が大きくなるだけでなく、粒子径分布が広くなる虞がある。また、撹拌機2の先端周速度の上限は特にないが、35 m/secを超える条件では、ビニル系単量体の液滴を微細化する効果がほとんど変わらなくなるので、製造コストの面から、5〜35m/secの範囲で撹拌することが好ましい。更に好ましくは7〜32m/secである。ここでいう撹拌機2の先端周速度とは、撹拌機2の回転軸から最も離れた撹拌機の翼の端部の回転速度を意味する。尚、高速回転する撹拌機2はそのリード角度による軸方向の流れ成分の大きさと遠心方向の流れ成分の大きさで定まる吐出方向の流れ(速度が増加された混合液の流れ;ジェット流)をスクリーンのスリットに向かうように設定し、スクリーンのスリット幅、スリット数でジェット流の絶対速度と断続回数を適宜決めることにより、目的とする微細化をコントロールし平均粒子径や粒度分布幅をコントロールすることができる。
上記スクリーンのスリット幅は、通常、0.5〜5mmであり、1〜3mmが好ましい。また、スリットの長さは、通常、5〜50mmであり、10〜30mmが好ましい。また、スリット数は、通常、5〜50個であり、10〜25個が好ましい。
In the emulsifying apparatus having the above structure in the present invention, when the tip peripheral speed of the stirrer 2 is less than 5 m / sec, the vinyl monomer droplets cannot be sufficiently miniaturized and obtained by a polymerization reaction. There is a possibility that not only the average particle size of the polymer to be obtained becomes large but also the particle size distribution becomes wide. In addition, although there is no particular upper limit on the tip peripheral speed of the stirrer 2, the effect of refining the vinyl monomer droplets is almost unchanged under conditions exceeding 35 m / sec. It is preferable to stir in the range of 5 to 35 m / sec. More preferably, it is 7-32 m / sec. Here, the tip peripheral speed of the stirrer 2 means the rotational speed of the end of the blade of the stirrer farthest from the rotating shaft of the stirrer 2. The stirrer 2 that rotates at a high speed generates a flow in the discharge direction (the flow of the mixed liquid at an increased speed; the jet flow) determined by the magnitude of the flow component in the axial direction and the magnitude of the flow component in the centrifugal direction depending on the lead angle. Set to face the slit of the screen, and by appropriately determining the absolute velocity of jet flow and the number of intermittents depending on the slit width and the number of slits, the desired fineness is controlled and the average particle size and particle size distribution width are controlled. be able to.
The slit width of the screen is usually 0.5 to 5 mm, preferably 1 to 3 mm. Moreover, the length of a slit is 5-50 mm normally, and 10-30 mm is preferable. Moreover, the number of slits is 5-50 normally, and 10-25 are preferable.

また、ビニル系単量体の液滴を混合液中で微細に分散させる際に用いる筒状容器は、撹拌機の外径(d1)と容器の内径(d2)の比(d2/d1)が2〜10であることが好ましい。更には、d2/d1の値が3〜7であることが好ましい。この範囲であるとビニル系単量体の液滴を効率的に微細に分散させることができる。   Further, the cylindrical container used for finely dispersing the vinyl monomer droplets in the mixed solution has a ratio (d2 / d1) of the outer diameter (d1) of the stirrer to the inner diameter (d2) of the container. It is preferable that it is 2-10. Furthermore, it is preferable that the value of d2 / d1 is 3-7. Within this range, the vinyl monomer droplets can be efficiently and finely dispersed.

また、撹拌機の外径(d1)と混合液の液面高さ(h1)の比(h1/d1)が2〜10になるように供給することが好ましい。更には、h1/d1の値が3〜5とすることが好ましい。   Moreover, it is preferable to supply so that ratio (h1 / d1) of the outer diameter (d1) of a stirrer and the liquid level height (h1) of a liquid mixture may be 2-10. Furthermore, the value of h1 / d1 is preferably 3 to 5.

また、上記撹拌機としては、タービン形、オール形、ゲート形、プロペラ形等の種々の形の撹拌機が使用可能である。   Further, as the agitator, various types of agitators such as a turbine type, an all type, a gate type, and a propeller type can be used.

本発明の懸濁重合の代表的な実施態様は、例えば、懸濁剤を分散させた水性媒体中に界面活性剤を分散させた後、重合開始剤、ビニル系単量体を含む懸濁液を、上記乳化装置を備えた筒状容器に仕込み、上記の条件により、高速撹拌を行うことで、ビニル系単量体の液滴を微細に分散させた混合液を調製する。その後、調製された該混合液を重合反応器へ導入し、反応系内の酸素を除去した後、所定の温度で所定時間、乳化液を撹拌しながら加熱して懸濁重合を行う方法である。なお、上記の懸濁液は直接乳化装置にて調製してもよく、予め別の混合槽で調製し、それを乳化装置に導入し循環しながらビニル単量体の液滴を微細化することもできる。   A typical embodiment of the suspension polymerization of the present invention is, for example, a suspension containing a polymerization initiator and a vinyl monomer after dispersing a surfactant in an aqueous medium in which a suspension is dispersed. Is mixed in a cylindrical container equipped with the emulsifying device, and high-speed stirring is performed under the above conditions to prepare a mixed solution in which vinyl monomer droplets are finely dispersed. Thereafter, the prepared mixed liquid is introduced into a polymerization reactor, oxygen is removed from the reaction system, and then suspension polymerization is performed by heating the emulsion while stirring at a predetermined temperature for a predetermined time. . The above suspension may be directly prepared in an emulsifying device, prepared in advance in a separate mixing tank, introduced into the emulsifying device, and circulated to make fine vinyl monomer droplets. You can also.

本発明の樹脂微粒子の製造方法において使用されるビニル系単量体としては、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−エチルスチレン、2,4−ジメチルスチレン、p−メトキシスチレン、p−フェニルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、2,4−ジクロロスチレン、p−n−ヘキシルスチレン、p−オクチルスチレン、スチレンスルホン酸、スチレンスルホン酸ナトリウム等のビニル芳香族系化合物;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル等のアクリル酸の炭素数が1〜10のアルキルエステル等;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸−2−エチルヘキシル等のメタクリル酸の炭素数が1〜10のアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル基含有不飽和化合物等が挙げられる。   Examples of the vinyl monomer used in the method for producing resin fine particles of the present invention include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-ethylstyrene, 2,4-dimethylstyrene, p-methoxystyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4-dichlorostyrene, pn-hexylstyrene, p-octylstyrene , Vinyl aromatic compounds such as styrene sulfonic acid and sodium styrene sulfonate; acrylic acid such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate has 1 to 10 carbon atoms Alkyl esters, etc .; methyl methacrylate, methacrylate Include acrylonitrile, methacrylonitrile group-containing unsaturated compounds such as nitrites and the like; Le, propyl methacrylate, butyl methacrylate, alkyl esters having a carbon number of 1 to 10 methacrylic acid such as 2-ethylhexyl methacrylate and the like.

また、本発明の樹脂微粒子の製造方法において使用される重合開始剤としては、たとえば、アゾビスイソブチロニトリルなどのアゾ系化合物、クメンヒドロパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキシー2−エチルヘキサノエート、t−ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、ラウロイルパーオキサイドなどの単量体に可溶な開始剤があげられる。重合開始剤の量は、通常、仕込み単量体の全重量100重量部に対して0.01〜3重量部が好ましい。   Examples of the polymerization initiator used in the method for producing resin fine particles of the present invention include azo compounds such as azobisisobutyronitrile, cumene hydroperoxide, dicumyl peroxide, and t-butylperoxy-2. Examples include initiators soluble in monomers such as ethyl hexanoate, t-butyl peroxybenzoate, benzoyl peroxide, t-butyl peroxyisopropyl carbonate, lauroyl peroxide. Usually, the amount of the polymerization initiator is preferably 0.01 to 3 parts by weight with respect to 100 parts by weight of the total weight of the charged monomers.

本発明の樹脂微粒子の製造方法においては、必要に応じて、その重合反応系に分子量を調整するために、ドデシルメルカプタンなどのアルキルメルカプタン類、α−メチルスチレンダイマーなどの連鎖移動剤を添加することができる。その連鎖移動剤の使用量は、重合させる全単量体の全重量100重量部に対して、通常、0.01〜3重量部程度である。 In the method for producing resin fine particles of the present invention, an alkyl mercaptan such as dodecyl mercaptan or a chain transfer agent such as α-methylstyrene dimer is added to the polymerization reaction system as necessary in the production method of resin fine particles. Can do. The amount of the chain transfer agent used is usually about 0.01 to 3 parts by weight with respect to 100 parts by weight of the total weight of all monomers to be polymerized.

また、本発明の樹脂微粒子の製造方法におけるビニル系単量体の仕込み量は、水性媒体100重量部に対して、通常、5〜100重量部の範囲である。また、本発明の樹脂微粒子に耐溶剤を付与するために、ビニル基を分子内に2個以上有するビニルモノマーを架橋剤として用いることができる。例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの(メタ)アクリル酸系モノマーや、ジビニルベンゼン、ジビニルナフタレンなどの芳香族ジビニル化合物などが挙げられる。これらの架橋剤は単独で、または2種以上を組み合わせて用いてもよく、その使用量は、仕込み単量体の全重量100重量部に対して0.5〜20重量部程度が好ましい。 Moreover, the preparation amount of the vinyl-type monomer in the manufacturing method of the resin fine particle of this invention is the range of 5-100 weight part normally with respect to 100 weight part of aqueous media. Moreover, in order to provide solvent resistance to the resin fine particles of the present invention, a vinyl monomer having two or more vinyl groups in the molecule can be used as a crosslinking agent. For example, (meth) acrylic monomers such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, divinylbenzene, divinylnaphthalene, etc. And aromatic divinyl compounds. These crosslinking agents may be used alone or in combination of two or more, and the amount used is preferably about 0.5 to 20 parts by weight with respect to 100 parts by weight of the total weight of the charged monomers.

また、本発明の樹脂微粒子の製造方法において使用される懸濁剤としては、たとえば、リン酸三カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム、リン酸マグネシウム、水酸化アルミニウム、水酸化第2鉄、水酸化チタン、水酸化マグネシウム、リン酸バリウム、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、タルク、カオリン、ベントナイト等の微粒子状の無機懸濁剤やポリビニルピロリドン、ポリビニルアルコール、エチルセルロース、ヒドロキシプロピルメチルセルロース等の有機懸濁剤が挙げられる。より好ましくは、リン酸三カルシウムやハイドロキシアパタイト、ピロリン酸マグネシウムである。これらの懸濁剤は単独で、または2種以上を組み合わせて用いてもよい。   Examples of the suspending agent used in the method for producing resin fine particles of the present invention include tricalcium phosphate, hydroxyapatite, magnesium pyrophosphate, magnesium phosphate, aluminum hydroxide, ferric hydroxide, and hydroxide. Fine inorganic suspensions such as titanium, magnesium hydroxide, barium phosphate, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, talc, kaolin, bentonite, polyvinylpyrrolidone, polyvinyl alcohol, ethylcellulose, hydroxypropyl An organic suspending agent such as methylcellulose can be used. More preferred are tricalcium phosphate, hydroxyapatite, and magnesium pyrophosphate. These suspending agents may be used alone or in combination of two or more.

本発明に使用される懸濁剤の使用量は、懸濁重合系の水性媒体(反応生成物含有スラリーなどの水を含む系内の全ての水をいう)100重量部に対して、通常、固形分量として0.05〜20重量部、好ましくは0.3〜15重量部である。0.05重量部未満の場合は、ビニル系単量体を懸濁安定化することができずに樹脂の塊状物が発生することがあり、20重量部を超えると製造コストの面から好ましくないだけではなく、粒子径分布が広くなる虞がある。   The amount of the suspending agent used in the present invention is usually 100 parts by weight with respect to 100 parts by weight of the aqueous medium of the suspension polymerization system (referring to all water in the system including water such as the reaction product-containing slurry). The solid content is 0.05 to 20 parts by weight, preferably 0.3 to 15 parts by weight. If the amount is less than 0.05 parts by weight, the vinyl monomer cannot be suspended and stabilized, and a resin mass may be generated. If the amount exceeds 20 parts by weight, it is not preferable from the viewpoint of production cost. In addition, the particle size distribution may be widened.

また、本発明の樹脂微粒子の製造方法において使用される界面活性剤としては、たとえば、アルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、αオレフィンスルホン酸ナトリウム、ドデシルフェニルオキサイドジスルホン酸ナトリウム等のアニオン系界面活性剤;ポリオキシエチレンドデシルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル等のノニオン系界面活性剤;ココナットアミンアセテート、ステアリルアミンセテートなどのアルキルアミン塩やラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライドなどの第四級アンモニウム等のカチオン系界面活性剤;ラウリルベタインやステアリルベタインなどのアルキルベタインやラウリルジメチルアミンオキサイド等のアルキルアミンオキサイド等の両性界面活性剤が挙げられる。
好ましくは、アニオン系界面活性剤である。更に好ましくは、炭素数8〜20のアルキルスルホン酸アルカリ金属塩(好ましくはナトリウム塩)である。これにより、優れた懸濁安定化の効果が得られる。
界面活性剤の添加量は、ビニル系単量体100重量部に対して0.001〜0.1重量部の範囲が好ましい。
Examples of the surfactant used in the method for producing resin fine particles of the present invention include sodium alkyl sulfonate, sodium alkylbenzene sulfonate, sodium lauryl sulfate, sodium α-olefin sulfonate, and sodium dodecylphenyl oxide disulfonate. Anionic surfactants; Nonionic surfactants such as polyoxyethylene dodecyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether; alkylamine salts such as coconut amine acetate and stearylamine cetate and lauryltrimethylammonium Cationic surfactants such as quaternary ammonium such as chloride and stearyltrimethylammonium chloride; lauryl betaine and stearyl betaine Which alkyl betaines and amphoteric surfactants such as alkyl amine oxides such as lauryl dimethyl amine oxide.
An anionic surfactant is preferable. More preferably, it is an alkylsulfonic acid alkali metal salt (preferably sodium salt) having 8 to 20 carbon atoms. Thereby, the effect of the outstanding suspension stabilization is acquired.
The addition amount of the surfactant is preferably in the range of 0.001 to 0.1 parts by weight with respect to 100 parts by weight of the vinyl monomer.

また、必要に応じ電解質、例えば塩化リチウム、塩化カリウム、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム等の無機塩類等を加えることができる。   If necessary, electrolytes such as inorganic salts such as lithium chloride, potassium chloride, sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, sodium nitrate, sodium carbonate, and sodium bicarbonate can be added.

本発明の方法によるビニル系樹脂微粒子の製造において、ビニル系単量体の液滴の微細化はバッチ式、又は連続式いずれの方法でも実施することができる。工業的には連続式に行い、次いで重合反応に供する連続的に製造することが経済的に又効率的に望ましい。
連続式に行う際には、例えば図4に示すように、ビニル系単量体を含む水性懸濁液を調製する混合槽11と乳化装置10とを、混合液循環ポンプPを備えた導管13で接続し混合液を、循環ポンプPを介して連続的に乳化装置10導入し、該乳化装置で懸濁液中のビニル系単量体の液滴を微細化し、矢印で示される液の流れで循環させながら、所定のビニル系単量体の微細な液滴が分散された混合液を、液出口バルブVを開くことにより、重合反応槽(図示しない)に導入し、重合反応を行い、目的とする樹脂微粒子を得る。図4中、符号Gは、後述する容器内の圧力を測定するための圧力計である。
このように連続式にビニル系単量体の微細化を行う際、筒状容器12内を混合液で液封状態(容器内の充填率が100%)にして微細化を行うことにより、微細化の際に空気の巻き込みを防止することができ、短時間でビニル系単量体の液滴を微細化することができるので好ましい。
In the production of vinyl resin fine particles by the method of the present invention, vinyl monomer droplets can be refined by either a batch method or a continuous method. It is desirable economically and efficiently to carry out it continuously industrially and then to continuously produce it for the polymerization reaction.
When performing continuously, for example, as shown in FIG. 4, a mixing tank 11 for preparing an aqueous suspension containing a vinyl monomer and an emulsifying device 10 are connected to a conduit 13 having a mixed liquid circulation pump P. the in connection with mixture through the circulation pump P is continuously introduced into the emulsification device 10, droplets of vinyl monomer in the suspension is finely divided by the emulsifying apparatus, a liquid represented by the arrow While circulating in a flow, a liquid mixture in which fine droplets of a predetermined vinyl monomer are dispersed is introduced into a polymerization reaction tank (not shown) by opening the liquid outlet valve V to perform a polymerization reaction. To obtain the desired resin fine particles. In FIG. 4, the code | symbol G is a pressure gauge for measuring the pressure in the container mentioned later.
When the vinyl monomer is continuously refined in this way, the inside of the cylindrical container 12 is liquid-sealed with a mixed solution (the filling rate in the container is 100%) and refined. This is preferable because air entrainment can be prevented during the conversion, and the vinyl monomer droplets can be made fine in a short time.

また、上記した方法によりビニル系単量体の液滴を微細化する際、筒状容器12内を0.005MPa以上の僅かに加圧した状態に保持して、ビニル系単量体の液滴を微細化することが好ましい。容器内を0.005MPa以上の加圧状態に保持することにより、空気の巻き込みを更に防止することができ、効率よく短時間でビニル系単量体の液滴を微細化することができるので好ましい。容器内が0.005MPa未満の場合には、容器内でビニル系単量体の液滴を微細化する際、空気を巻込み易く、ビニル系単量体の液滴を所定の粒径まで微細化する時間が長くなる虞があるので、好ましくは、0.01MPa以上、更には0.02MPa以上が好ましく、0.05MPa以上がより好ましい。しかし余りに高い加圧とすることは筒状容器の耐圧強度を高める必要があり、装置のコストアップにつながる虞があるため、その上限は0.5MPa程度とすることが好ましい。尚、ここでいう圧力はゲージ圧を意味し、上記圧力計Gにより混合液の水圧を測定することにより得られる値である。また、混合液の水圧を高めるには、単に、円筒状容器の混合液圧が高まるように混合液を循環させればよい。   Further, when the droplets of the vinyl monomer are refined by the above-described method, the inside of the cylindrical container 12 is maintained in a slightly pressurized state of 0.005 MPa or more, and the vinyl monomer droplets are maintained. It is preferable to refine the size. By holding the inside of the container in a pressurized state of 0.005 MPa or more, air entrainment can be further prevented, and the vinyl monomer droplets can be efficiently miniaturized in a short time, which is preferable. . When the inside of the container is less than 0.005 MPa, when the vinyl monomer droplets are refined in the container, air is easily entrained, and the vinyl monomer droplets are fined to a predetermined particle size. Since there is a possibility that the time required for conversion will increase, it is preferably 0.01 MPa or more, more preferably 0.02 MPa or more, and more preferably 0.05 MPa or more. However, if the pressure is too high, it is necessary to increase the pressure resistance of the cylindrical container, which may increase the cost of the apparatus. Therefore, the upper limit is preferably about 0.5 MPa. In addition, the pressure here means a gauge pressure, and is a value obtained by measuring the water pressure of the mixed solution with the pressure gauge G. Further, in order to increase the water pressure of the mixed liquid, the mixed liquid is simply circulated so that the mixed liquid pressure in the cylindrical container is increased.

本発明の方法によりビニル系単量体の液滴を微細化する際、容器内(混合液)の温度は5〜40℃が好ましい。容器内温度が5℃未満の場合には、ビニル系単量体の液滴を所定の粒子径まで微細化した後、次いで実施される重合反応に際して重合温度までに昇温する加熱時間が長くなってしまうため、製造コストの面から好ましくない。また、40℃を超える場合には、ビニル系単量体の液滴を所定の粒子径まで微細化することが困難になる。好ましくは、10〜30℃である。
尚、ビニル系単量体の液滴を微細化させる容器にジャケットをつけ、冷却水や温水を循環させることで、容器内の温度をコントロールすることができる。
When the vinyl monomer droplets are refined by the method of the present invention, the temperature in the container (mixed solution) is preferably 5 to 40 ° C. When the temperature in the container is less than 5 ° C., after the vinyl monomer droplets are refined to a predetermined particle size, the heating time for raising the temperature to the polymerization temperature in the subsequent polymerization reaction becomes longer. Therefore, it is not preferable from the viewpoint of manufacturing cost. When the temperature exceeds 40 ° C., it is difficult to make the vinyl monomer droplet finer to a predetermined particle size. Preferably, it is 10-30 degreeC.
The temperature in the container can be controlled by attaching a jacket to a container for refining droplets of vinyl monomer and circulating cooling water or hot water.

上記の方法により調製した混合液は次いで懸濁重合反応に供される。この懸濁重合反応は従来の懸濁重合と同様に実施される。重合反応させる際に、重合反応槽内を0.2MPa以上の加圧状態に保持して重合させることが好ましい。反応槽内を0.2MPa以上に保持して重合させることにより、泡の発生を抑制することができるため、重合中に発生した泡が滞留して、凝結ビーズの生成を抑制できるので好ましい。加圧状態が0.2MPa未満では、重合中に発生する泡を充分に抑制することができず、凝結ビーズが発生する虞が高い。好ましくは、0.3MPa以上であり、更には0.5MPa以上であることが好ましい。尚、加圧は窒素を導入することにより行うことが望ましい。しかし余りに高い加圧とすることは反応槽の耐圧強度を高める必要があり、装置のコストアップにつながる虞があるため、その上限は5MPa程度とすることが好ましい。尚、ここでいう圧力はゲージ圧を意味し、反応槽上部の気相部を圧力計で測定することにより得られる値である。   The mixed solution prepared by the above method is then subjected to a suspension polymerization reaction. This suspension polymerization reaction is carried out in the same manner as conventional suspension polymerization. When carrying out the polymerization reaction, it is preferable to carry out the polymerization while maintaining the inside of the polymerization reaction tank in a pressurized state of 0.2 MPa or more. By carrying out the polymerization while maintaining the inside of the reaction vessel at 0.2 MPa or more, the generation of bubbles can be suppressed, and therefore, the bubbles generated during the polymerization stay and the formation of condensed beads can be suppressed, which is preferable. When the pressurized state is less than 0.2 MPa, bubbles generated during polymerization cannot be sufficiently suppressed, and there is a high possibility that condensed beads are generated. Preferably, it is 0.3 MPa or more, and more preferably 0.5 MPa or more. The pressurization is preferably performed by introducing nitrogen. However, if the pressure is too high, it is necessary to increase the pressure resistance of the reaction tank, which may increase the cost of the apparatus. Therefore, the upper limit is preferably about 5 MPa. In addition, the pressure here means a gauge pressure, and is a value obtained by measuring the gas phase part at the top of the reaction tank with a pressure gauge.

本発明で得られる樹脂微粒子の平均粒子径(d50)は1〜100μm程度で、分散度(d90/d10)は10未満の範囲にあり、ビニル系単量体の液滴を微細に分散させる際の撹拌機の回転速度や懸濁剤の量を変えることにより樹脂微粒子の平均粒子径をコントロールすることができる。   The average particle diameter (d50) of the resin fine particles obtained in the present invention is about 1 to 100 μm and the dispersity (d90 / d10) is in the range of less than 10, and when the vinyl monomer droplets are finely dispersed. The average particle diameter of the resin fine particles can be controlled by changing the rotation speed of the agitator and the amount of the suspending agent.

ここで、平均粒子径(d50)は、樹脂微粒子を水中に分散させ、レーザー回折法(SYMPATEC社製 HELOS version4.4.1)により粒度分布を測定し、全粒子の体積に対する累積体積が50%になる時の粒子径を50%粒子径(d50)として求めた値で、分散度(d90/d10)は、全粒子の体積に対する累積体積が10%、90%になる時の粒子径をそれぞれ10%粒子径(d10)、90%粒子径(d90)とし、90%粒子径を10%粒子径で除した値である。樹脂微粒子の形状は、球状のものに限らず、断面が楕円形状を示す粒子、表面に多少の凹凸があるような異形粒子でもよい。   Here, the average particle diameter (d50) is obtained by dispersing resin fine particles in water and measuring the particle size distribution by a laser diffraction method (HELOS version 4.4.1 manufactured by SYMPATEC), and the cumulative volume with respect to the volume of all particles is 50%. The particle size when the particle size becomes 50% particle size (d50), and the dispersity (d90 / d10) is the particle size when the cumulative volume with respect to the volume of all particles is 10% and 90%, respectively. 10% particle diameter (d10), 90% particle diameter (d90), and 90% particle diameter divided by 10% particle diameter. The shape of the resin fine particles is not limited to a spherical shape, and may be a particle having an elliptical cross section, or a deformed particle having a slight unevenness on the surface.

また、重合反応においては、撹拌翼の先端周速度(撹拌機の回転軸から最も離れた撹拌翼の端部の回転速度)が0.5〜2m/secの範囲で撹拌しながら重合する。撹拌翼の先端周速度が0.5〜2m/secの範囲で撹拌しながら重合することで、粒子同士が合着して重合体の粒子径が大きくなることを防ぐことができ、凝結ビーズの発生原因となる泡の発生を抑えることができるので好ましい。
撹拌翼の先端周速度が0.5m/sec未満の場合には、粒子同士が合着しやすくなり、重合で得られる重合体の粒径が大きくなるという問題が、また2m/secを超える場合、反応器内に泡が発生し、滞留した泡に浮いた樹脂微粒子が凝結ビーズになる虞がある。
In the polymerization reaction, polymerization is performed while stirring at a tip peripheral speed (rotational speed at the end of the stirring blade farthest from the rotating shaft of the stirrer) in the range of 0.5 to 2 m / sec . By polymerizing while stirring at a tip peripheral speed of 0.5 to 2 m / sec in the range of the stirring blade, it is possible to prevent the particles from being coalesced to increase the particle diameter of the polymer. Since generation | occurrence | production of the bubble used as a generation | occurrence | production cause can be suppressed, it is preferable.
When the tip peripheral speed of the stirring blade is less than 0.5 m / sec, the particles tend to coalesce, and the problem that the particle size of the polymer obtained by polymerization becomes larger is more than 2 m / sec. There is a possibility that bubbles are generated in the reactor and the resin fine particles floating in the staying bubbles become condensed beads.

以下に、本発明について実施例及び比較例を挙げて更に詳述する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.

実施例1
図2(1)に示す高速回転する撹拌機(エム・テクニック株式会社製のローター「R2」を使用。幅30.5mm)と微細な間隙のスリットをもつスクリーン(エム・テクニック株式会社製のスクリーン「S1.5−24」を使用。スリット幅1.5mm、スリット長さ12mmのスリット21個と、スリット幅1.5mm、スリット長さ24mmのスリット3個からなり、長さ24mmのスリット間に12mm長さのスリットが7個均等に配置されたもの。)で構成されている図1に示すような乳化装置を備えた円筒状容器1(幅180mm、高さ210mm)に、脱イオン水1350gを入れ、さらにピロリン酸ナトリウム22gを加えて溶解させた後、粉末状の塩化マグネシウム・6水和物40gを加え、室温で30分間撹拌して懸濁剤としてのピロリン酸マグネシウムスラリーを調製した。
Example 1
A screen with a high-speed rotating stirrer (rotor “R2” manufactured by M Technique Co., Ltd., width 30.5 mm) and a fine gap slit (screen manufactured by M Technique Co., Ltd.) shown in FIG. “S1.5-24” is used, consisting of 21 slits with a slit width of 1.5 mm and a slit length of 12 mm, and three slits with a slit width of 1.5 mm and a slit length of 24 mm, and between the slits with a length of 24 mm A cylindrical container 1 (width 180 mm, height 210 mm) equipped with an emulsifying device as shown in FIG. 1 is formed of 1350 g of deionized water. After adding 22 g of sodium pyrophosphate and dissolving, 40 g of powdered magnesium chloride hexahydrate is added and stirred at room temperature for 30 minutes for suspension. Magnesium pyrophosphate slurry as prepared.

次いで、上記調製されたピロリン酸マグネシウム含有水スラリーに、アルキルスルホン酸ナトリウム10%水溶液6.8gと、予めスチレンモノマー150gに、重合開始剤としてのt−ブチルパーオキシ2−エチルヘキサノエート0.45g、及びt−ブチルパーオキシ2−エチルヘキシルカーボネート0.15gを溶解させた溶液とを、撹拌機の先端周速度8m/sec(回転数5000rpm)で15分間、高速撹拌し、スチレンモノマーの液滴が微細分散した混合液を製造した。尚、混合液の温度は、30℃であった。また、撹拌機のモーター動力は0.8KWであった。   Next, 6.8 g of a 10% aqueous solution of sodium alkylsulfonate, 150 g of styrene monomer in advance, and t-butylperoxy 2-ethylhexanoate as a polymerization initiator were added to the above prepared magnesium pyrophosphate-containing water slurry. 45 g and a solution in which 0.15 g of t-butylperoxy 2-ethylhexyl carbonate was dissolved were stirred at a high speed for 15 minutes at a tip peripheral speed of 8 m / sec (rotation speed: 5000 rpm) to form droplets of styrene monomer. Produced a finely dispersed mixture. In addition, the temperature of the liquid mixture was 30 degreeC. The motor power of the stirrer was 0.8 KW.

次いで、該混合液を容積3000mlの重合反応槽に投入し、反応槽内を窒素ガスでパージした後、反応槽の撹拌翼の先端周速度0.63m/sec(回転数200rpm)で回転して撹拌しながら、1時間半を要して90℃まで昇温し、更に5時間を要して120℃まで昇温した。この間、90℃到達後から4時間経過後に窒素ガスを圧入し、反応槽内を0.5MPaまで加圧した。その後さらに、120℃で8時間保持した。続いて、4時間を要して30℃まで冷却し重合生成物を得た。   Next, the mixed solution was put into a polymerization reaction tank having a capacity of 3000 ml, the inside of the reaction tank was purged with nitrogen gas, and then rotated at a tip peripheral speed of 0.63 m / sec (rotation speed: 200 rpm) of the stirring blade of the reaction tank. While stirring, the temperature was raised to 90 ° C. over 1 hour and a half, and further raised to 120 ° C. over 5 hours. During this time, nitrogen gas was injected after 4 hours from the arrival at 90 ° C., and the inside of the reaction tank was pressurized to 0.5 MPa. Thereafter, the temperature was further maintained at 120 ° C. for 8 hours. Subsequently, it took 4 hours to cool to 30 ° C. to obtain a polymerization product.

次いで、重合生成物をろ過して得られた重合物に硝酸(5%)100mlを加えて撹拌することにより付着物を溶解させ、ろ過、水洗、乾燥して球状のスチレン樹脂を得た。得られた樹脂粒子は、レーザー回折式粒度分布測定装置により測定したところ、体積平均粒子径(d50)が4.4μmであり、分散度(d90/d10)は4.9であった。
平均粒子径(d50)及び分散度(d90/d10)は、先に記載した方法により測定した。尚、得られた樹脂粒子は球状であったため、測定に際しての測定装置の粒子の形状ファクターは1(球形)とした。
樹脂微粒子の10%粒子径に対する90%粒子径の比(d90/d10)(分散度)が、5未満を「◎」、5以上〜10未満を「○」、10以上を「×」と評価した。以下同様に評価した。
Next, 100 ml of nitric acid (5%) was added to the polymer obtained by filtering the polymerization product and stirred to dissolve the deposit, filtered, washed with water, and dried to obtain a spherical styrene resin. The obtained resin particles were measured by a laser diffraction type particle size distribution measuring apparatus. The volume average particle diameter (d50) was 4.4 μm and the dispersity (d90 / d10) was 4.9.
The average particle diameter (d50) and dispersity (d90 / d10) were measured by the method described above. In addition, since the obtained resin particle was spherical, the shape factor of the particle | grains of the measuring apparatus in the case of a measurement was set to 1 (spherical shape).
Ratio (d90 / d10) (dispersion degree) of 90% particle diameter to 10% particle diameter of resin fine particles is evaluated as “「 ”when less than 5,“ ◯ ”when 5 or more but less than 10 is evaluated as“ × ”. did. The same evaluation was made hereinafter.

実施例2
実施例1で使用したと同様の乳化装置を備えた円筒状容器(幅180mm、高さ210mm)に、脱イオン水900gを入れ、さらにピロリン酸ナトリウム 14.7gを加えて溶解させた後、粉末状の塩化マグネシウム・6水和物 26.7gを加え、室温で30分間撹拌して懸濁剤としてのピロリン酸マグネシウムスラリーを調製した。
Example 2
In a cylindrical container (width 180 mm, height 210 mm) equipped with the same emulsifying apparatus as used in Example 1, 900 g of deionized water was added, and 14.7 g of sodium pyrophosphate was added and dissolved, and then powdered. 26.7 g of magnesium chloride hexahydrate was added and stirred at room temperature for 30 minutes to prepare a magnesium pyrophosphate slurry as a suspending agent.

次いで、調製したピロリン酸マグネシウム含有水スラリーに、アルキルスルホン酸ナトリウム10%水溶液4.5gと、予めスチレンモノマー600gに重合開始剤としてのt−ブチルパーオキシ2−エチルヘキサノエート1.8g、及びt−ブチルパーオキシ2−エチルヘキシルカーボネート0.6gを溶解させた溶液とを撹拌機の先端周速度16m/sec(回転数1000rpm)で15分間、高速撹拌し、スチレンモノマーの液滴が微細分散した混合液を製造した。該混合液の重合は実施例1と同様行い、重合生物成物を得た。得られた重合生成物は実施例1と同様に処理して平均粒子径(d50)9.6μm及び分散度(d90/d10)4.8の樹脂微粒子を得た。 Then, to the prepared magnesium pyrophosphate-containing water slurry, 4.5 g of a 10% aqueous solution of sodium alkylsulfonate, 600 g of styrene monomer in advance, 1.8 g of t-butylperoxy 2-ethylhexanoate as a polymerization initiator, and The solution in which 0.6 g of t-butylperoxy 2-ethylhexyl carbonate was dissolved was stirred at high speed for 15 minutes at a tip peripheral speed of 16 m / sec (rotation speed: 1000 rpm), and styrene monomer droplets were finely dispersed. A mixture was produced. The mixture was polymerized in the same manner as in Example 1 to obtain a polymerized biological product. The obtained polymerization product was treated in the same manner as in Example 1 to obtain resin fine particles having an average particle size (d50) of 9.6 μm and a dispersity (d90 / d10) of 4.8.

実施例3
本実施例は、図4に示す連続微細化工程によりビニルモノマー含有水性懸濁液を微細化して重合に供する方法を示す。先ず、円筒状の混合槽11(幅180mm、高さ210mm)に、脱イオン水900gを入れ、さらにピロリン酸ナトリウム14.7gを加えて溶解させた後、粉末状の塩化マグネシウム・6水和物26.7gを加え、室温で30分間撹拌して懸濁剤としてのピロリン酸マグネシウムスラリーを調製した。
Example 3
The present example shows a method in which a vinyl monomer-containing aqueous suspension is refined by the continuous refinement process shown in FIG. 4 and used for polymerization. First, 900 g of deionized water is put into a cylindrical mixing tank 11 (width 180 mm, height 210 mm), and further 14.7 g of sodium pyrophosphate is added and dissolved, and then powdered magnesium chloride hexahydrate is added. 26.7 g was added and stirred at room temperature for 30 minutes to prepare a magnesium pyrophosphate slurry as a suspending agent.

次いで、調製したピロリン酸マグネシウム含有水スラリーに、アルキルスルホン酸ナトリウム10%水溶液4.5gと、予めスチレンモノマー600gに重合開始剤としてのt−ブチルパーオキシ2−エチルヘキサノエート1.8g及びt−ブチルパーオキシ2−エチルヘキシルカーボネート0.6gを溶解させた溶液を加え混合液を調製した。
図2(1)に示す高速回転する撹拌機(エム・テクニック株式会社製のローター「R2」を使用。幅30.5mm)と微小な間隙のスリットをもつスクリーン(エム・テクニック株式会社製のスクリーン「S1.5−24」を使用。スリット幅1.5mm、スリット長さ12mmのスリット21個と、スリット幅1.5mm、スリット長さ24mmのスリット3個からなり、長さ24mmのスリット間に12mm長さのスリットが7個均等に配置されたもの。)で構成されている図4に示す乳化装置10を備えた350cc円筒状容器12(幅72mm、高さ100mm)に、循環ポンプPで連続的に供給し、冷却水を循環させ容器内の温度を20℃に保持しながら撹拌機の先端周速度16m/sec(回転数10000rpm)で20分間、高速撹拌し、混合液を製造した。
Subsequently, to the prepared magnesium pyrophosphate-containing water slurry, 4.5 g of a 10% aqueous solution of sodium alkylsulfonate, 600 g of styrene monomer in advance, 1.8 g of t-butylperoxy 2-ethylhexanoate as a polymerization initiator, and t -A solution in which 0.6 g of butyl peroxy 2-ethylhexyl carbonate was dissolved was added to prepare a mixed solution.
A screen with a high-speed agitator (rotor “R2” manufactured by M Technique Co., Ltd., width 30.5 mm) and a minute gap slit (screen manufactured by M Technique Co., Ltd.) shown in FIG. “S1.5-24” is used, consisting of 21 slits with a slit width of 1.5 mm and a slit length of 12 mm, and three slits with a slit width of 1.5 mm and a slit length of 24 mm, and between the slits with a length of 24 mm 4) A 350 cc cylindrical container 12 (width 72 mm, height 100 mm) provided with the emulsifying device 10 shown in FIG. Continuously supplied, circulating the cooling water and maintaining the temperature in the container at 20 ° C. for 20 minutes at the tip peripheral speed of 16 m / sec (rotation speed 10000 rpm) of the stirrer, Stir at high speed to produce a mixture.

次いで、製造した混合液を液出口バルブVを開き、重合反応槽(図示しない)へ導き、撹拌翼の先端周速度1.26m/sec(回転数400rpm)で回転して撹拌しながら重合させた。重合反応終了後は、実施例1と同様に処理して樹脂微粒子を得た。得られた樹脂粒子の平均粒子径(d50)は3.9μm、分散度(d90/d10)は3.9であった。   Next, the liquid mixture produced was opened, the liquid outlet valve V was opened, the polymerization mixture was introduced into a polymerization reaction tank (not shown), and the mixture was polymerized while being stirred at a tip blade peripheral speed of 1.26 m / sec (rotation speed: 400 rpm). . After completion of the polymerization reaction, resin fine particles were obtained in the same manner as in Example 1. The obtained resin particles had an average particle diameter (d50) of 3.9 μm and a dispersity (d90 / d10) of 3.9.

実施例4
実施例3と同様連続法により微細化した。実施例3と同様にして懸濁剤としてのピロリン酸マグネシウムスラリーを調製した。
次いで、調製したピロリン酸マグネシウム含有水スラリーに、アルキルスルホン酸ナトリウム10%水溶液4.5gと、予めメタクリル酸メチル240g、スチレンモノマー360gに、重合開始剤としてのt−ブチルパーオキシ2−エチルヘキサノエート1.8g及びt−ブチルパーオキシ2−エチルヘキシルカーボネート0.6gを溶解させた溶液を加え混合液を調製した。
該混合液を実施例3と同様の乳化装置に循環ポンプで1L/minの速度で連続的に供給し、液出口バルブ開き度を調整して容器内の圧力を0.03MPaとし、冷却水を循環させながら容器内温度を10℃に保持し、ローターの先端周速度24m/sec(回転数15000rpm)で10分間高速攪拌して混合液を製造した。
Example 4
It refined | miniaturized by the continuous method like Example 3. FIG. In the same manner as in Example 3, a magnesium pyrophosphate slurry as a suspension was prepared.
Next, 4.5 g of sodium alkylsulfonate 10% aqueous solution, 240 g of methyl methacrylate in advance, and 360 g of styrene monomer were added to the prepared magnesium pyrophosphate-containing water slurry, and t-butylperoxy 2-ethylhexanoate as a polymerization initiator was added. A solution in which 1.8 g of ate and 0.6 g of t-butylperoxy 2-ethylhexyl carbonate were dissolved was added to prepare a mixed solution.
The mixed solution is continuously supplied to the same emulsifying apparatus as in Example 3 at a rate of 1 L / min with a circulation pump, the degree of opening of the liquid outlet valve is adjusted so that the pressure in the container is 0.03 MPa, and the cooling water is supplied. While circulating, the temperature inside the container was maintained at 10 ° C., and the mixture was prepared by stirring at high speed for 10 minutes at a rotor tip peripheral speed of 24 m / sec (rotation speed: 15000 rpm).

次いで、製造した混合液を液出口バルブVを開き、重合反応槽へ導き、撹拌翼の先端周速度0.95m/sec(回転数300rpm)で回転して撹拌しながら重合させた。重合反応終了後は、実施例1と同様に処理して樹脂微粒子を得た。得られた樹脂粒子の平均粒子径(d50)は3.5μm、分散度(d90/d10)は3.4であった。   Next, the produced liquid mixture was opened to the liquid outlet valve V, led to the polymerization reaction tank, and polymerized while being stirred while rotating at a tip peripheral speed of 0.95 m / sec (rotation speed: 300 rpm). After completion of the polymerization reaction, resin fine particles were obtained in the same manner as in Example 1. The obtained resin particles had an average particle diameter (d50) of 3.5 μm and a dispersity (d90 / d10) of 3.4.

実施例5
実施例3と同様連続法により微細化した。実施例3と同様にして懸濁剤としてのピロリン酸マグネシウムスラリーを調製した。
次いで、このピロリン酸マグネシウムスラリー含有水スラリーに、アルキルスルホン酸ナトリウム10%水溶液4.5gと、予めメタクリル酸メチル600gに重合開始剤としてのt−ブチルパーオキシ2−エチルヘキサノエート1.8g及びt−ブチルパーオキシ2−エチルヘキシルカーボネート0.6gを溶解させた溶液を、実施例3と同様の乳化装置に循環ポンプPで1L/minの速度で連続的に供給し、液出口のバルブ開き度を調整して容器内の圧力を0.06MPaに調整し、冷却水を循環させ容器内の温度を20℃に保持しながら、撹拌機の先端周速度32m/sec(回転数20000rpm)で5分間、高速撹拌し、モノマーが微細に分散した混合液を製造した。
Example 5
It refined | miniaturized by the continuous method like Example 3. FIG. In the same manner as in Example 3, a magnesium pyrophosphate slurry as a suspension was prepared.
Next, to this water slurry containing magnesium pyrophosphate slurry, 4.5 g of a 10% aqueous solution of sodium alkyl sulfonate, 600 g of methyl methacrylate in advance, 1.8 g of t-butylperoxy 2-ethylhexanoate as a polymerization initiator, and A solution in which 0.6 g of t-butylperoxy 2-ethylhexyl carbonate was dissolved was continuously supplied to the same emulsifying apparatus as in Example 3 at a rate of 1 L / min with the circulation pump P, and the valve opening degree at the liquid outlet To adjust the pressure in the container to 0.06 MPa, circulate cooling water and maintain the temperature in the container at 20 ° C., while maintaining the tip peripheral speed of 32 m / sec (rotation speed 20000 rpm) for 5 minutes. Then, the mixture was stirred at a high speed to prepare a mixed liquid in which the monomers were finely dispersed.

次いで製造した混合液を、重合反応槽に導入し反応槽の撹拌翼の先端周速度0.63m/sec(回転数200rpm)で回転して撹拌しながら重合する以外は、実施例3と同様にして樹脂微粒子を得た。得られた樹脂粒子の平均粒子径(d50)は3.0μm、分散度(d90/d10)は2.9であった。 Subsequently , the produced mixed liquid was introduced into a polymerization reaction tank , and the polymerization was performed while stirring at a tip peripheral speed of the reaction tank at a tip peripheral speed of 0.63 m / sec (rotation number: 200 rpm). Thus, resin fine particles were obtained. The obtained resin particles had an average particle size (d50) of 3.0 μm and a dispersity (d90 / d10) of 2.9.

比較例4
実施例3と同様に円筒状の混合槽11(幅180mm、高さ210mm)に、脱イオン水1000gを入れ、さらにピロリン酸ナトリウム16.2gを加えて溶解させた後、粉末状の塩化マグネシウム・6水和物29.6gを加え、室温で30分間撹拌して懸濁剤としてのピロリン酸マグネシウムスラリーを調製した。
Comparative Example 4
In the same manner as in Example 3, 1000 g of deionized water was placed in a cylindrical mixing vessel 11 (width 180 mm, height 210 mm), and further 16.2 g of sodium pyrophosphate was added and dissolved. 29.6 g of hexahydrate was added and stirred at room temperature for 30 minutes to prepare a magnesium pyrophosphate slurry as a suspending agent.

次いで、このピロリン酸マグネシウムスラリー含有水スラリーに、アルキルスルホン酸ナトリウム10%水溶液5.0gと、予めスチレンモノマー500gに重合開始剤としてのt−ブチルパーオキシ2−エチルヘキサノエート1.5g及びt−ブチルパーオキシ2−エチルヘキシルカーボネート0.5gを溶解させた溶液を、実施例3に用いたと同様の乳化装置に、循環ポンプPで1L/minの速度で連続的に供給し、液出口のバルブ開き度を調整して容器内の圧力を0.01MPaに保持しながら、ローターの先端周速度32m/sec(回転数20000rpm)で15分間、高速撹拌し混合液を製造した。尚、混合液の温度は、50℃であった。
次いで、製造した混合液を、重合反応槽に導入し反応槽の撹拌翼の先端周速度2.2m/sec(回転数700rpm)で回転して撹拌しながら重合する他は、実施例3と同様にして樹脂微粒子を得た。得られた樹脂粒子の平均粒子径(d50)は16.2μm、分散度(d90/d10)は9.2であった。
Next, to this water slurry containing magnesium pyrophosphate slurry, 5.0 g of a 10% aqueous solution of sodium alkylsulfonate, 500 g of styrene monomer in advance, 1.5 g of t-butylperoxy 2-ethylhexanoate as a polymerization initiator and t -A solution in which 0.5 g of butyl peroxy 2-ethylhexyl carbonate was dissolved was continuously supplied to the same emulsifying apparatus as used in Example 3 at a rate of 1 L / min with the circulation pump P, and the valve at the liquid outlet While maintaining the pressure in the container at 0.01 MPa by adjusting the degree of opening, the mixture was manufactured by stirring at high speed for 15 minutes at a rotor tip peripheral speed of 32 m / sec (rotation speed 20000 rpm). The temperature of the mixed solution was 50 ° C.
Subsequently, the produced mixed liquid is introduced into a polymerization reaction tank, and the polymerization is performed while stirring and rotating at a tip peripheral speed of 2.2 m / sec (rotation number: 700 rpm) of the stirring blade of the reaction tank. Thus, resin fine particles were obtained. The obtained resin particles had an average particle diameter (d50) of 16.2 μm and a dispersity (d90 / d10) of 9.2.

比較例1
図5に示すような高速回転する撹拌機101(幅30.5mm)とそれを取り囲むべく配置された固定環(ステータ)102とで構成される従来の乳化装置を用い、撹拌機の先端周速度8m/sec(回転数5000rpm)で15分間、高速撹拌して製造した混合液を重合する他は実施例1と同様にして樹脂微粒子を得た。得られた樹脂粒子の平均粒子径(d50)は11.9μm、分散度(d90/d10)は14.0であった。
Comparative Example 1
Using a conventional emulsifying device composed of a stirrer 101 (width 30.5 mm) rotating at a high speed and a stationary ring (stator) 102 arranged so as to surround it as shown in FIG. Resin fine particles were obtained in the same manner as in Example 1 except that the mixed solution produced by high-speed stirring at 8 m / sec (rotation speed 5000 rpm) for 15 minutes was polymerized. The obtained resin particles had an average particle diameter (d50) of 11.9 μm and a dispersity (d90 / d10) of 14.0.

比較例2
比較例1と同様の乳化装置で撹拌機の先端周速度16m/sec(回転数10000rpm)で15分間、高速撹拌して製造した混合液を重合する他は実施例2と同様にして樹脂微粒子を得た。得られた樹脂粒子の平均粒子径(d50)は53.9μm、分散度(d90/d10)は12.5であった。
Comparative Example 2
Resin fine particles were polymerized in the same manner as in Example 2 except for polymerizing the mixed solution produced by high-speed stirring for 15 minutes at the tip peripheral speed of 16 m / sec (rotation speed: 10000 rpm) with the same emulsifier as in Comparative Example 1. Obtained. The obtained resin particles had an average particle size (d50) of 53.9 μm and a dispersity (d90 / d10) of 12.5.

比較例3
実施例1に使用したと同じ乳化装置を用い、撹拌機の先端周速度4m/sec(回転数2500rpm)で15分間、高速撹拌して製造した混合液を重合する他は実施例1と同様にして樹脂微粒子を得た。得られた樹脂粒子の平均粒子径(d50)は34.5μm、分散度(d90/d10)は13.8であった。
Comparative Example 3
The same emulsification apparatus as used in Example 1 was used, and the mixed liquid produced by high-speed stirring for 15 minutes at a tip peripheral speed of 4 m / sec (rotation speed 2500 rpm) was polymerized in the same manner as in Example 1. Thus, resin fine particles were obtained. The obtained resin particles had an average particle diameter (d50) of 34.5 μm and a dispersity (d90 / d10) of 13.8.

以上の各実施例及び各比較例における、樹脂微粒子の50%粒子径(d50)、10%粒子径に対する90%粒子径の比(d90/d10)を表1、2に示した。尚、表1及び表2中のO/Wは、水に対する単量体の重量比を意味する。
表1、2より、本発明の樹脂微粒子は、水性媒体に対するビニル系単量体の重量比(O/W)が大きい条件でも、粒子径分布の狭い樹脂微粒子を効率よく製造することができることが分かる。
Tables 1 and 2 show the 50% particle diameter (d50) of resin fine particles and the ratio of 90% particle diameter to 10% particle diameter (d90 / d10) in each of the above Examples and Comparative Examples. In addition, O / W in Table 1 and Table 2 means the weight ratio of the monomer with respect to water.
From Tables 1 and 2, the resin fine particles of the present invention can efficiently produce resin fine particles with a narrow particle size distribution even under conditions where the weight ratio (O / W) of the vinyl monomer to the aqueous medium is large. I understand.

Figure 0004817358
Figure 0004817358

Figure 0004817358
Figure 0004817358

本発明の乳化装置の一例を示す概要図。The schematic diagram which shows an example of the emulsification apparatus of this invention. 本発明の乳化装置の撹拌機を示し、(1)は撹拌機の側面図を示し、(2)は同撹拌機による液の流れを示す。(3)は翼の形状が異なる別の態様の撹拌機の側面図を示す。The agitator of the emulsifying device of the present invention is shown, (1) shows a side view of the agitator, and (2) shows the flow of liquid by the agitator. (3) shows a side view of another embodiment of a stirrer having a different blade shape. 本発明の乳化装置のスクリーンの一例を示す。An example of the screen of the emulsification apparatus of this invention is shown. 本発明における連続微細化工程の一例を示す。An example of the continuous refinement | miniaturization process in this invention is shown. 従来の撹拌機と固定環を備えた乳化装置を示す。The emulsification apparatus provided with the conventional stirrer and stationary ring is shown.

符号の説明Explanation of symbols

1 円筒状容器
2 撹拌機
21 翼
3 スクリーン
4 液吸込み口
5 スリット
6、10 乳化装置
7 液の流れ
11 混合槽
12 円筒状容器
13 導管
100 円筒状容器
101 撹拌機(タービン)
102 固定環(ステータ)
103 液吸込口
104 液吐出口
105 転流板
106 液の流れ
M モーター
d1 撹拌機幅
d2 容器幅
d3 スリット幅
h1 液面高さ
a 軸方向流
b 遠心方向流
c 吐出流路
DESCRIPTION OF SYMBOLS 1 Cylindrical container 2 Stirrer 21 Wing | blade 3 Screen 4 Liquid inlet 5 Slit 6, 10 Emulsifier 7 Liquid flow 11 Mixing tank 12 Cylindrical container 13 Conduit 100 Cylindrical container 101 Stirrer (turbine)
102 Fixed ring (stator)
103 Liquid suction port 104 Liquid discharge port 105 Commutation plate 106 Liquid flow M Motor d1 Stirrer width d2 Container width d3 Slit width h1 Liquid surface height a Axial flow b Centrifugal flow c Discharge flow path

Claims (4)

ビニル系単量体を含む水性懸濁液を、高速回転する撹拌機と該撹拌機の外側に配置されたスリットをもつスクリーンで構成される乳化装置を備えた円筒状容器に供給し、撹拌機の先端周速度を少なくとも5m/secで撹拌を行い、ビニル系単量体の液滴を微細に分散させた混合液を製造し、次いで該混合液中のビニル系単量体の液滴を、重合反応槽の撹拌翼の先端周速度を0.5〜2m/secの範囲で撹拌しながら重合させることを特徴とするビニル系樹脂微粒子の製造方法。 An aqueous suspension containing a vinyl monomer is supplied to a cylindrical container equipped with an emulsifying device composed of a stirrer rotating at high speed and a screen having a slit disposed outside the stirrer. Is stirred at a tip peripheral speed of at least 5 m / sec to produce a mixed liquid in which vinyl monomer droplets are finely dispersed, and then the vinyl monomer droplets in the mixed liquid are A method for producing vinyl resin fine particles, wherein polymerization is performed while stirring at a tip peripheral speed of a stirring blade of a polymerization reaction tank in a range of 0.5 to 2 m / sec . 前記乳化装置を備えた円筒状容器内を液封状態にして、連続的にビニル系単量体の液滴を微細に分散させることを特徴とする請求項1に記載のビニル系樹脂微粒子の製造方法。   2. The production of vinyl resin fine particles according to claim 1, wherein the inside of the cylindrical container provided with the emulsifying device is liquid-sealed to continuously disperse the vinyl monomer droplets finely. Method. 前記乳化装置を備えた円筒状容器内を少なくとも0.005MPaに保持し、連続的にビニル系単量体の液滴を微細に分散させることを特徴とする請求項1又は2に記載のビニル系樹脂微粒子の製造方法。   The vinyl system according to claim 1 or 2, wherein the inside of the cylindrical container provided with the emulsifying device is maintained at least at 0.005 MPa, and droplets of the vinyl monomer are continuously finely dispersed. Production method of resin fine particles. 前記乳化装置を備えた円筒状容器内を5℃〜40℃に保持し、ビニル系単量体の液滴を微細に分散させることを特徴とする請求項1〜3のいずれかに記載のビニル系樹脂微粒子の製造方法。   The inside of the cylindrical container provided with the said emulsification apparatus is hold | maintained at 5 to 40 degreeC, and the droplet of a vinyl-type monomer is disperse | distributed finely, The vinyl in any one of Claims 1-3 characterized by the above-mentioned. For producing resin-based resin fine particles.
JP2005114417A 2005-04-12 2005-04-12 Method for producing vinyl resin fine particles Expired - Fee Related JP4817358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114417A JP4817358B2 (en) 2005-04-12 2005-04-12 Method for producing vinyl resin fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114417A JP4817358B2 (en) 2005-04-12 2005-04-12 Method for producing vinyl resin fine particles

Publications (2)

Publication Number Publication Date
JP2006291058A JP2006291058A (en) 2006-10-26
JP4817358B2 true JP4817358B2 (en) 2011-11-16

Family

ID=37411974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114417A Expired - Fee Related JP4817358B2 (en) 2005-04-12 2005-04-12 Method for producing vinyl resin fine particles

Country Status (1)

Country Link
JP (1) JP4817358B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167458B2 (en) * 1992-11-02 2001-05-21 花王株式会社 Method for producing monodisperse polymer beads
JPH08305084A (en) * 1995-03-03 1996-11-22 Nippon Zeon Co Ltd Production of toner for developing electrostatic charge image
JP2002221824A (en) * 2001-01-26 2002-08-09 Nippon Zeon Co Ltd Method for producing toner by polymerization method
JP2003173044A (en) * 2001-12-05 2003-06-20 Konica Corp Toner for developing electrostatic charge image, method for producing the same and image forming method
JP3982326B2 (en) * 2002-05-22 2007-09-26 東ソー株式会社 Method for producing vinyl chloride polymer latex for paste processing

Also Published As

Publication number Publication date
JP2006291058A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JPH04363303A (en) Continuous polymerization and apparatus therefor
KR100638631B1 (en) agitator wing and agitator and fabricating method of polymer using thereof
WO1999037706A1 (en) Expandable microspheres and process for producing the same
US6140394A (en) Method and apparatus of suspension polymerization
JP4817358B2 (en) Method for producing vinyl resin fine particles
JPH07278210A (en) Production of emulsion
JP2002221824A (en) Method for producing toner by polymerization method
JP4247147B2 (en) Production method of monodisperse resin particles
JPH08109208A (en) Production of seed particle for emulsion polymerization and continuous multistage emulsion polymerization process
JP3897020B2 (en) Method for producing methacrylic resin particles
JPH07292002A (en) Production of polymer latex
JPH06287203A (en) Production of vinyl chloride resin
JP2832867B2 (en) Suspension polymerization method
JP3380131B2 (en) Method for producing polymer particles
JPH0971603A (en) Coagulation enlargement of diene-based polymer rubber latex, graft copolymer and thermoplastic resin composition
JPH0343402A (en) Suspension polymerization
JP2533020B2 (en) Suspension polymerization method
JP2011213768A (en) Manufacturing apparatus of fine particle
JP3739280B2 (en) Method for producing resin fine particles
JPH05155907A (en) Method for producing methacrylic resin particles
JPH01289802A (en) Preparation of polymer bead
JP4407694B2 (en) Method for producing fine methacrylic resin particles
JPH06102683B2 (en) Suspension polymerization method
JPH0356501A (en) Suspension polymerization
JPH03247601A (en) Suspension polymerization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees