JP4817294B2 - Method for selective reduction of nitrogen oxides - Google Patents
Method for selective reduction of nitrogen oxides Download PDFInfo
- Publication number
- JP4817294B2 JP4817294B2 JP2005349896A JP2005349896A JP4817294B2 JP 4817294 B2 JP4817294 B2 JP 4817294B2 JP 2005349896 A JP2005349896 A JP 2005349896A JP 2005349896 A JP2005349896 A JP 2005349896A JP 4817294 B2 JP4817294 B2 JP 4817294B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reaction
- temperature
- nox
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Description
酸素残存雰囲気中での還元剤を用いた窒素酸化物(NOx)の選択還元方法に関するものである。 The present invention relates to a selective reduction method of nitrogen oxide (NOx) using a reducing agent in an oxygen residual atmosphere.
酸素が残存する各種排ガス中の窒素酸化物の触媒による除去法として、アンモニア、炭化水素、一酸化炭素、水素、含酸素化合物、含窒素化合物を還元剤として用いる選択還元法が提案され、関連する多数の特許および論文が報告されている。 A selective reduction method using ammonia, hydrocarbons, carbon monoxide, hydrogen, oxygen-containing compounds, and nitrogen-containing compounds as reducing agents has been proposed as a method for removing nitrogen oxides in various exhaust gases in which oxygen remains, and is related. A number of patents and papers have been reported.
従来から知られている還元剤を使用した窒素酸化物除去法では、触媒床の温度が均一な条件を想定して行われている。自動車排ガス等にみられる処理操作では必然的にこの操作範囲を離れた条件下に使用することがあり、処理反応温度は、触媒が有効に作用する活性な温度範囲を逸脱することがあり、十分なNOx除去効率が得られなばかりでなく、反応を効率的に進めることができない問題がおきることがある。この場合には触媒は有効に作用せず、このような場合に対処する解決策は十分に解決されていない。 In the conventionally known nitrogen oxide removal method using a reducing agent, the temperature of the catalyst bed is assumed to be uniform. In the treatment operation seen in automobile exhaust gas, etc., it may be inevitably used under conditions that are outside this operation range, and the treatment reaction temperature may deviate from the active temperature range where the catalyst works effectively. In addition to being able to obtain a high NOx removal efficiency, there may be a problem that the reaction cannot proceed efficiently. In this case, the catalyst does not work effectively, and the solution to deal with such a case has not been sufficiently solved.
工業生産の分野では、反応をできるだけ定常的に行うこととし、反応器内の温度分布は、反応器入口を低くし反応器出口に対して正の温度勾配を設けて炭化水素の分解反応の効率を向上せしめ、反応をできるだけ一定の条件下に進めている。具体的な反応としては、「正の温度勾配を有する炭化水素分解」(特許文献1)であり、「炭化水素の熱接触分解による水素の製造方法及びその装置」(特許文献2)である。
これらは、いずれも工業生産においては定常的に進行する発熱反応を行うためのものであり、反応ガスの入口温度は一定に保たれており、排ガス処理などに見られる突発的な変化に対して対応するためのものではなく、もっぱら発熱反応を安定条件下に継続して行うためのものである。
In the field of industrial production, the reaction is carried out as steady as possible, and the temperature distribution in the reactor is such that the reactor inlet is lowered and a positive temperature gradient is provided with respect to the reactor outlet to improve the efficiency of hydrocarbon cracking reaction. The reaction is carried out under as constant conditions as possible. A specific reaction is “hydrocarbon cracking with a positive temperature gradient” (Patent Document 1), and “method and apparatus for producing hydrogen by thermal catalytic cracking of hydrocarbons” (Patent Document 2).
These are all for performing exothermic reactions that proceed constantly in industrial production, and the inlet temperature of the reaction gas is kept constant, and against sudden changes seen in exhaust gas treatment etc. It is not for responding, but exclusively for carrying out the exothermic reaction continuously under stable conditions.
還元剤とNOxを触媒の存在下に処理するに際して、触媒床の温度が均一な条件をはずれる場合でも一定の条件下に処理することが行われることが要求される。自動車排ガス等にみられる処理操作では必然的にこの操作範囲を離れた条件下に使用することがあり、このような条件においても一定の処理をすることができる処理方法の開発が望まれている。
本発明の解決しようとする課題は、還元剤とNOxを触媒の存在下に処理するに際して、触媒床の温度が均一な条件をはずれる場合でも、このような条件においても一定の条件の温度下に処理でき、効率よく反応を進めることができる処理方法を提供することである。 The problem to be solved by the present invention is that when the reducing agent and NOx are treated in the presence of a catalyst, even when the temperature of the catalyst bed is out of a uniform condition, even under such a condition, the temperature is kept under a certain condition. It is possible to provide a processing method that can be processed and can efficiently proceed with the reaction.
上記の問題点を解決するために研究を行った結果、触媒反応層内に反応成分の流れに対して、触媒反応器の入口温度を低い温度とし、出口温度を高い温度になるよう正の温度となるように勾配となるように設定する、具体的には、処理ガスの反応器入口温度が150〜300℃であり、反応器出口温度が350〜600℃に保たれているようにすると、還元剤を用いたNOxの選択的還元除去反応において反応条件の急変に対応して還元剤の利用効率を向上できることを見出した。また、その際に、触媒反応器が反応ガス流れの正方向に対して反応管内径の少なくとも5倍以上の長さを有するようにすることが有効である。 As a result of research conducted to solve the above problems, a positive temperature is set so that the inlet temperature of the catalytic reactor is low and the outlet temperature is high with respect to the flow of reaction components in the catalytic reaction layer. Specifically, the reactor inlet temperature of the processing gas is 150 to 300 ° C, and the reactor outlet temperature is maintained at 350 to 600 ° C. In the selective reduction and removal reaction of NOx using a reducing agent, it was found that the utilization efficiency of the reducing agent can be improved in response to a sudden change in reaction conditions. In this case, it is effective that the catalytic reactor has a length at least 5 times the inner diameter of the reaction tube with respect to the positive direction of the reaction gas flow.
本発明によれば、以下の発明が提供される。
窒素酸化物(NOx)を含む自動車用排ガスを、水素、一酸化炭素、飽和および不飽和脂肪族炭化水素、芳香族系炭化水素、含酸素有機化合物及び含窒素有機化合物から選ばれる少なくとも1成分以上を含む還元剤とともに触媒反応器中に供給し、この触媒反応器は反応ガス流れの正方向に対して反応管内径の少なくとも5倍以上の長さを有する触媒反応器であり、Pt金属成分0.01から2.0重量%をZSM−5金属酸化物に担持させた触媒を充填し、触媒反応器入口温度が150〜300℃、触媒反応器出口温度が350〜600℃に保持されており、前記窒素酸化物(NOx)を含む自動車用排ガスを窒素ガスとして取り出すことを特徴とする排ガスに含まれる窒素酸化物(NOx)の還元方法。
According to the present invention, the following inventions are provided.
At least one component selected from hydrogen, carbon monoxide, saturated and unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, oxygen-containing organic compounds, and nitrogen-containing organic compounds , for automobile exhaust gas containing nitrogen oxides (NOx) fed into the catalytic reactor with a reducing agent containing, the catalytic reactor is a catalytic reactor having at least 5 times the length of the reaction tube inner diameter with respect to the positive direction of the reaction gas flow,
本発明の方法によれば、同じ触媒を用いた温度が均一な触媒床と比べて高い安定したNOx除去率が得られる。
本発明の方法は、自動車排ガス等の幅広い温度変化のある排ガス処理において有効であり、NOx除去率を高めるものであり、リーンバーンガソリン車、ディーゼル車双方の排ガス浄化コンバーターとして利用できる。
According to the method of the present invention, a stable NOx removal rate can be obtained which is higher than that of a catalyst bed having a uniform temperature using the same catalyst.
The method of the present invention is effective in exhaust gas treatment with a wide range of temperature changes such as automobile exhaust gas, increases NOx removal rate, and can be used as an exhaust gas purification converter for both lean burn gasoline vehicles and diesel vehicles.
本発明では、還元剤を使用した窒素酸化物除去触媒を有する触媒反応層からなる触媒反応器を用いる。
NOxガスを含む排ガスは、還元剤ガスと共に反応ガスとして触媒反応器に供給し、触媒反応器内で排ガスに含まれるNOxはN2ガスに還元処理される。この処理のために反応ガス流れの正方向に対して一定の長さが必要である。反応ガス流れの正方向に対して反応管内径の少なくとも5倍以上の長さを有することが必要である。5倍未満の場合には反応は十分に進行せず、満足する結果は得られない。これを越す場合には前記反応は反応を完結させることができる。反応が定常的に完結することができるための安全を見込んで、これを越すことが必要であるが、不必要に長くする必要はない。不必要に長くすると反応が完結せず、経済的な意味を有しない結果となる場合がある。このことから、10倍を超える場合について意味を有していない。
これは実験的に定めることができることがらである。
In the present invention, a catalytic reactor comprising a catalytic reaction layer having a nitrogen oxide removing catalyst using a reducing agent is used.
The exhaust gas containing NOx gas is supplied to the catalytic reactor as a reaction gas together with the reducing agent gas, and NOx contained in the exhaust gas is reduced to N 2 gas in the catalytic reactor. For this treatment, a certain length is required with respect to the positive direction of the reaction gas flow. It is necessary to have a length at least 5 times the inner diameter of the reaction tube with respect to the positive direction of the reaction gas flow. If it is less than 5 times, the reaction does not proceed sufficiently and satisfactory results cannot be obtained. If this is exceeded, the reaction can complete the reaction. It is necessary to surpass this in anticipation of safety so that the reaction can be completed steadily, but it need not be unnecessarily long. If it is unnecessarily long, the reaction may not be completed and may not have an economic meaning. For this reason, there is no meaning for the case of exceeding 10 times.
This can be determined experimentally.
前記反応は発熱反応であり、エンジンから出た排ガスは、触媒反応器に供給される。触媒反応器に導かれる排ガスは途中で冷却後、供給されることもあれば、格別冷却手段で冷却されることなく供給されることもある。触媒反応器の入口温度を低い温度とし、出口温度を高い温度になるように温度勾配を設定する。触媒層最後尾(触媒層出口)を電気炉の温度が最も高くなる位置に設置することで、触媒層入口から出口に向けて正の温度勾配を有するようにすることができる。
触媒層温度は、入口反応ガス温度の変化によらないものであり、出口触媒層温度に注目して、出口温度制御する。本発明の実証試験では、電気炉温度を制御し、同出口温度が350〜600℃となるように制御する。これは処理ガスが触媒層に供給されるときの温度であってよい。自動車用排ガス処理の触媒層として搭載する場合には電気系統の加熱手段を適用することにより、同様に出口温度範囲に維持することができる。この場合に反応ガスは、反応の進行につれて、この温度範囲を上昇して、出口温度に向かう。100℃以下の場合には、出口温度が前記範囲内で、かつ触媒層入口温度が150〜300℃になるように適宜加熱する。
The reaction is an exothermic reaction, and the exhaust gas emitted from the engine is supplied to the catalytic reactor. The exhaust gas guided to the catalytic reactor may be supplied after being cooled in the middle or may be supplied without being cooled by a special cooling means. The temperature gradient is set so that the inlet temperature of the catalyst reactor is low and the outlet temperature is high. By installing the tail end of the catalyst layer (catalyst layer outlet) at a position where the temperature of the electric furnace becomes the highest, it is possible to have a positive temperature gradient from the catalyst layer inlet to the outlet.
The catalyst layer temperature does not depend on the change in the inlet reaction gas temperature, and the outlet temperature is controlled by paying attention to the outlet catalyst layer temperature. In the demonstration test of the present invention, the electric furnace temperature is controlled so that the outlet temperature is 350 to 600 ° C. This may be the temperature at which the process gas is supplied to the catalyst layer. In the case of mounting as a catalyst layer for exhaust gas treatment for automobiles, the outlet temperature range can be similarly maintained by applying heating means of an electric system. In this case, the reaction gas rises in this temperature range toward the exit temperature as the reaction proceeds. In the case of 100 ° C. or lower, heating is appropriately performed so that the outlet temperature is within the above range and the catalyst layer inlet temperature is 150 to 300 ° C.
反応ガスは、窒素酸化物(NOx)を含有している。窒素酸化物の含有量は500ppmから2000ppmの範囲である。
共存させる還元剤として水素、一酸化炭素、飽和および不飽和脂肪族炭化水素、芳香族系炭化水素、含酸素有機化合物および含窒素有機化合物から選ばれる少なくとも1成分以上を含む。
飽和および不飽和脂肪族炭化水素の炭素数は、1から15である。これらは直鎖状であってもよいし、分岐鎖を有していてもよい。不飽和脂肪族炭化水素は、二重結合を有する脂肪族炭化水素であり、二重結合は複数有していてもよい。
芳香族炭化水素は、芳香族系炭化水素を基本骨格に有する炭化水素であり、アルキル基を置換基として有していてもよい。具体的には、ベンゼン、トルエン、キシレンなどをあげることができる。
含酸素有機化合物は、酸素含有の脂肪族炭化水素がOH基で置換されたアルコール、又は酸素を介して結合しているエーテル、アルデヒド基を有する化合物である。具体的には、メタノール、エタノール、アセトアルデヒド、ジメチルエーテル、ジエチルエーテル等をあげることができる。
含窒素有機化合物は、シアノ基に置換されている脂肪族系炭化水素であり、具体的には、アセトニトリル、アクリロニトリルを挙げることができる。
これら還元剤の含有量は500ppm〜5000ppmである。
反応ガスには10%までO2が含まれている。
The reaction gas contains nitrogen oxide (NOx). The nitrogen oxide content is in the range of 500 ppm to 2000 ppm.
The reducing agent to be coexisted contains at least one component selected from hydrogen, carbon monoxide, saturated and unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, oxygen-containing organic compounds and nitrogen-containing organic compounds.
The saturated and unsaturated aliphatic hydrocarbons have 1 to 15 carbon atoms. These may be linear or may have a branched chain. The unsaturated aliphatic hydrocarbon is an aliphatic hydrocarbon having a double bond, and a plurality of double bonds may be present.
The aromatic hydrocarbon is a hydrocarbon having an aromatic hydrocarbon as a basic skeleton, and may have an alkyl group as a substituent. Specifically, benzene, toluene, xylene and the like can be mentioned.
The oxygen-containing organic compound is an alcohol in which an oxygen-containing aliphatic hydrocarbon is substituted with an OH group, or a compound having an ether or aldehyde group bonded through oxygen. Specifically, methanol, ethanol, acetaldehyde, dimethyl ether, diethyl ether and the like can be mentioned.
The nitrogen-containing organic compound is an aliphatic hydrocarbon substituted with a cyano group, and specific examples include acetonitrile and acrylonitrile.
The content of these reducing agents is 500 ppm to 5000 ppm.
The reaction gas contains up to 10% O 2 .
触媒反応器が反応ガス流れの正方向に対して反応管内径の少なくとも5倍以上の長さを有することが必要である。
触媒反応器中には以下の触媒が充填されている。
触媒中の金属成分としてPt、Pd、Rh、Ir、Cu、Co、Agから選ばれる成分を、金属酸化物成分として、シリカゲル、ゼオライト(ZSM-5、フェリエライト、モルデナイト)、又はAl2O3、TiO2、若しくはZrO2から選ばれる担体に担持した触媒である。
It is necessary that the catalytic reactor has a length of at least 5 times the inner diameter of the reaction tube with respect to the positive direction of the reaction gas flow.
The catalyst reactor is filled with the following catalyst.
A component selected from Pt, Pd, Rh, Ir, Cu, Co, and Ag as the metal component in the catalyst, and silica gel, zeolite (ZSM-5, ferrierite, mordenite), or Al 2 O 3 as the metal oxide component , TiO 2 , or ZrO 2 .
触媒である金属成分を担体に担持する場合には金属成分の割合が(0.01から2.0)重量%となる。ゼオライト触媒(Pt/ H-ZSM-5)に白金などの金属成分を担持させる(Pt坦持率=1.0wt%)。
触媒反応器に触媒を充填するときには反応層に充填する。一例を挙げると以下のとおりである。
この試料と希釈剤としての粒状シリカゲルもしくは粒状ゼオライトを1:9の割合で混合し(Pt触媒=0.5g、シリカゲルまたはゼオライト=4.5g)、内径10mmの管状リアクター内の反応成分流路方向の約6.5cm(シリカゲル混合試料)もしくは8.5cm(ゼオライト混合試料)の範囲にわたって充填した。
図1の左側は、本発明の触媒層内に正の温度勾配を設けた触媒反応器(後述する実施例1)を示している。
また、図1の右側は、従来の通常の温度勾配を持たない触媒反応器(後述する比較例1)を示している。
When the metal component as a catalyst is supported on the carrier, the ratio of the metal component is (0.01 to 2.0) wt%. A metal component such as platinum is supported on a zeolite catalyst (Pt / H-ZSM-5) (Pt support rate = 1.0 wt%).
When the catalyst is filled in the catalyst reactor, the reaction layer is filled. An example is as follows.
This sample was mixed with granular silica gel or granular zeolite as a diluent at a ratio of 1: 9 (Pt catalyst = 0.5 g, silica gel or zeolite = 4.5 g), and about the direction of the reaction component flow direction in the tubular reactor having an inner diameter of 10 mm. Packed over a range of 6.5 cm (silica gel mixed sample) or 8.5 cm (zeolite mixed sample).
The left side of FIG. 1 shows a catalytic reactor (Example 1 described later) in which a positive temperature gradient is provided in the catalyst layer of the present invention.
Further, the right side of FIG. 1 shows a conventional catalytic reactor ( Comparative Example 1 described later) having no ordinary temperature gradient.
この出口温度を、電気炉への設置位置をかえることにより、350〜600℃で制御する。 The outlet temperature is controlled at 350 to 600 ° C. by changing the installation position in the electric furnace.
反応器内における温度分布に応じた各成分の変化の割合は、図2に示すとおりである。
シリカゲル希釈試料を用いた場合の結果を図2に、ゼオライト希釈試料を用いた場合の結果を図3に示す。
N2の選択率の向上及びNOxの除去率は反応器出口に向かってよい結果を得ることができる。
The rate of change of each component according to the temperature distribution in the reactor is as shown in FIG.
FIG. 2 shows the results when the silica gel diluted sample is used, and FIG. 3 shows the results when the zeolite diluted sample is used.
Improved N 2 selectivity and NO x removal rate can give better results towards the reactor outlet.
以下、本発明の実施例を説明する。
粒状ゼオライト(H-ZSM-5)にH2PtCl6水溶液を含浸後500℃で焼成処理し、Ptを坦持したゼオライト触媒(Pt/H-ZSM-5)を得た(Pt坦持率=1.0wt%)。この試料と希釈剤としての粒状シリカゲルもしくは粒状ゼオライトを1:9の割合で混合し(Pt触媒=0.5g、シリカゲルまたはゼオライト=4.5g)、内径10mmの管状リアクター内の反応成分流路方向の約6.5cm(シリカゲル混合試料)もしくは8.5cm(ゼオライト混合試料)の範囲にわたって充填した(内径:触媒反応器の長さ=1対6.5、又は1対8.5)。
熱電対は触媒床の反応ガス入口部、中心部、出口部にそれぞれ設置した。触媒の設置状態は、図1左側に示す。触媒床の反応温度は、入口部が最も低く、出口部に向かって単調に上昇し、出口部で最も高くなった。NOx選択還元反応試験は流通反応条件で行い、温度調節器で設定した触媒加熱炉の各温度での定常状態におけるNOx転化率等を調べた。反応ガスとして1000ppmNOx+400ppm n-オクタン+10%O2(He希釈)を500ml/min流し、出口ガスはマイクロガスクロマトグラフ(CO2、N2を測定)およびガスセルを設置したFT-IR(NO、NO2を測定)で分析した。活性評価は次式に示すNOx(=NO+NO2)転化率およびN2選択率で行った。
図2は、本発明の温度勾配を設けた場合のPt/H-ZSM-5触媒(SiO2に担持した触媒)を用いて、NO-nC8H10-O2混合ガスにより処理した結果を示す。
図3は、本発明の温度勾配を設けた場合のPt/H-ZSM-5触媒(HZSM-5に担持した触媒)を用いて、NO-nC8H10-O2混合ガスにより処理した結果を示す。
結果の整理は以下の式によった。
NOx転化率=[NOx出口濃度(ppm)/NOx入口濃度(ppm)]×100(%)、
N2選択率=[(N2出口濃度×2(ppm))/生成物中の総N濃度(ppm)]×100(%)、
Examples of the present invention will be described below.
Particulate zeolite (H-ZSM-5) was impregnated with H 2 PtCl 6 aqueous solution and calcined at 500 ° C to obtain a zeolite catalyst carrying Pt (Pt / H-ZSM-5) (Pt support rate = 1.0 wt%). This sample was mixed with granular silica gel or granular zeolite as a diluent at a ratio of 1: 9 (Pt catalyst = 0.5 g, silica gel or zeolite = 4.5 g), and about the direction of the reaction component flow path in the tubular reactor having an inner diameter of 10 mm. Packed over a range of 6.5 cm (silica gel mixed sample) or 8.5 cm (zeolite mixed sample) (inner diameter: catalyst reactor length = 1 to 6.5, or 1 to 8.5).
Thermocouples were installed at the reaction gas inlet, center, and outlet of the catalyst bed, respectively. The installed state of the catalyst is shown on the left side of FIG. The reaction temperature of the catalyst bed was the lowest at the inlet, increased monotonically toward the outlet, and was highest at the outlet. The NOx selective reduction reaction test was conducted under flow reaction conditions, and the NOx conversion rate in the steady state at each temperature of the catalyst heating furnace set by the temperature controller was investigated. 1000mLNOx + 400ppm n-octane + 10% O 2 (He dilution) flows as the reaction gas at 500ml / min, and the outlet gas is FT-IR (NO, NO 2 with micro gas chromatograph (measures CO 2 and N 2 ) and gas cell. Analysis). The activity was evaluated based on the NOx (= NO + NO 2 ) conversion rate and N 2 selectivity shown in the following equation.
FIG. 2 shows the result of treatment with a NO-nC 8 H 10 —O 2 mixed gas using a Pt / H-ZSM-5 catalyst (catalyst supported on SiO 2 ) with the temperature gradient of the present invention. Show.
FIG. 3 shows the result of treatment with a NO-nC 8 H 10 -O 2 mixed gas using the Pt / H-ZSM-5 catalyst (catalyst supported on HZSM-5) with the temperature gradient of the present invention. Indicates.
The results were organized according to the following formula.
NOx conversion rate = [NOx outlet concentration (ppm) / NOx inlet concentration (ppm)] x 100 (%),
N 2 selectivity = [(N 2 outlet concentration x 2 (ppm)) / total N concentration in product (ppm)] x 100 (%),
実施例1において、Pt触媒をシリカゲルもしくはゼオライトで希釈せず、触媒床長さを約10mmと短くして触媒反応層内に温度勾配をもたせない以外は同様にして、NOx選択還元反応試験を行った。この結果を図4に示す。 In Example 1, the NOx selective reduction reaction test was conducted in the same manner except that the Pt catalyst was not diluted with silica gel or zeolite, the catalyst bed length was shortened to about 10 mm, and no temperature gradient was provided in the catalyst reaction layer. It was. The result is shown in FIG.
図2及び3と図4を比較すると、本発明の図2及び3では、従来の法方法である触媒床温度が均一の場合に比べ、触媒反応層内に正の温度勾配を設けることにより、NOx転化率が広い最高温度範囲において高い値をとる結果であることが分かる。さらにN2選択率も向上した。これらの結果より、NOx除去に対して最高活性を有するがその温度範囲が狭いPt触媒の活性温度領域を拡大することができることを示している。 Comparing FIGS. 2 and 3 with FIG. 4, in FIGS. 2 and 3 of the present invention, by providing a positive temperature gradient in the catalyst reaction layer as compared with the case where the catalyst bed temperature is uniform in the conventional method, It can be seen that the NOx conversion is a high value in a wide maximum temperature range. Furthermore, the N 2 selectivity was improved. These results indicate that the active temperature region of the Pt catalyst having the highest activity for NOx removal but a narrow temperature range can be expanded.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005349896A JP4817294B2 (en) | 2005-12-02 | 2005-12-02 | Method for selective reduction of nitrogen oxides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005349896A JP4817294B2 (en) | 2005-12-02 | 2005-12-02 | Method for selective reduction of nitrogen oxides |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007152213A JP2007152213A (en) | 2007-06-21 |
JP4817294B2 true JP4817294B2 (en) | 2011-11-16 |
Family
ID=38237236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005349896A Expired - Fee Related JP4817294B2 (en) | 2005-12-02 | 2005-12-02 | Method for selective reduction of nitrogen oxides |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4817294B2 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361525U (en) * | 1986-10-13 | 1988-04-23 | ||
JPH06343831A (en) * | 1993-06-08 | 1994-12-20 | Kao Corp | Exhaust gas purifying method and catalyst used therefor |
JP2674681B2 (en) * | 1994-03-09 | 1997-11-12 | 工業技術院長 | Method for removing nitrogen oxides in exhaust gas |
JPH08303232A (en) * | 1995-05-02 | 1996-11-19 | Nippondenso Co Ltd | Nitrogen oxides clarification device of internal combustion engine |
JP3252696B2 (en) * | 1996-03-01 | 2002-02-04 | 株式会社日本触媒 | Purification method of exhaust gas containing oxidizable nitrogen compound |
JP4216945B2 (en) * | 1999-04-19 | 2009-01-28 | 株式会社日本触媒 | Exhaust gas purification method |
JP2002113331A (en) * | 2000-10-10 | 2002-04-16 | Mitsubishi Heavy Ind Ltd | Method of denitration from exhaust gas and its system |
DE10261911A1 (en) * | 2002-12-30 | 2004-07-29 | Volkswagen Ag | Process for controlling the temperature of a catalytic converter and multi-cylinder engine with lambda-split exhaust gas cleaning system |
JP2004313840A (en) * | 2003-04-11 | 2004-11-11 | Kawamura Inst Of Chem Res | Temperature conducting device and temperature conducting method |
-
2005
- 2005-12-02 JP JP2005349896A patent/JP4817294B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007152213A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950008627B1 (en) | CATALYTIC REDUCTION OF NOx USING METHOD IN THE PRESENCE OF OXYGEN | |
JP5094717B2 (en) | Method and apparatus for combining catalysts for reducing NOx in combustion products | |
US7655203B2 (en) | Multi-component catalyst system and method for the reduction of NOx | |
NZ244172A (en) | Catalytic reduction of nox and co | |
Pereda-Ayo et al. | Control of NOx storage and reduction in NSR bed for designing combined NSR–SCR systems | |
JP2010540230A5 (en) | ||
Ren et al. | Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NOx with CH4 | |
US8178064B2 (en) | Treatment of power utilities exhaust | |
Amiridis et al. | The selective catalytic reduction of NO by propylene over Pt supported on dealuminated Y zeolite | |
Xu et al. | Recent advances in copper-based zeolite catalysts with low-temperature activity for the selective catalytic reduction of NO x with hydrocarbons | |
JPWO2012020743A1 (en) | Process for producing unsaturated hydrocarbon and dehydrogenation catalyst used in the process | |
Ohnishi et al. | Direct decomposition of NO on metal-loaded zeolites with coexistence of oxygen and water vapor under unsteady-state conditions by NO concentration and microwave rapid heating | |
Kusakari et al. | Selective oxidation of benzene to phenol with molecular oxygen on rhenium/zeolite catalysts | |
Zhao et al. | A [Cu2O2] 2+ core in Cu/ZSM-5 for efficient selective catalytic oxidation of nitrogen-containing VOCs and NH3 | |
CA2374647A1 (en) | Method for removing nitrogen oxides from an oxygen-containing gas stream | |
Wögerbauer et al. | Reduction of nitrogen oxides over unsupported iridium: effect of reducing agent | |
Ettireddy et al. | Low temperature SCR catalysts optimized for cold-start and low-load engine exhaust conditions | |
JP4817294B2 (en) | Method for selective reduction of nitrogen oxides | |
JP5261930B2 (en) | Gas purification method, gas purification catalyst, and exhaust gas purification device | |
WO2016083135A1 (en) | Removal of oxygen from hydrocarbon gases | |
EP3361878B1 (en) | Process for treating gaseous effluents developed in coffee roasting installation | |
US20100209329A1 (en) | Catalyst for producing ammonia from hydrocarbon and nitrogen oxides | |
NZ532218A (en) | Selective oxidation of a fluid stream using platinum group metals as catalysts | |
Poulopoulos | Catalytic oxidation of ethanol in the gas phase over Pt/Rh and Pd catalysts: kinetic study in a spinning-basket flow reactor | |
Guo et al. | Selective catalytic reduction of nitric oxide by propene over a Cu-Mn-CeOx/Al2O3/Al alumite catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110825 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |