[go: up one dir, main page]

JP4799113B2 - Electrochromic device and driving method thereof - Google Patents

Electrochromic device and driving method thereof Download PDF

Info

Publication number
JP4799113B2
JP4799113B2 JP2005292511A JP2005292511A JP4799113B2 JP 4799113 B2 JP4799113 B2 JP 4799113B2 JP 2005292511 A JP2005292511 A JP 2005292511A JP 2005292511 A JP2005292511 A JP 2005292511A JP 4799113 B2 JP4799113 B2 JP 4799113B2
Authority
JP
Japan
Prior art keywords
film
electrochromic
solid electrolyte
electron
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005292511A
Other languages
Japanese (ja)
Other versions
JP2007101947A (en
Inventor
義昭 石間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Corp
Original Assignee
Murakami Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corp filed Critical Murakami Corp
Priority to JP2005292511A priority Critical patent/JP4799113B2/en
Publication of JP2007101947A publication Critical patent/JP2007101947A/en
Application granted granted Critical
Publication of JP4799113B2 publication Critical patent/JP4799113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

この発明は、全固体型エレクトロクロミック(以下「EC」という。)素子の改良に関し、フォトクロミック現象による着色を防止したものである。また、この発明は、この改良されたEC素子の駆動方法に関する。   The present invention relates to an improvement in an all-solid-state electrochromic (hereinafter referred to as “EC”) element, which prevents coloring due to a photochromic phenomenon. The present invention also relates to an improved driving method of the EC element.

EC素子は、車両用防眩ミラー、車両用防眩メーターパネル、車両用あるいは建築用調光窓ガラス等として実用化され、あるいは実用化が検討されている。ここで、車両用防眩メーターパネルは、金属調文字盤を有する車両用メーターの前面に配置されるもので、太陽光の強さに応じて光の透過率を調整することにより、メーター文字盤からの反射光を低減して、眩しさを抑制するものである。   An EC element has been put into practical use as an antiglare mirror for vehicles, an antiglare meter panel for vehicles, a light control window glass for vehicles or for buildings, and the practical application is being studied. Here, the vehicular anti-glare meter panel is arranged in front of a vehicular meter having a metallic dial, and the meter dial is adjusted by adjusting the light transmittance according to the intensity of sunlight. The reflected light from the light is reduced to suppress glare.

従来のEC素子として、例えば下記特許文献1に記載されたものがある。その構成を図2に示す。透明基板22の上には、第一透明導電膜24、固体電解質膜(絶縁中間層)34、EC膜(電気発色層)26、第二透明導電膜28が順次積層成膜されて、全体として透過型のEC素子32を構成している。第一透明導電膜24と第二透明導電膜28との間には、電池30により駆動電圧が印加される。この駆動電圧の極性は、スイッチ36により切り換えられる。スイッチ36をC位置側に投入するとEC素子32は着色する。EC素子32が一旦着色すると、いわゆるメモリー性により、スイッチ36を開路して電池30をEC素子32から切り離しても、EC素子32の着色状態は維持される。一方、スイッチ36をB位置側に投入するとEC素子32は消色する。消色用の駆動電圧値はポテンショメータ37により調整される。EC素子32が一旦消色すると、メモリー性によりスイッチ36を開路して電池30をEC素子32から切り離しても、EC素子32の消色状態は維持される。   As a conventional EC element, for example, there is one described in Patent Document 1 below. The configuration is shown in FIG. On the transparent substrate 22, a first transparent conductive film 24, a solid electrolyte film (insulating intermediate layer) 34, an EC film (electrochromic layer) 26, and a second transparent conductive film 28 are sequentially stacked and formed as a whole. A transmissive EC element 32 is configured. A driving voltage is applied by the battery 30 between the first transparent conductive film 24 and the second transparent conductive film 28. The polarity of this drive voltage is switched by a switch 36. When the switch 36 is turned on to the C position side, the EC element 32 is colored. Once the EC element 32 is colored, even if the switch 36 is opened and the battery 30 is disconnected from the EC element 32 due to the so-called memory property, the colored state of the EC element 32 is maintained. On the other hand, when the switch 36 is turned on to the B position side, the EC element 32 is decolored. The erasing drive voltage value is adjusted by a potentiometer 37. Once the EC element 32 is decolored, the decolored state of the EC element 32 is maintained even if the switch 36 is opened due to memory characteristics and the battery 30 is disconnected from the EC element 32.

特公昭52−46098号公報(図2)Japanese Examined Patent Publication No. 52-46098 (FIG. 2)

図2のEC素子32は前述のようにメモリー性を有することが特徴である。図3(a)は図2のEC素子32の等価回路を示す。第一透明導電膜24は電子抵抗(電子伝導に作用する電気抵抗)Raとして表される。固体電解質膜34はイオン伝導性によるイオン抵抗(イオン伝導に作用する電気抵抗)RHと容量Chとの並列結合として表される。EC膜26はイオン伝導性によるイオン抵抗ΘWと拡散抵抗ZWを直列結合したものと、容量Cwとの並列結合として表される。第二透明導電膜28は電子抵抗Rbとして表される。EC膜26の拡散抵抗ZWは、EC膜26での過程が律速反応であることを示す。   The EC element 32 in FIG. 2 is characterized by having a memory property as described above. FIG. 3A shows an equivalent circuit of the EC element 32 of FIG. The first transparent conductive film 24 is expressed as electronic resistance (electric resistance acting on electronic conduction) Ra. The solid electrolyte membrane 34 is expressed as a parallel combination of ionic resistance (electric resistance acting on ionic conduction) RH and capacitance Ch due to ionic conductivity. The EC film 26 is expressed as a parallel combination of a series connection of an ion resistance ΘW and a diffusion resistance ZW due to ion conductivity and a capacitance Cw. The second transparent conductive film 28 is represented as an electronic resistance Rb. The diffusion resistance ZW of the EC film 26 indicates that the process in the EC film 26 is a rate-limiting reaction.

図3(a)の等価回路は図3(b)の等価回路に置き換えることができる。図3(b)の容量Cは図3(a)の容量Chと容量Cwに対応する。図3(b)の抵抗RWと容量CWは、図3(a)の拡散抵抗ZWに対応する。図3(b)によれば、このEC素子32が容量Cによりメモリー性を持つことがわかる。   The equivalent circuit in FIG. 3A can be replaced with the equivalent circuit in FIG. The capacity C in FIG. 3B corresponds to the capacity Ch and the capacity Cw in FIG. The resistor RW and the capacitor CW in FIG. 3B correspond to the diffusion resistor ZW in FIG. FIG. 3B shows that the EC element 32 has a memory property due to the capacitance C.

ここで、EC膜26は例えばWO(酸化タングステン)で構成されるが、WOはフォトクロミック性を有するため、屋外で使用する用途では、太陽光の照射を受けると、紫外線によりWO膜26の内部に自然電位が発生し、着色してしまう。すなわち、太陽光の照射を受けると、
hν(光エネルギー)→H(正孔)+e(電子)
の反応が起こり、Hと+eが生成される。さらに、
WO(無色)+xH+xe→HxWO(着色)
の反応となり、着色する。そして、一旦EC膜26が着色すると、その色は徐々に薄くなるものの、メモリー性があるために、消色電流を印加しなければ完全に消えることはない。このため、従来のEC素子32を屋外で使う場合には、紫外線による着色を防止するために、EC素子32の両電極膜24,28間に外部抵抗を接続するなどして、自然電位を逃がす必要がある。
Here, the EC film 26 is made of, for example, WO 3 (tungsten oxide). However, since WO 3 has photochromic properties, the WO 3 film 26 is exposed to ultraviolet rays when irradiated with sunlight in applications used outdoors. Natural potential is generated in the interior of the glass, resulting in coloration. In other words, when receiving sunlight,
hν (light energy) → H + (hole) + e (electron)
Reaction occurs, and H + and + e are generated. further,
WO 3 (colorless) + xH + + xe → HxWO 3 (colored)
The reaction becomes colored. Then, once the EC film 26 is colored, the color gradually becomes light, but because of the memory property, it does not disappear completely unless a decoloring current is applied. Therefore, when the conventional EC element 32 is used outdoors, the natural potential is released by connecting an external resistance between the electrode films 24 and 28 of the EC element 32 in order to prevent coloring due to ultraviolet rays. There is a need.

また、従来のEC素子32は、着消色を繰り返すと、固体電解質膜34からO(酸素)ガスまたはH(水素)ガスが発生し、固体電解質膜34とEC膜26との界面で膜剥離が生じることがある。特に、従来のEC素子32は、固体電解質膜34とEC膜26との密着性が低いため、この膜剥離は生じやすいものであった。 Further, when the conventional EC element 32 is repeatedly faded, O 2 (oxygen) gas or H 2 (hydrogen) gas is generated from the solid electrolyte film 34, and at the interface between the solid electrolyte film 34 and the EC film 26. Delaminating may occur. In particular, the conventional EC element 32 has low adhesion between the solid electrolyte membrane 34 and the EC membrane 26, and thus this film peeling is likely to occur.

この発明は、上述の点に鑑みてなされたもので、外部抵抗を使用せずにフォトクロミック現象による着色を防止し、かつ固体電解質膜とEC膜との界面での膜剥離を生じにくくしたEC素子を併せて提供しようとするものである。   The present invention has been made in view of the above-described points, and an EC element that prevents coloring due to a photochromic phenomenon without using an external resistor and hardly causes film peeling at the interface between the solid electrolyte film and the EC film. Is also intended to provide.

この発明のEC素子は、透明基板の上に、第一透明導電膜、多孔質状で電子リーク性(電子が漏れる性質であり、微少な電子伝導性である。)の固体電解質膜、電子リーク性のEC膜、第二透明導電膜を順次積層成膜し、前記第二透明導電膜の上に透明の封止材を介して透明封止基板を貼り合わせて透過型に構成してなるものである。また、この発明のEC素子は、基板の上に、反射膜兼電極膜、多孔質状で電子リーク性の固体電解質膜、電子リーク性のEC膜、透明導電膜を順次積層成膜し、前記透明導電膜の上に透明の封止材を介して透明封止基板を貼り合わせて、該透明封止基板側を表面側とする反射型に構成してなるものである。また、この発明のEC素子は、透明基板の上に、透明導電膜、多孔質状で電子リーク性の固体電解質膜、電子リーク性のEC膜、反射膜兼電極膜を順次積層成膜し、前記反射膜兼電極膜の上に封止材を介して封止基板を貼り合わせて、前記透明基板側を表面側とする反射型に構成してなるものである。 The EC element of the present invention comprises a first transparent conductive film, a porous, electron leakage property (electron leakage property and minute electron conductivity) on a transparent substrate, electron leakage A transparent EC substrate and a second transparent conductive film are sequentially laminated, and a transparent sealing substrate is laminated on the second transparent conductive film via a transparent sealing material to form a transmission type. It is. Further, the EC element of the present invention is formed by sequentially laminating a reflective film and electrode film, a porous and electron leaking solid electrolyte film, an electron leaking EC film, and a transparent conductive film on a substrate, A transparent sealing substrate is bonded on a transparent conductive film via a transparent sealing material, and the reflective sealing substrate is configured to have a reflective type with the transparent sealing substrate side as the surface side. Further, the EC element of the present invention is formed by sequentially laminating a transparent conductive film, a porous, electron leaking solid electrolyte film, an electron leaking EC film, and a reflective film / electrode film on a transparent substrate, bonding a sealing substrate through the sealing material on the reflective film and the electrode film, the magnetic BenQ plate side is made to constitute a reflection type and surface.

この発明のEC素子によれば、固体電解質膜およびEC膜が電子リーク性を有するので、EC素子全体として電子リーク性を有する。したがって、このEC素子が太陽光照射を受けたときにEC膜内に生成されるeは、この電子リーク性により放電されるので、EC膜の着色が防止される。このEC素子のリーク電流値は、面積100cm当たり、消色電圧1V時に0.1〜0.2mAとすることができる。 According to the EC element of the present invention, since the solid electrolyte membrane and the EC film have electron leakage properties, the EC device as a whole has electron leakage properties. Therefore, e generated in the EC film when the EC element is irradiated with sunlight is discharged by the electron leakage property, so that coloring of the EC film is prevented. Leakage current value of the EC element, the surface product 100 cm 2 per be a decoloring voltage 1V at 0.1~0.2MA.

また、この発明によれば、固体電解質膜を多孔質状としたので、多孔質の隙間に空気中からHOが取り込まれて、非多孔質状の固体電解質膜に比べてHOを多く含んだ固体電解質膜となる。その結果、EC素子の着消色により固体電解質膜から発生するOガスまたはHガスは多孔質状の固体電解質膜に多く含まれるHOに取り込まれるため、固体電解質膜とEC膜の界面に蓄積されにくくなり、固体電解質膜とEC膜の界面での膜剥離が起こりにくくなる。また、固体電解質膜を多孔質状とすることにより、その上に形成するEC膜との密着性が、多孔質の孔によるアンカー効果によって高くなり、固体電解質膜とEC膜の界面での膜剥離がより起こりにくくなる。さらには、固体電解質膜を多孔質状とすることにより、その上に形成するEC膜との界面接触面積が広くなり、その結果イオン伝導性が上がり、イオン電流が流れやすくなり、着色効率が高くなる(着色が濃くなる。着色速度が速くなる。) Further, according to the present invention, since the solid electrolyte film was porous, the interstices of the porous and H 2 O is taken from the air, of H 2 O in comparison with non-porous solid electrolyte membrane It becomes a solid electrolyte membrane containing much. As a result, O 2 gas or H 2 gas generated from the solid electrolyte membrane due to decoloration of the EC element is taken into H 2 O contained in the porous solid electrolyte membrane, and therefore the solid electrolyte membrane and the EC membrane Accumulation at the interface is difficult, and film peeling at the interface between the solid electrolyte membrane and the EC membrane does not easily occur. In addition, by making the solid electrolyte membrane porous, the adhesion with the EC membrane formed on the solid electrolyte membrane is enhanced by the anchor effect due to the porous holes, and the film peeling at the interface between the solid electrolyte membrane and the EC membrane is performed. Is less likely to occur. Furthermore, by making the solid electrolyte membrane porous, the interface contact area with the EC membrane formed thereon is increased, resulting in increased ionic conductivity, easier ionic current flow, and higher coloring efficiency. (Coloring becomes darker. Coloring speed becomes faster.)

この発明のEC素子において、多孔質状で電子リーク性の固体電解質膜は、例えばTaOx(xは2.10〜2.45、好ましくは2.30〜2.45、すなわち酸化タンタルの低級酸化物)膜で構成することができる。この場合、TaOx膜の膜厚は、例えば500〜900nm、好ましくは700〜900nmとすることができる。多孔質状で電子リーク性のTaOx(xは2.10〜2.45、好ましくは2.30〜2.45)膜は、例えば、出発材料としてTaを使用し、Ta膜を成膜する場合よりもOガス分圧を低く設定し、Arガス分圧を高く設定したプラズマ蒸着法により形成することができる。 In the EC element of the present invention, the porous, electron-leakable solid electrolyte membrane is, for example, TaOx (x is 2.10 to 2.45, preferably 2.30 to 2.45, that is, a lower oxide of tantalum oxide. ) It can be composed of a membrane. In this case, the thickness of the TaOx film can be set to, for example, 500 to 900 nm, preferably 700 to 900 nm. A porous, electron-leakable TaOx (x is 2.10 to 2.45, preferably 2.30 to 2.45) film uses, for example, Ta 2 O 5 as a starting material, and Ta 2 O 5 It can be formed by a plasma vapor deposition method in which the O 2 gas partial pressure is set lower than when the film is formed and the Ar gas partial pressure is set higher.

この発明のEC素子において、電子リーク性のEC膜は、例えばWO膜で構成することができる。この場合、WO膜の膜厚は、例えば300〜700nm、好ましくは500〜700nmとすることができる。 In the EC element of the present invention, the electron leaking EC film can be composed of, for example, a WO 3 film. In this case, the film thickness of the WO 3 film can be set to, for example, 300 to 700 nm, preferably 500 to 700 nm.

この発明のEC素子において、封止材は吸湿性を有する封止材(例えば、エポキシ樹脂、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール))とすることができる。吸湿性を有する封止材とすることにより、該封止材はHO,H,OHを内部保留することができる。その結果、EC素子の着消色により固体電解質膜から発生するOガスまたはHガスの一部は、EC膜および透明導電膜または反射膜兼電極膜を透過して、HO,H,OHを内部保留する吸湿性透明封止材内のHOに取り込まれるため、固体電解質膜とEC膜の界面にはより蓄積されにくくなり、固体電解質膜とEC膜の界面での膜剥離がより起こりにくくなる。この場合、吸湿性を有する封止材の膜厚は例えば50μm以上、好ましくは50〜500μmとすることができる。 In the EC element of the present invention, the sealing material can be a hygroscopic sealing material (for example, epoxy resin, PVA (polyvinyl alcohol), PVB (polyvinyl butyral)). By using a hygroscopic sealing material, the sealing material can internally hold H 2 O, H + and OH . As a result, a part of the O 2 gas or H 2 gas generated from the solid electrolyte film due to the discoloration of the EC element is transmitted through the EC film and the transparent conductive film or the reflective film / electrode film, and H 2 O, H Since + and OH are incorporated in H 2 O in the hygroscopic transparent encapsulant that internally holds, it is less likely to accumulate at the interface between the solid electrolyte membrane and the EC membrane, and at the interface between the solid electrolyte membrane and the EC membrane. Film peeling is less likely to occur. In this case, the film thickness of the hygroscopic sealing material may be, for example, 50 μm or more, preferably 50 to 500 μm.

この発明のEC素子の駆動方法は、着色指令が発せられたときに、駆動電圧を着色方向へ所定時間連続して印加した後、該駆動電圧の印加を停止し次いで着色方向へ駆動する動作を1周期とする間欠駆動動作を前記所定時間よりも短い周期で繰り返し、その後消色指令が発せられたときに、駆動電圧を消色方向へ所定時間連続して印加した後、該駆動電圧の印加を停止させるものである。この駆動方法によれば、着色時に短い周期で着色方向への間欠駆動を繰り返すので、EC素子が電子リーク性であるにもかかわらず着色状態を維持することができる。また、間欠駆動の周期が短いので、透過率の変動幅は少なく、人の目に透過率の変動を感じさせなくてすむ。   In the EC element driving method of the present invention, when a coloring command is issued, the driving voltage is continuously applied in the coloring direction for a predetermined time, and then the driving voltage is stopped and then driven in the coloring direction. The intermittent driving operation of one cycle is repeated at a cycle shorter than the predetermined time, and when a decoloring command is issued thereafter, the driving voltage is continuously applied in the decoloring direction for a predetermined time, and then the driving voltage is applied. Is to stop. According to this driving method, intermittent driving in the coloring direction is repeated at a short period during coloring, so that the colored state can be maintained even though the EC element is electron leaking. In addition, since the intermittent drive cycle is short, the variation range of the transmittance is small, and it is not necessary for the human eye to feel the variation of the transmittance.

(実施の形態1)
この発明のEC素子の実施の形態1を図1に示す。このEC素子40は、透明基板42の上に、第一透明導電膜44、固体電解質膜46、EC膜48、第二透明導電膜50が順次積層成膜され、さらに第二透明導電膜50の上に吸湿性の透明封止材52を介して透明封止基板54が貼り合わされて、全体として透過型のEC素子を構成している。EC素子40の対向する2辺にはクリップ電極56,58が装着されている。クリップ電極56は第一透明導電膜44に導通し、クリップ電極58は第二透明導電膜50に導通している。クリップ電極56にはリード線60がハンダや導電性接着剤等の接合材61で接続され、クリップ電極58にはリード線62がハンダや導電性接着剤等の接合材63で接続されている。このEC素子40は、例えば、車両用防眩メーターパネル、車両用あるいは建築用調光ガラス窓等として構成することができる。
(Embodiment 1)
Embodiment 1 of an EC element according to the present invention is shown in FIG. In this EC element 40, a first transparent conductive film 44, a solid electrolyte film 46, an EC film 48, and a second transparent conductive film 50 are sequentially laminated on a transparent substrate 42. A transparent sealing substrate 54 is bonded to the top via a hygroscopic transparent sealing material 52 to constitute a transmissive EC element as a whole. Clip electrodes 56 and 58 are mounted on two opposite sides of the EC element 40. The clip electrode 56 is electrically connected to the first transparent conductive film 44, and the clip electrode 58 is electrically connected to the second transparent conductive film 50. A lead wire 60 is connected to the clip electrode 56 with a bonding material 61 such as solder or conductive adhesive, and a lead wire 62 is connected to the clip electrode 58 with a bonding material 63 such as solder or conductive adhesive. The EC element 40 can be configured as, for example, a vehicle antiglare meter panel, a vehicle or architectural light control glass window, or the like.

この実施の形態1では、透明基板42および透明封止基板54は透明ガラス板で構成されている。第一透明導電膜44、第二透明導電膜50はITO(酸化インジウム錫)で構成されている。固体電解質膜46は多孔質状で電子リーク性を有するTaOx(酸化タンタル。xは2.10〜2.45、好ましくは2.30〜2.45)膜で構成されている。EC膜48は電子リーク性を有するWO膜で構成されている。吸湿性の透明封止材52はエポキシ樹脂で構成されている。 In the first embodiment, the transparent substrate 42 and the transparent sealing substrate 54 are made of a transparent glass plate. The first transparent conductive film 44 and the second transparent conductive film 50 are made of ITO (indium tin oxide). The solid electrolyte film 46 is composed of a porous TaOx (tantalum oxide, x is 2.10 to 2.45, preferably 2.30 to 2.45) film having electron leakage. The EC film 48 is composed of a WO 3 film having electron leakage. The hygroscopic transparent sealing material 52 is made of an epoxy resin.

図4(a)は、図1のEC素子40の等価回路を示す。第一透明導電膜44は電子抵抗Ra1として表される。TaOx膜46はイオン伝導性によるイオン抵抗RH1と、電子リーク性による電子抵抗Rh1との並列結合として表される。WO膜48はイオン伝導性によるイオン抵抗ΘW1と拡散抵抗ZW1を直列結合したものと、電子リーク性による電子抵抗Rw1との並列結合として表される。第二透明導電膜50は電子抵抗Rb1として表される。WO膜48の拡散抵抗ZW1は、WO膜48での過程が律速反応であることを示す。 FIG. 4A shows an equivalent circuit of the EC element 40 of FIG. The first transparent conductive film 44 is expressed as an electronic resistance Ra1. The TaOx film 46 is expressed as a parallel combination of an ion resistance RH1 due to ion conductivity and an electron resistance Rh1 due to electron leakage. The WO 3 film 48 is expressed as a parallel combination of an ion resistance ΘW1 due to ion conductivity and a diffusion resistance ZW1 coupled in series with an electron resistance Rw1 due to electron leakage. The second transparent conductive film 50 is represented as an electronic resistance Rb1. Diffusion resistance ZW1 of WO 3 film 48, shows that the process in the WO 3 film 48 is the rate-limiting reaction.

図4(a)の等価回路は、TaOx膜46とWO膜48の電子リークが小さい(電子抵抗Rh1およびRw1が大きい)ため、図4(b)の等価回路に置き換えることができる。図4(b)の抵抗R1は図4(a)の容量抵抗Rh1と抵抗Rw1に対応する。図4(b)の抵抗RW1と容量CW1は、図4(a)の拡散抵抗ZW1に対応する。図4(b)によれば、このEC素子40が電子抵抗R1により電子リーク性を持ち、紫外線によりWO膜48の内部に自然電位が発生しても(あるいは発生しようとしても)、電子抵抗R1ですぐに放電されるので、フォトクロミック現象により着色されるのが防止される。したがって、自然電位を逃がすための外部抵抗は不要である。 The equivalent circuit of FIG. 4A can be replaced with the equivalent circuit of FIG. 4B because the electron leakage of the TaOx film 46 and the WO 3 film 48 is small (the electronic resistances Rh1 and Rw1 are large). The resistor R1 in FIG. 4B corresponds to the capacitive resistor Rh1 and the resistor Rw1 in FIG. The resistor RW1 and the capacitor CW1 in FIG. 4B correspond to the diffused resistor ZW1 in FIG. According to FIG. 4B, the EC element 40 has an electron leakage property due to the electronic resistance R1, and even if a natural potential is generated (or is about to be generated) inside the WO 3 film 48 due to ultraviolet rays, the electronic resistance Since it is discharged immediately at R1, it is prevented from being colored by the photochromic phenomenon. Therefore, no external resistance for releasing the natural potential is required.

EC素子40のTaOx膜46とWO膜48間のリーク電流値は、あまり大きいとメモリー性の低下が大きなって着色が不十分になると共に消費電力が大きくなり、逆にあまり小さいと太陽光が照射されたときのフォトクロミック現象を防止できないので、面積100cm当たり、消色電圧1V時に0.1〜0.2mAが好ましい。 If the leakage current value between the TaOx film 46 and the WO 3 film 48 of the EC element 40 is too large, the memory performance is greatly deteriorated, coloring becomes insufficient and power consumption increases. Therefore, 0.1 to 0.2 mA is preferable at an erasing voltage of 1 V per 100 cm 2 .

図1のEC素子40の駆動回路の一例を図5に示す。EC素子40のクリップ電極56,58は、リード線60,62およびスイッチ64を介して直流電源66に接続されている。直流電源66の極性は、スイッチ64により切り換えられる。すなわち、スイッチ64を接点aに接続すれば、クリップ電極56側が+極性、クリップ電極58側が−極性となり、EC素子40に着色方向の電圧が印加される。また、スイッチ64を接点cに接続すれば、クリップ電極56側が−極性、クリップ電極58側が+極性となり、EC素子40に着色方向の電圧が印加される。さらに、スイッチ64を接点bに接続すれば、回路が開放状態となり、クリップ電極56,58間の印加電圧は零となる。制御回路68は、操作スイッチの手動操作等により発せられる着色指令または消色指令に基づき、スイッチ64の切り換えを行う。   An example of a drive circuit for the EC element 40 of FIG. 1 is shown in FIG. Clip electrodes 56 and 58 of the EC element 40 are connected to a DC power supply 66 via lead wires 60 and 62 and a switch 64. The polarity of the DC power supply 66 is switched by the switch 64. That is, if the switch 64 is connected to the contact a, the clip electrode 56 side becomes + polarity and the clip electrode 58 side becomes -polarity, and a voltage in the coloring direction is applied to the EC element 40. When the switch 64 is connected to the contact c, the clip electrode 56 side becomes -polarity and the clip electrode 58 side becomes + polarity, and a voltage in the coloring direction is applied to the EC element 40. Further, when the switch 64 is connected to the contact b, the circuit is opened, and the applied voltage between the clip electrodes 56 and 58 becomes zero. The control circuit 68 switches the switch 64 based on a coloring command or a decoloring command issued by manual operation of the operation switch or the like.

図1のEC素子40の製造工程の一例を説明する。
(工程1)100mm×100mmの大きさの透明ガラス板で構成される透明基板42の表面に、第一透明導電膜44として、ITO膜をイオンプレーティング法にて、基板温度を250℃に設定して膜厚200nmに成膜する。成膜されたITO膜44の面抵抗は10Ω/□である。なお、第一透明導電膜44は、ITO膜に代えて、In膜、SnO膜等で構成することもできる。また、第一透明導電膜44の成膜法として、イオンプレーティング法に代えて、蒸着法、スパッタリング法等を採用することもできる。
An example of the manufacturing process of the EC element 40 of FIG. 1 will be described.
(Step 1) On the surface of the transparent substrate 42 composed of a transparent glass plate having a size of 100 mm × 100 mm, an ITO film is set as the first transparent conductive film 44 by an ion plating method, and the substrate temperature is set to 250 ° C. Then, a film is formed to a thickness of 200 nm. The sheet resistance of the deposited ITO film 44 is 10Ω / □. The first transparent conductive film 44 can be composed of an In 2 O 3 film, a SnO 2 film, or the like instead of the ITO film. Further, as a method for forming the first transparent conductive film 44, an evaporation method, a sputtering method, or the like can be employed instead of the ion plating method.

(工程2)成膜された第一透明導電膜44の、クリップ電極58を装着する側の縁部を所定幅dにわたりフォトエッチング法、レーザースクライブ法等で除去し、該縁部で透明基板42を露出させる。これは、クリップ電極58を装着したときに、第一透明導電膜44とクリップ電極58が接触するのを防ぐためである。なお、フォトエッチング法、レーザースクライブ法に代えて、第一透明導電膜44を成膜する際に、クリップ電極58を装着する側の縁部に所定幅dにわたりマスクを被せて成膜することにより、該縁部に第一透明導電膜44が成膜されないようにすることもできる。   (Step 2) The edge of the formed first transparent conductive film 44 on the side where the clip electrode 58 is mounted is removed over a predetermined width d by a photoetching method, a laser scribing method, or the like, and the transparent substrate 42 is removed at the edge. To expose. This is to prevent the first transparent conductive film 44 and the clip electrode 58 from contacting when the clip electrode 58 is attached. Instead of the photoetching method and the laser scribing method, the first transparent conductive film 44 is formed by covering the edge on the side where the clip electrode 58 is mounted with a mask over a predetermined width d. The first transparent conductive film 44 can be prevented from being formed on the edge.

(工程3)次いで、固体電解質膜46として、TaOx膜をプラズマ蒸着法で膜厚500〜900nm、好ましくは700〜900nmに成膜する。このとき、出発材料はTaを使用し、成膜条件は、
基板温度:250℃
ガス分圧:0.8×10−2Pa
Arガス分圧:3.5×10−2Pa
RF(高周波)パワー:600W
に設定する。これによれば、Ta膜を成膜するときのガス分圧の成膜条件
ガス分圧:1.0×10−2Pa
Arガス分圧:3.3×10−2Pa
に比べてOガス分圧が低いので、酸素不足の膜となり、TaOx膜(xは2.10〜2.45、好ましくは2.30〜2.45)46が成膜される。このTaOx膜46は、Ta膜に比べて酸素不足の膜となる結果、通常の固体電解膜としてのイオン伝導性のほか電子リーク性(微少な電子伝導性すなわち大きな電荷移動抵抗)が得られる。また、Arガス分圧が高いので、ArガスがTaOx膜46内に多く取り込まれ、その結果多孔質状のTaOx膜46が得られる。そして、この多孔質の隙間にはArガスに置換して空気中からHOが取り込まれるので、TaOx膜46は通常のTa膜に比べてHOを多く含んでいる。
(Step 3) Next, as the solid electrolyte film 46, a TaOx film is formed to a thickness of 500 to 900 nm, preferably 700 to 900 nm by plasma deposition. At this time, Ta 2 O 5 is used as a starting material, and film formation conditions are as follows:
Substrate temperature: 250 ° C
O 2 gas partial pressure: 0.8 × 10 −2 Pa
Ar gas partial pressure: 3.5 × 10 −2 Pa
RF (high frequency) power: 600W
Set to. According to this, the film forming condition of the gas partial pressure when forming the Ta 2 O 5 film O 2 gas partial pressure: 1.0 × 10 −2 Pa
Ar gas partial pressure: 3.3 × 10 −2 Pa
Since the O 2 gas partial pressure is lower than that, a film lacking oxygen is formed, and a TaO x film (x is 2.10 to 2.45, preferably 2.30 to 2.45) 46 is formed. As a result of the TaOx film 46 being an oxygen-deficient film as compared with the Ta 2 O 5 film, in addition to ionic conductivity as a normal solid electrolytic film, electron leakage property (small electron conductivity, that is, large charge transfer resistance) is provided. can get. Further, since the Ar gas partial pressure is high, a large amount of Ar gas is taken into the TaOx film 46, and as a result, a porous TaOx film 46 is obtained. Since this porous gap is substituted with Ar gas and H 2 O is taken in from the air, the TaOx film 46 contains more H 2 O than a normal Ta 2 O 5 film.

(工程4)次いで、EC膜48として、WO膜を蒸着法で膜厚300〜700nm、好ましくは500〜700nmに成膜する。このとき出発材料はWOを使用し、成膜条件は、
基板温度:200℃
ガス分圧:0.5×10−2Pa
RF(高周波)パワー:なし
に設定する。これにより、通常のEC膜としてのイオン伝導性のほか電子リーク性(微少な電子伝導性すなわち大きな電荷移動抵抗)のあるWO膜48(アモルファス膜)が得られる。
(Step 4) Next, as the EC film 48, a WO 3 film is formed by vapor deposition to a film thickness of 300 to 700 nm, preferably 500 to 700 nm. At this time, WO 3 is used as a starting material, and film formation conditions are as follows:
Substrate temperature: 200 ° C
O 2 gas partial pressure: 0.5 × 10 −2 Pa
RF (high frequency) power: Set to none. As a result, a WO 3 film 48 (amorphous film) having an electron leakage property (a minute electron conductivity, that is, a large charge transfer resistance) in addition to the ion conductivity as a normal EC film can be obtained.

なお、TaOx膜46が電子リーク性であれば、WO膜48を普通に(つまり、非電子リーク性のEC素子を作るときのWO膜と同じ成膜条件で)成膜しても、EC素子40は全体として電子リーク性が得られることが実験で分かった。したがって、WO膜48は、非電子リーク性のEC素子を作るときのWO膜と同じ成膜条件で成膜することもできる。 If the TaOx film 46 is electron leaking, even if the WO 3 film 48 is formed normally (that is, under the same film forming conditions as the WO 3 film for making a non-electron leaking EC element), It has been experimentally found that the EC element 40 can obtain an electron leakage property as a whole. Therefore, the WO 3 film 48 can also be formed under the same film formation conditions as the WO 3 film used to make a non-electron leaky EC element.

また、WO膜48は、積極的に電子リーク性に成膜することもできる。その方法としては、例えば次の各種方法が考えられる。
《方法1》
WO膜48を成膜する際の出発材料を純度の低いWOにする。すなわち、WOに不純物としてMo、Fe、Si、Al、Snなどの導電性粉末を微量(例えば50ppm程度)混入させて蒸着を行う。これにより、成膜されたWO膜48内に導電性粉末が取り込まれて、WO膜48は電子リーク性になる。
《方法2》
蒸着装置内のるつぼを常に一部汚れ(前回の蒸着後の蒸着材料WOの残渣)を残した清掃状態にし、このるつぼに蒸着材料のWOを入れて蒸着を行う。あるいは、るつぼを通常どおり綺麗に清掃し、このるつぼに蒸着材料のWOとともに前回あるいはそれよりも前の蒸着後の蒸着材料WOの残渣を極小量混入させて蒸着を行う。これにより、成膜されたWO膜48内に蒸着材料WOの残渣が取り込まれて、WO膜48は電子リーク性になる。
《方法3》
蒸着装置内で蒸着材料のWOを電子ビームで加熱する際に、ビーム電流のスウィープ(Sweep)を粗にする。これにより、WO膜48を構成する生成粒子が大きくなって、WO膜48は電子リーク性になる。
The WO 3 film 48 can also be positively deposited with electron leakage. For example, the following various methods are conceivable.
<< Method 1 >>
The starting material for forming the WO 3 film 48 is made of WO 3 having a low purity. That performs Mo, Fe, Si, Al, a deposition of conductive powder such as Sn is mixed trace (for example, about 50 ppm) as impurities in WO 3. Thus, the conductive powder is incorporated into the formed WO 3 film 48, WO 3 film 48 becomes the electron leaky.
<< Method 2 >>
The crucible in the vapor deposition apparatus is always kept in a cleaning state in which some dirt (residue of the vapor deposition material WO 3 after the previous vapor deposition) is left, and the vapor deposition material WO 3 is placed in the crucible for vapor deposition. Alternatively, the crucible is cleaned cleanly as usual, and evaporation is performed by mixing a minimal amount of the residue of the evaporation material WO 3 after the previous or previous deposition together with the WO 3 of the evaporation material into this crucible. Accordingly, incorporated residue of the evaporation material WO 3 within the formed WO 3 film 48, WO 3 film 48 becomes the electron leaky.
<< Method 3 >>
When heating the evaporation material WO 3 with an electron beam in the evaporation apparatus, a sweep of the beam current is roughened. Thereby, the generated particles constituting the WO 3 film 48 become large, and the WO 3 film 48 becomes electron leaking.

(工程5)さらに、第二透明導電膜50として、ITO膜をイオンプレーティング法にて、基板温度を250℃に設定して膜厚200nmに成膜する。成膜されたITO膜50の面抵抗は10Ω/□である。なお、第二透明導電膜50は、ITO膜に代えて、In膜、SnO膜等で構成することもできる。また、第二透明導電膜50の成膜法として、イオンプレーティング法に代えて、蒸着法、スパッタリング法等を採用することもできる。 (Step 5) Further, as the second transparent conductive film 50, an ITO film is formed to a film thickness of 200 nm by an ion plating method with the substrate temperature set at 250 ° C. The sheet resistance of the deposited ITO film 50 is 10Ω / □. Note that the second transparent conductive film 50 may be composed of an In 2 O 3 film, a SnO 2 film, or the like instead of the ITO film. Further, as a method for forming the second transparent conductive film 50, a vapor deposition method, a sputtering method, or the like can be employed instead of the ion plating method.

(工程6)封止前のEC素子40の第一透明導電膜44の一辺と、その対辺の第二透明導電膜50の一辺を電極取出し部として、クリップ電極56,58をそれぞれ装着する。クリップ電極56,58としては、バネ性のリン青銅板やバネ性のステンレス鋼が使われる。   (Step 6) Clip electrodes 56 and 58 are respectively mounted using one side of the first transparent conductive film 44 of the EC element 40 before sealing and one side of the second transparent conductive film 50 on the opposite side as electrode extraction portions. As the clip electrodes 56 and 58, a spring-like phosphor bronze plate or a spring-like stainless steel is used.

(工程7)クリップ電極56,58を装着したら、吸湿性の透明封止材52として、エポキシ樹脂を使用して、積層膜を封止する。エポキシ樹脂による吸湿性の透明封止材52の形成方法の一例を説明する。ジャパンエポキシレジン株式会社製液状エポキシ樹脂主剤「エピコート807」(「エピコート」は登録商標)と、同社製アミン系エポキシ樹脂硬化剤「エポメートB002」(「エポメート」は登録商標)を、それぞれ圧力1×10−3Paのもとで5時間真空脱泡処理する。このとき、主剤、硬化剤の段階ですでに大気中から吸着しているHO量を一定に保つことができる。主剤100重量部と硬化剤50重量部を混合して攪拌した後、該混合液をディスペンサー、フローコーター、スピンコーター等で透明封止基板54の片面に吐出または塗布する。次いで、透明基板42の積層膜の上に、該吐出または塗布した面を対向させて透明封止基板54を重ね合わせ、80℃で1時間加熱し硬化させる。このようにしてできあがった透明封止材52のエポキシ樹脂は−OH基を持つため吸湿性があり、上記主剤、硬化剤の段階で吸着しているHOがほぼそのままの量で内部に残存することができる。 (Step 7) When the clip electrodes 56 and 58 are mounted, the laminated film is sealed using an epoxy resin as the hygroscopic transparent sealing material 52. An example of a method for forming the hygroscopic transparent sealing material 52 using an epoxy resin will be described. Liquid epoxy resin main agent “Epicoat 807” (“Epicoat” is a registered trademark) manufactured by Japan Epoxy Resin Co., Ltd. and amine epoxy resin curing agent “Epomate B002” (“Epomate” is a registered trademark) manufactured by Japan Epoxy Resin Co., Ltd. Vacuum defoaming treatment is performed under 10 −3 Pa for 5 hours. At this time, the amount of H 2 O already adsorbed from the atmosphere at the main agent and curing agent stages can be kept constant. After mixing and stirring 100 parts by weight of the main agent and 50 parts by weight of the curing agent, the mixed solution is discharged or applied to one side of the transparent sealing substrate 54 with a dispenser, a flow coater, a spin coater or the like. Next, the transparent sealing substrate 54 is overlaid on the laminated film of the transparent substrate 42 so that the discharged or coated surface is opposed, and is heated and cured at 80 ° C. for 1 hour. The thus-prepared epoxy resin of the transparent sealing material 52 has a —OH group and is hygroscopic, and the H 2 O adsorbed at the main agent and curing agent stage remains in the inside in almost the same amount. can do.

なお、吸湿性の透明封止材52は、エポキシ樹脂に代えて、PVA、PVBで構成することもできる。これらの材料で構成した吸湿性透明封止材52には、微量の吸湿性があるため、HO,H,OHを内部保留することができる。 In addition, the hygroscopic transparent sealing material 52 can also be comprised with PVA and PVB instead of an epoxy resin. Since the hygroscopic transparent sealing material 52 composed of these materials has a trace amount of hygroscopicity, H 2 O, H + , OH can be retained internally.

(工程8)クリップ電極56,58とリード線60,62とを、ハンダや導電性接着剤等の接合材61,63でそれぞれ接合する。以上で図1のEC素子40が完成する。得られたEC素子40のTaOx膜46とWO膜48間のリーク電流は、面積100cm当たり、消色電圧1V時に0.2mAであった。 (Step 8) The clip electrodes 56 and 58 and the lead wires 60 and 62 are joined by joining materials 61 and 63 such as solder and conductive adhesive, respectively. Thus, the EC element 40 of FIG. 1 is completed. The leakage current between the TaOx film 46 and the WO 3 film 48 of the obtained EC element 40 was 0.2 mA at an erasing voltage of 1 V per 100 cm 2 area.

以上の工程で製造されたEC素子40を図5の駆動回路で駆動した場合のEC素子40の着色・消色動作の一例を図6に示す。ここでは、クリップ電極56側が+極性、クリップ電極58側が−極性となるように駆動電圧がEC素子40に印加される場合の該駆動電圧の極性を+、逆の場合の該駆動電圧の極性を−として、着色方向の駆動電圧を+1.8V、消色方向の駆動電圧を−1.0Vとした場合について示している。時刻t1で着色指令が発せられると(図6(a))、スイッチ64が接点a側に接続されて(図6(b))、+1.8Vの電圧が連続的に30秒間印加され(図6(c))、EC素子40の透過率がこの時間内に急速に低下し、ほぼ定常状態(20〜25%)に達する(図6(d))。+1.8Vの電圧の印加時間が30秒に達すると、スイッチ64が接点b(開放)に切り換えられる。スイッチ64が開放されると、EC素子40には電子リーク性があるので、WO膜48内に蓄えられた電荷は徐々に放電され、EC素子40の透過率は低下する。そこで、スイッチ64の開放時間が0.5秒に達したら、再びスイッチ64を接点aに接続し、+1.8Vの電圧を2秒間印加して、透過率の低下を補う。この0.5秒間のスイッチ開放および2秒間の+1.8Vの電圧の印加を、着色指令が与えられている期間中(次に消色指令が与えられるまでの期間中)繰り返す。これにより、着色指令が与えられている期間中、EC素子40の透過率はほぼ一定(20〜25%)に保たれる。このとき、スイッチ64の切り換え周期は短いので、透過率の変動幅は少なく、人の目に透過率の変動を感じさせことはない。 FIG. 6 shows an example of the coloring / decoloring operation of the EC element 40 when the EC element 40 manufactured by the above steps is driven by the drive circuit of FIG. Here, when the drive voltage is applied to the EC element 40 so that the clip electrode 56 side is + polarity and the clip electrode 58 side is -polarity, the polarity of the drive voltage is +, and the polarity of the drive voltage is opposite. The symbol − indicates the case where the driving voltage in the coloring direction is + 1.8V and the driving voltage in the decoloring direction is −1.0V. When a coloring command is issued at time t1 (FIG. 6A), the switch 64 is connected to the contact a side (FIG. 6B), and a voltage of +1.8 V is continuously applied for 30 seconds (FIG. 6). 6 (c)), the transmittance of the EC element 40 rapidly decreases within this time, and reaches almost a steady state (20 to 25%) (FIG. 6 (d)). When the voltage application time of + 1.8V reaches 30 seconds, the switch 64 is switched to the contact b (open). When the switch 64 is opened, the EC element 40 has an electron leakage property. Therefore, the electric charge stored in the WO 3 film 48 is gradually discharged, and the transmittance of the EC element 40 decreases. Therefore, when the opening time of the switch 64 reaches 0.5 seconds, the switch 64 is connected to the contact point a again, and a voltage of +1.8 V is applied for 2 seconds to compensate for the decrease in transmittance. The switch opening for 0.5 seconds and the voltage application of +1.8 V for 2 seconds are repeated during the period when the coloring command is given (during the period until the next decoloring command is given). Thus, the transmittance of the EC element 40 is kept substantially constant (20 to 25%) during the period when the coloring command is given. At this time, since the switching cycle of the switch 64 is short, the variation range of the transmittance is small, and the variation of the transmittance is not perceived by human eyes.

時刻t2で指令が着色方向から消色方向に切り換えられると(図6(a))、スイッチ64が接点c側に接続されて(図6(b))、−1.0Vの電圧が連続的に15秒間印加され(図6(c))、EC素子40の透過率がこの時間内に急速に上昇し、ほぼ定常状態(約80〜85%)に達する(図6(d))。−1.0Vの電圧の印加時間が15秒に達すると、スイッチ64が接点b(開放)に切り換えられ、以後次に着色指令に切り換えられるまで、このスイッチ開放状態が維持される。   When the command is switched from the coloring direction to the decoloring direction at time t2 (FIG. 6A), the switch 64 is connected to the contact c side (FIG. 6B), and a voltage of −1.0 V is continuously applied. Is applied for 15 seconds (FIG. 6C), and the transmittance of the EC element 40 rapidly rises within this time and reaches a substantially steady state (about 80 to 85%) (FIG. 6D). When the application time of the voltage of −1.0 V reaches 15 seconds, the switch 64 is switched to the contact b (open), and this switch open state is maintained until the next color command is switched.

なお、EC素子40の着色時の反応式は次のとおりである。

(WO膜48:陰極側)
WO(無色)+xH+xe→HxWO(着色)

(TaOx膜46:陽極側)
O(膜中に含まれる水分)→H+OH
OH→(1/2)HO+(1/4)O↑+e

この反応によってTaOx膜46から発生するO↑(酸素ガス)は、多孔質状のTaOx膜46中に多く含まれるHOに取り込まれたり、WO膜48および第二透明導電膜50を透過して、HO,H,OHを内部保留する吸湿性透明封止材52(エポキシ樹脂)内のHOに取り込まれるため、ガス発生に至らない。したがって、TaOx膜46とWO膜48の界面での膜剥離が起こりにくい。
In addition, the reaction formula at the time of coloring of the EC element 40 is as follows.

(WO 3 film 48: cathode side)
WO 3 (colorless) + xH + + xe → HxWO 3 (colored)

(TaOx film 46: anode side)
H 2 O (moisture contained in the film) → H + + OH
OH → (1/2) H 2 O + (1/4) O 2 ↑ + e

O 2 ↑ (oxygen gas) generated from the TaOx film 46 by this reaction is taken into H 2 O contained in the porous TaOx film 46, or the WO 3 film 48 and the second transparent conductive film 50 Since it permeates and is taken into H 2 O in the hygroscopic transparent sealing material 52 (epoxy resin) that retains H 2 O, H + , and OH internally, gas generation does not occur. Therefore, film peeling at the interface between the TaOx film 46 and the WO 3 film 48 hardly occurs.

また、EC素子40は、消色時(スイッチ64が開放状態)に太陽光の照射を受けると、WO膜48の内部で
hν(光エネルギー)→H(正孔)+e(電子)
の反応を起こそうとするが、EC素子40には電子リーク性があるので、e(電子)になる前のe(電子)性がTaOx膜46とWO膜48を通してリークされるため、e(電子)の発生に至らない。したがって、対応するH(正孔)が生成されないので、着色は防止される。
Further, when the EC element 40 is irradiated with sunlight during decoloring (the switch 64 is in an open state), hν (light energy) → H + (hole) + e (electron) inside the WO 3 film 48.
Although attempts wake of reaction, since the EC element 40 is an electronic leaky, e - of before the (electronic) e - for (electronic) properties are leaked through the TaOx film 46 and the WO 3 film 48 , E (electrons) is not generated. Accordingly, the corresponding H + (hole) is not generated, and coloring is prevented.

また、この実施の形態によれば、TaOx膜46は多孔質状であるため、その上に成膜されるWO膜48がTaOx膜46の多孔質状表面に食い込み、アンカー効果によりTaOx膜46とWO膜48の密着性が高くなり、TaOx膜46とWO膜48の界面での膜剥離がより起こりにくくなる。また、TaOx膜46をプラズマ蒸着法で成膜することにより、TaOx膜46を構成するTaOx粒子同士の結着が強くなり、強いTaOx膜46が得られる。また、TaOx膜46は多孔質状であるため、TaOx膜46とWO膜48の界面接触面積が広くなり、イオン伝導性が上がり、イオン電流が流れやすくなり、着色効率が高くなる(着色が濃くなる。着色速度が速くなる。) According to this embodiment, since the TaOx film 46 is porous, the WO 3 film 48 formed thereon bites into the porous surface of the TaOx film 46, and the TaOx film 46 is anchored. And the WO 3 film 48 become more adherent, and film peeling at the interface between the TaOx film 46 and the WO 3 film 48 is less likely to occur. Further, by forming the TaOx film 46 by the plasma vapor deposition method, the binding between TaOx particles constituting the TaOx film 46 becomes strong, and a strong TaOx film 46 is obtained. Further, since the TaOx film 46 is porous, the interface contact area between the TaOx film 46 and the WO 3 film 48 is widened, ion conductivity is increased, ion current is easily flowed, and coloring efficiency is increased (coloring is increased). (It becomes darker and the coloring speed becomes faster.)

(実施の形態2)
この発明のEC素子の実施の形態2を図7に示す。実施の形態1(図1)と共通する部分には同一の符号を用いる。このEC素子70は、基板42(透明である必要はない)の上に、反射膜兼電極膜72、固体電解質膜46、EC膜48、透明導電膜50が順次積層成膜され、さらに透明導電膜50の上に吸湿性の透明封止材52を介して透明封止基板54が貼り合わされて、全体として透明封止基板54側を表面側とする反射型のEC素子を構成している。EC素子70の対向する2辺にはクリップ電極56,58が装着されている。クリップ電極56は反射膜兼電極膜72に導通し、クリップ電極58は透明導電膜50に導通している。クリップ電極56にはリード線60がハンダや導電性接着剤等の接合材61で接続され、クリップ電極58にはリード線62がハンダや導電性接着剤等の接合材63で接続されている。このEC素子70は、例えば、車両用防眩ミラー等として構成することができる。
(Embodiment 2)
Embodiment 2 of the EC element of the present invention is shown in FIG. The same reference numerals are used for portions common to those in Embodiment Mode 1 (FIG. 1). In the EC element 70, a reflective film / electrode film 72, a solid electrolyte film 46, an EC film 48, and a transparent conductive film 50 are sequentially stacked on a substrate 42 (not necessarily transparent), and further transparent conductive A transparent sealing substrate 54 is bonded onto the film 50 via a hygroscopic transparent sealing material 52 to constitute a reflection type EC element having the transparent sealing substrate 54 side as a whole as a surface side. Clip electrodes 56 and 58 are mounted on two opposing sides of the EC element 70. The clip electrode 56 is electrically connected to the reflective film / electrode film 72, and the clip electrode 58 is electrically connected to the transparent conductive film 50. A lead wire 60 is connected to the clip electrode 56 with a bonding material 61 such as solder or conductive adhesive, and a lead wire 62 is connected to the clip electrode 58 with a bonding material 63 such as solder or conductive adhesive. The EC element 70 can be configured as, for example, an anti-glare mirror for a vehicle.

この実施の形態2では、基板42はガラス板で構成されている。反射膜兼電極膜72はCr(クロム)で構成されている。固体電解質膜46は多孔質状で電子リーク性を有するTaOx(xは2.10〜2.45、好ましくは2.30〜2.45)膜で構成されている。EC膜48は電子リーク性を有するWO膜で構成されている。透明導電膜50はITOで構成されている。吸湿性の透明封止材52はエポキシ樹脂で構成されている。透明封止基板54は透明ガラス板で構成されている。 In the second embodiment, the substrate 42 is made of a glass plate. The reflective film / electrode film 72 is made of Cr (chromium). The solid electrolyte membrane 46 is made of a porous TaOx (x is 2.10 to 2.45, preferably 2.30 to 2.45) having electron leakage. The EC film 48 is composed of a WO 3 film having electron leakage. The transparent conductive film 50 is made of ITO. The hygroscopic transparent sealing material 52 is made of an epoxy resin. The transparent sealing substrate 54 is made of a transparent glass plate.

EC素子70のTaOx膜46とWO膜48間のリーク電流値は、あまり大きいとメモリー性の低下が大きなって消費電力が大きくなり、逆に、あまり小さいと太陽光が照射されたときのフォトクロミック現象を防止できないので、面積100cm当たり、消色電圧1V時に0.1〜0.2mAが好ましい。 If the leak current value between the TaOx film 46 and the WO 3 film 48 of the EC element 70 is too large, the memory performance is greatly reduced and the power consumption is large. Since the photochromic phenomenon cannot be prevented, 0.1 to 0.2 mA is preferable at an erasing voltage of 1 V per 100 cm 2 area.

図7のEC素子70の製造工程の一例を説明する。
(工程1)100mm×100mmの大きさのガラス板で構成される基板42の表面に、反射膜兼電極膜72として、Cr膜をスパッタリング法にて、膜厚80〜150nmに成膜する。なお、反射膜兼電極膜72は、Cr膜に代えて、Rh膜等で構成することもできる。また、反射膜兼電極膜72の成膜法として、スパッタリング法に代えて、蒸着法、イオンプレーティング法等を採用することもできる。
An example of a manufacturing process of the EC element 70 in FIG. 7 will be described.
(Step 1) On the surface of the substrate 42 formed of a glass plate having a size of 100 mm × 100 mm, a Cr film is formed as a reflective film and electrode film 72 to a film thickness of 80 to 150 nm by a sputtering method. The reflective film / electrode film 72 may be composed of an Rh film or the like instead of the Cr film. In addition, as a method for forming the reflective film and electrode film 72, a vapor deposition method, an ion plating method, or the like can be employed instead of the sputtering method.

(工程2)以後、実施の形態1について説明した(工程2)〜(工程8)と同じ工程を順次実行することにより図7のEC素子70が完成する。得られたEC素子70のTaOx膜46とWO膜48間のリーク電流は、面積100cm当たり、消色電圧1V時に0.2mAであった。 (Step 2) After that, the same steps as (Step 2) to (Step 8) described in the first embodiment are sequentially performed to complete the EC element 70 of FIG. The leakage current between the TaOx film 46 and the WO 3 film 48 of the obtained EC element 70 was 0.2 mA at an erasing voltage of 1 V per 100 cm 2 area.

図7のEC素子70は、図5と同じ構成の駆動回路を用いて図6と同様に駆動することができる。ただし、図1のEC素子40は第一透明導電膜44、第二透明導電膜50が共に金属酸化物で構成され、電気抵抗が金属に比べて高いため、
当初の着色電圧の印加:+1.8V×30秒
その後の着色電圧の印加:0V×0.5秒+1.8V×2秒の繰り返し
消色電圧の印加:−1.0V×15秒
としたが(図6(c)参照)、図7のEC素子70の場合は反射膜兼電極膜72は金属で構成され、電気抵抗が金属酸化物に比べて低いので、
当初の着色電圧の印加:+1.8V×15秒
その後の着色電圧の印加:0V×0.5秒+1.8V×2秒の繰り返し
消色電圧の印加:−1.0V×10秒
とする。この駆動により、
着色時の反射率:10〜15%
消色時の反射率:50〜55%
が得られる。反射膜兼電極膜72をCr膜に代えてRh膜で構成した場合には、反射率がこれよりも高くなる。
The EC element 70 in FIG. 7 can be driven in the same manner as in FIG. 6 by using a drive circuit having the same configuration as in FIG. However, since the EC element 40 in FIG. 1 includes both the first transparent conductive film 44 and the second transparent conductive film 50 made of metal oxide and has a higher electric resistance than metal,
Initial coloring voltage application: +1.8 V × 30 seconds Subsequent coloring voltage application: 0 V × 0.5 seconds + 1.8 V × 2 seconds repeated Decoloring voltage application: −1.0 V × 15 seconds In the case of the EC element 70 of FIG. 7, the reflective film / electrode film 72 is made of metal, and the electric resistance is lower than that of the metal oxide.
Initial coloring voltage application: +1.8 V × 15 seconds Subsequent coloring voltage application: 0 V × 0.5 seconds + 1.8 V × 2 seconds repeated Decoloring voltage application: −1.0 V × 10 seconds. With this drive,
Reflectivity during coloring: 10-15%
Reflectivity during decolorization: 50-55%
Is obtained. When the reflection film / electrode film 72 is formed of an Rh film instead of the Cr film, the reflectance is higher than this.

(実施の形態3)
この発明のEC素子の実施の形態3を図8に示す。実施の形態1(図1)と共通する部分には同一の符号を用いる。このEC素子74は、透明基板42の上に、透明導電膜44、固体電解質膜46、EC膜48、反射膜兼電極膜76が順次積層成膜され、さらに反射膜兼電極膜76の上に吸湿性の封止材52(透明である必要はない)を介して封止基板54(透明である必要はない)が貼り合わされて、全体として透明基板42側を表面側とする反射型のEC素子を構成している。EC素子74の対向する2辺にはクリップ電極56,58が装着されている。クリップ電極56は透明導電膜44に導通し、クリップ電極58は反射膜兼電極膜76に導通している。クリップ電極56にはリード線60がハンダや導電性接着剤等の接合材61で接続され、クリップ電極58にはリード線62がハンダや導電性接着剤等の接合材63で接続されている。このEC素子74は、例えば、車両用防眩ミラー等として構成することができる。
(Embodiment 3)
Embodiment 3 of the EC element of the present invention is shown in FIG. The same reference numerals are used for portions common to those in Embodiment Mode 1 (FIG. 1). In this EC element 74, a transparent conductive film 44, a solid electrolyte film 46, an EC film 48, and a reflective film / electrode film 76 are sequentially laminated on the transparent substrate 42, and further on the reflective film / electrode film 76. A sealing substrate 54 (not necessarily transparent) is bonded via a hygroscopic sealing material 52 (not necessarily transparent), and the reflective EC having the transparent substrate 42 side as a surface side as a whole is bonded. The element is configured. Clip electrodes 56 and 58 are mounted on two opposing sides of the EC element 74. The clip electrode 56 is electrically connected to the transparent conductive film 44, and the clip electrode 58 is electrically connected to the reflective film / electrode film 76. A lead wire 60 is connected to the clip electrode 56 with a bonding material 61 such as solder or conductive adhesive, and a lead wire 62 is connected to the clip electrode 58 with a bonding material 63 such as solder or conductive adhesive. The EC element 74 can be configured as an anti-glare mirror for a vehicle, for example.

この実施の形態3では、透明基板42は透明ガラス板で構成されている。透明導電膜44はITOで構成されている。固体電解質膜46は多孔質状で電子リーク性を有するTaOx(xは2.10〜2.45、好ましくは2.30〜2.45)膜で構成されている。EC膜48は電子リーク性を有するWO膜で構成されている。反射膜兼電極膜76はAl(アルミニウム)で構成されている。吸湿性の封止材52はエポキシ樹脂で構成されている。封止基板54はガラス板で構成されている。 In this Embodiment 3, the transparent substrate 42 is comprised with the transparent glass plate. The transparent conductive film 44 is made of ITO. The solid electrolyte membrane 46 is made of a porous TaOx (x is 2.10 to 2.45, preferably 2.30 to 2.45) having electron leakage. The EC film 48 is composed of a WO 3 film having electron leakage. The reflective film / electrode film 76 is made of Al (aluminum). The hygroscopic sealing material 52 is made of an epoxy resin. The sealing substrate 54 is made of a glass plate.

EC素子74のTaOx膜46とWO膜48間のリーク電流値は、あまり大きいとメモリー性の低下が大きなって消費電力が大きくなり、逆に、あまり小さいと太陽光が照射されたときのフォトクロミック現象を防止できないので、面積100cm当たり、消色電圧1V時に0.1〜0.2mAが好ましい。 If the leak current value between the TaOx film 46 and the WO 3 film 48 of the EC element 74 is too large, the memory performance is greatly reduced and the power consumption is large. Since the photochromic phenomenon cannot be prevented, 0.1 to 0.2 mA is preferable at an erasing voltage of 1 V per 100 cm 2 area.

図8のEC素子74の製造工程の一例を説明する。
(工程1)実施の形態1について説明した(工程1)と同じ工程により透明導電膜44としてITO膜を成膜する。
An example of the manufacturing process of the EC element 74 in FIG. 8 will be described.
(Step 1) An ITO film is formed as the transparent conductive film 44 by the same step as (Step 1) described in the first embodiment.

(工程2)成膜された透明導電膜44の、クリップ電極58を装着する側の縁部付近をフォトエッチング法、レーザースクライブ法等でカッティングして縁部44aを透明導電膜44から分離する。   (Step 2) The edge portion 44a is separated from the transparent conductive film 44 by cutting the vicinity of the edge portion of the formed transparent conductive film 44 on the side where the clip electrode 58 is mounted by a photoetching method, a laser scribing method, or the like.

(工程3)実施の形態1について説明した(工程3)〜(工程4)と同じ工程を実行することにより、TaOx膜46とWO膜48の成膜を行う。 (Step 3) By performing the same steps as (Step 3) to (Step 4) described in the first embodiment, the TaOx film 46 and the WO 3 film 48 are formed.

(工程4)WO膜48の上に、反射膜兼電極膜76として、Al膜をイオンプレーティング法にて、基板温度を常温に設定して膜厚100nmに成膜する。Al膜76のクリップ電極58を装着する側の縁部76aは透明導電膜44から分離された縁部44aに接続する。なお、反射膜兼電極膜76の成膜法として、スパッタリング法に代えて、蒸着法、イオンプレーティング法等を採用することもできる。 (Step 4) On the WO 3 film 48, an Al film is formed as a reflective film and electrode film 76 to a film thickness of 100 nm by setting the substrate temperature to room temperature by an ion plating method. The edge 76 a on the side where the clip electrode 58 of the Al film 76 is attached is connected to the edge 44 a separated from the transparent conductive film 44. In addition, as a film-forming method of the reflective film and electrode film 76, an evaporation method, an ion plating method, or the like can be employed instead of the sputtering method.

(工程5)以後、実施の形態1について説明した(工程6)〜(工程8)と同じ工程を順次実行することにより図8のEC素子74が完成する。得られたEC素子74のTaOx膜46とWO膜48間のリーク電流は、面積100cm当たり、消色電圧1V時に0.2mAであった。 (Step 5) Thereafter, the same steps as (Step 6) to (Step 8) described in the first embodiment are sequentially performed, whereby the EC element 74 of FIG. 8 is completed. The leakage current between the TaOx film 46 and the WO 3 film 48 of the obtained EC element 74 was 0.2 mA at an erasing voltage of 1 V per 100 cm 2 area.

図8のEC素子74は、図5と同じ構成の駆動回路を用いて図6と同様に駆動することができる。ただし、図1のEC素子40は第一透明導電膜44、第二透明導電膜50が共に金属酸化物で構成され、電気抵抗が金属に比べて高いため、
着色指令当初の着色電圧の印加:+1.8V×30秒
その後の着色電圧の印加:0V×0.5秒+1.8V×2秒の繰り返し
消色電圧の印加:−1.0V×15秒
としたが(図6(c)参照)、図8のEC素子74の場合は反射膜兼電極膜76は金属で構成され、電気抵抗が金属酸化物に比べて低いので、
着色指令当初の着色電圧の印加:+1.8V×15秒
その後の着色電圧の印加:0V×0.5秒+1.8V×2秒の繰り返し
消色電圧の印加:−1.0V×10秒
とする。この駆動により、
着色時の反射率:15〜20%
消色時の反射率:60〜70%
が得られる。
The EC element 74 in FIG. 8 can be driven in the same manner as in FIG. 6 by using a drive circuit having the same configuration as in FIG. However, since the EC element 40 in FIG. 1 includes both the first transparent conductive film 44 and the second transparent conductive film 50 made of metal oxide and has a higher electric resistance than metal,
Application of coloring voltage at the beginning of the coloring instruction: +1.8 V × 30 seconds Application of subsequent coloring voltage: repetition of 0 V × 0.5 seconds + 1.8 V × 2 seconds Application of decoloring voltage: −1.0 V × 15 seconds However, in the case of the EC element 74 of FIG. 8, the reflective film / electrode film 76 is made of metal, and the electric resistance is lower than that of the metal oxide.
Application of coloring voltage at the beginning of the coloring instruction: +1.8 V × 15 seconds Application of subsequent coloring voltage: repetition of 0 V × 0.5 seconds + 1.8 V × 2 seconds Application of decoloring voltage: −1.0 V × 10 seconds To do. With this drive,
Reflectivity during coloring: 15-20%
Reflectivity during decolorization: 60-70%
Is obtained.

この発明のEC素子の実施の形態1を示す平面図および断面図である。It is the top view and sectional drawing which show Embodiment 1 of EC element of this invention. 従来のEC素子の構成を示す斜視図およびその駆動回路図である。It is the perspective view which shows the structure of the conventional EC element, and its drive circuit diagram. 図2のEC素子の等価回路図である。FIG. 3 is an equivalent circuit diagram of the EC element in FIG. 2. 図1のEC素子の等価回路図である。FIG. 2 is an equivalent circuit diagram of the EC element in FIG. 1. 図1のEC素子の駆動回路の一例を示す図である。It is a figure which shows an example of the drive circuit of EC element of FIG. 図5の駆動回路によるEC素子40の着色・消色動作の一例を示す動作波形図である。FIG. 6 is an operation waveform diagram showing an example of coloring / decoloring operation of the EC element 40 by the drive circuit of FIG. 5. この発明のEC素子の実施の形態2を示す断面図である。It is sectional drawing which shows Embodiment 2 of EC element of this invention. この発明のEC素子の実施の形態3を示す断面図である。It is sectional drawing which shows Embodiment 3 of EC element of this invention.

符号の説明Explanation of symbols

40…透過型EC素子、42…基板、透明基板、44…透明導電膜、第一透明導電膜、46…多孔質状で電子リーク性の固体電解質膜(TaOx膜)、48…電子リーク性のEC膜(WO膜)、50…透明導電膜、第二透明導電膜、52…封止材、透明封止材、54…封止基板、透明封止基板、70,74…反射型EC素子、72,76…反射膜兼電極膜。
DESCRIPTION OF SYMBOLS 40 ... Transmission type | mold EC element, 42 ... Board | substrate, transparent substrate, 44 ... Transparent conductive film, 1st transparent conductive film, 46 ... Porous and electron leaking solid electrolyte membrane (TaOx film), 48 ... Electron leaking EC film (WO 3 film), 50 ... transparent conductive film, second transparent conductive film, 52 ... sealing material, transparent sealing material, 54 ... sealing substrate, transparent sealing substrate, 70, 74 ... reflective EC element 72, 76: Reflecting film and electrode film.

Claims (8)

透明基板の上に、第一透明導電膜、多孔質状で電子リーク性の固体電解質膜、電子リーク性のエレクトロクロミック膜、第二透明導電膜を順次積層成膜し、前記第二透明導電膜の上に透明の封止材を介して透明封止基板を貼り合わせて透過型に構成してなるエレクトロクロミック素子であって、前記固体電解質膜と前記エレクトロクロミック膜間のリーク電流値が、面積100cm 当たり、消色電圧1V時に0.1〜0.2mAであり、もって
駆動電圧の印加を停止している消色時に太陽光照射を受けたときに、前記エレクトロクロミック膜内に生成される電子が、前記固体電解質膜および前記エレクトロクロミック膜の電子リーク性により放電されて、フォトクロミック現象による前記エレクトロクロミック膜の着色が防止されるように、前記固体電解質膜および前記エレクトロクロミック膜の電子リーク性が設定されているエレクトロクロミック素子。
On the transparent substrate, a first transparent conductive film, a porous, electron-leakable solid electrolyte film, an electron-leakable electrochromic film, and a second transparent conductive film are sequentially laminated, and the second transparent conductive film An electrochromic element comprising a transparent encapsulating substrate and a transparent encapsulating material on the substrate, wherein a leakage current value between the solid electrolyte film and the electrochromic film is an area. It is 0.1 to 0.2 mA per 100 cm 2 when the erasing voltage is 1 V, and is generated in the electrochromic film when receiving sunlight when erasing the application of the driving voltage. Electrons are discharged due to electron leakage of the solid electrolyte film and the electrochromic film, so that coloring of the electrochromic film due to a photochromic phenomenon is prevented. An electrochromic device in which the electron leakage property of the solid electrolyte membrane and the electrochromic membrane is set.
基板の上に、反射膜兼電極膜、多孔質状で電子リーク性の固体電解質膜、電子リーク性のエレクトロクロミック膜、透明導電膜を順次積層成膜し、前記透明導電膜の上に透明の封止材を介して透明封止基板を貼り合わせて、該透明封止基板側を表面側とする反射型に構成してなるエレクトロクロミック素子であって、前記固体電解質膜と前記エレクトロクロミック膜間のリーク電流値が、面積100cm 当たり、消色電圧1V時に0.1〜0.2mAであり、もって
駆動電圧の印加を停止している消色時に太陽光照射を受けたときに、前記エレクトロクロミック膜内に生成される電子が、前記固体電解質膜および前記エレクトロクロミック膜の電子リーク性により放電されて、フォトクロミック現象による前記エレクトロクロミック膜の着色が防止されるように、前記固体電解質膜および前記エレクトロクロミック膜の電子リーク性が設定されているエレクトロクロミック素子。
A reflective film and electrode film, a porous, electron-leakable solid electrolyte film, an electron-leakage electrochromic film, and a transparent conductive film are sequentially laminated on the substrate, and a transparent film is formed on the transparent conductive film. An electrochromic element formed by attaching a transparent sealing substrate through a sealing material and configured to be a reflection type having the transparent sealing substrate side as a surface side, and between the solid electrolyte film and the electrochromic film The leakage current value is 0.1 to 0.2 mA at an erasing voltage of 1 V per area of 100 cm 2 , and when the application of the driving voltage is stopped, the electro Electrons generated in the chromic film are discharged due to the electron leakage of the solid electrolyte film and the electrochromic film, and the electrochromic film is deposited by a photochromic phenomenon. An electrochromic device in which electron leakage of the solid electrolyte membrane and the electrochromic membrane is set so that color is prevented.
透明基板の上に、透明導電膜、多孔質状で電子リーク性の固体電解質膜、電子リーク性のエレクトロクロミック膜、反射膜兼電極膜を順次積層成膜し、前記反射膜兼電極膜の上に封止材を介して封止基板を貼り合わせて、前記透明基板側を表面側とする反射型に構成してなるエレクトロクロミック素子であって、前記固体電解質膜と前記エレクトロクロミック膜間のリーク電流値が、面積100cm 当たり、消色電圧1V時に0.1〜0.2mAであり、もって
駆動電圧の印加を停止している消色時に太陽光照射を受けたときに、前記エレクトロクロミック膜内に生成される電子が、前記固体電解質膜および前記エレクトロクロミック膜の電子リーク性により放電されて、フォトクロミック現象による前記エレクトロクロミック膜の着色が防止されるように、前記固体電解質膜および前記エレクトロクロミック膜の電子リーク性が設定されているエレクトロクロミック素子。
On the transparent substrate, a transparent conductive film, a porous, electron-leakable solid electrolyte film, an electron-leakage electrochromic film, and a reflective film / electrode film are sequentially laminated, and the top of the reflective film / electrode film is formed. An electrochromic element comprising a sealing substrate and a reflective substrate with the transparent substrate side as a surface side, and a leak between the solid electrolyte film and the electrochromic film The electrochromic film has a current value of 0.1 to 0.2 mA at an erasing voltage of 1 V per area of 100 cm 2 and is irradiated with sunlight during erasing when the application of the driving voltage is stopped. Electrons generated inside are discharged due to electron leakage of the solid electrolyte film and the electrochromic film, and the electrochromic film is colored by a photochromic phenomenon. An electrochromic element in which electron leakage of the solid electrolyte film and the electrochromic film is set so as to be prevented.
前記多孔質状で電子リーク性の固体電解質膜はTaOx(xは2.10〜2.45、好ましくは2.30〜2.45)膜であり、該TaOx膜の膜厚は500〜900nm、好ましくは700〜900nmである請求項1から3のいずれか1つに記載のエレクトロクロミック素子。 The porous and electron-leakable solid electrolyte membrane is a TaOx (x is 2.10 to 2.45, preferably 2.30 to 2.45) film, and the thickness of the TaOx film is 500 to 900 nm, the electrochromic device according to preferably any one of claims 1-3 which is 700 to 900 nm. 前記電子リーク性のエレクトロクロミック膜はWO膜であり、該WO膜の膜厚は300〜700nm、好ましくは500〜700nmである請求項1から4のいずれか1つに記載のエレクトロクロミック素子。 The electronic leakage of the electrochromic film is a WO 3 film, the thickness of the WO 3 film is 300 to 700 nm, preferably electrochromic device according to any one of the four claims 1 is 500~700nm . 前記封止材は吸湿性を有する封止材であり、該封止材の膜厚は50μm以上、好ましくは50〜500μmである請求項1から5のいずれか1つに記載のエレクトロクロミック素子。 The sealing material is a sealing material having a hygroscopic property, the thickness of the sealing material is 50μm or more, electrochromic device according to preferably any one of claims 1-5 which is 50 to 500 [mu] m. 前記吸湿性を有する封止材はエポキシ樹脂、PVA、PVBのいずれかである請求項6記載のエレクトロクロミック素子。   The electrochromic device according to claim 6, wherein the hygroscopic sealing material is an epoxy resin, PVA, or PVB. 請求項1からのいずれか1つに記載のエレクトロクロミック素子を着色指令または消色指令に応じて駆動する方法であって、
着色指令が発せられたときに、駆動電圧を着色方向へ所定時間連続して印加した後、該駆動電圧の印加を停止し次いで着色方向へ駆動する動作を1周期とする間欠駆動動作を前記所定時間よりも短い周期で繰り返し、
その後消色指令が発せられたときに、駆動電圧を消色方向へ所定時間連続して印加した後、該駆動電圧の印加を停止させるエレクトロクロミック素子の駆動方法。
A method of driving according to the coloring instruction or decoloring command an electrochromic device according to any one of claims 1 to 7,
When a coloring command is issued, the driving voltage is continuously applied in the coloring direction for a predetermined time, and then the intermittent driving operation in which the driving of the driving voltage is stopped and then driven in the coloring direction is set to the predetermined period. Repeated in a cycle shorter than time,
A method for driving an electrochromic device, in which, when a decoloring command is subsequently issued, a driving voltage is continuously applied in a decoloring direction for a predetermined time and then the application of the driving voltage is stopped.
JP2005292511A 2005-10-05 2005-10-05 Electrochromic device and driving method thereof Expired - Fee Related JP4799113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292511A JP4799113B2 (en) 2005-10-05 2005-10-05 Electrochromic device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292511A JP4799113B2 (en) 2005-10-05 2005-10-05 Electrochromic device and driving method thereof

Publications (2)

Publication Number Publication Date
JP2007101947A JP2007101947A (en) 2007-04-19
JP4799113B2 true JP4799113B2 (en) 2011-10-26

Family

ID=38028947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292511A Expired - Fee Related JP4799113B2 (en) 2005-10-05 2005-10-05 Electrochromic device and driving method thereof

Country Status (1)

Country Link
JP (1) JP4799113B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025690A1 (en) * 2012-08-06 2014-02-13 View, Inc. Driving thin film switchable optical devices
US8864321B2 (en) 2011-03-16 2014-10-21 View, Inc. Controlling transitions in optically switchable devices
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US9128346B2 (en) 2009-12-22 2015-09-08 View, Inc. Onboard controller for multistate windows
US9348192B2 (en) 2012-04-17 2016-05-24 View, Inc. Controlling transitions in optically switchable devices
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US9523902B2 (en) 2011-10-21 2016-12-20 View, Inc. Mitigating thermal shock in tintable windows
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US10365531B2 (en) 2012-04-13 2019-07-30 View, Inc. Applications for controlling optically switchable devices
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US10809589B2 (en) 2012-04-17 2020-10-20 View, Inc. Controller for optically-switchable windows
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US11030929B2 (en) 2016-04-29 2021-06-08 View, Inc. Calibration of electrical parameters in optically switchable windows
US11073800B2 (en) 2011-03-16 2021-07-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11175178B2 (en) 2015-10-06 2021-11-16 View, Inc. Adjusting window tint based at least in part on sensed sun radiation
US11237449B2 (en) 2015-10-06 2022-02-01 View, Inc. Controllers for optically-switchable devices
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US11454854B2 (en) 2017-04-26 2022-09-27 View, Inc. Displays for tintable windows
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11733660B2 (en) 2014-03-05 2023-08-22 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US12061404B2 (en) 2013-06-28 2024-08-13 View, Inc. Controlling transitions in optically switchable devices
US12298644B2 (en) 2011-03-16 2025-05-13 View Operating Corporation Controlling transitions in optically switchable devices
US12353111B2 (en) 2013-06-28 2025-07-08 View Operating Corporation Controlling transitions in optically switchable devices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764098B2 (en) 2012-07-17 2015-08-12 株式会社ホンダロック Anti-glare mirror, vehicle and method of manufacturing anti-glare mirror
JP6073035B2 (en) * 2013-05-07 2017-02-01 エンパイア テクノロジー ディベロップメント エルエルシー Terahertz frequency tags and methods of making and using them
US20160041447A1 (en) * 2014-08-05 2016-02-11 Canon Kabushiki Kaisha Method and apparatus for driving an electrochromic element
JP2016218357A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device
JP2016218358A (en) * 2015-05-25 2016-12-22 株式会社リコー Driving method of electrochromic device and electrochromic device
JP6812773B2 (en) * 2016-05-20 2021-01-13 株式会社リコー Element control device and element control method
JP6812774B2 (en) * 2016-05-23 2021-01-13 株式会社リコー Element control device and element control method
US10831025B2 (en) 2016-07-12 2020-11-10 Sony Corporation Dimming device, image display device, and display device
EP3699682B1 (en) 2017-10-17 2022-03-09 Sony Group Corporation Dimming device and method for producing a dimming device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR32671B (en) * 1966-02-25 1967-08-02 American Cyanamid Company ELECTRO - OPTICAL DEVICES.
JPS61173287A (en) * 1985-01-29 1986-08-04 旭硝子株式会社 Electrochromic display body
JPH0617959B2 (en) * 1986-05-13 1994-03-09 株式会社日本自動車部品総合研究所 Electrochromic display element
JPH0235119U (en) * 1988-08-30 1990-03-07
JPH09304796A (en) * 1996-05-15 1997-11-28 Toyota Central Res & Dev Lab Inc All-solid-state electrochromic cell

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US10001691B2 (en) 2009-12-22 2018-06-19 View, Inc. Onboard controller for multistate windows
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US10268098B2 (en) 2009-12-22 2019-04-23 View, Inc. Onboard controller for multistate windows
US9128346B2 (en) 2009-12-22 2015-09-08 View, Inc. Onboard controller for multistate windows
US11067869B2 (en) 2009-12-22 2021-07-20 View, Inc. Self-contained EC IGU
US12332533B2 (en) 2009-12-22 2025-06-17 View Operating Corporation Automated commissioning of controllers in a window network
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US9436055B2 (en) 2009-12-22 2016-09-06 View, Inc. Onboard controller for multistate windows
US9442341B2 (en) 2009-12-22 2016-09-13 View, Inc. Onboard controller for multistate windows
US11016357B2 (en) 2009-12-22 2021-05-25 View, Inc. Self-contained EC IGU
US11754902B2 (en) 2009-12-22 2023-09-12 View, Inc. Self-contained EC IGU
US9946138B2 (en) 2009-12-22 2018-04-17 View, Inc. Onboard controller for multistate windows
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US12117710B2 (en) 2011-03-16 2024-10-15 View, Inc. Driving thin film switchable optical devices
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US12153321B2 (en) 2011-03-16 2024-11-26 View, Inc. Controlling transitions in optically switchable devices
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US12298644B2 (en) 2011-03-16 2025-05-13 View Operating Corporation Controlling transitions in optically switchable devices
US10948797B2 (en) 2011-03-16 2021-03-16 View, Inc. Controlling transitions in optically switchable devices
US9482922B2 (en) 2011-03-16 2016-11-01 View, Inc. Multipurpose controller for multistate windows
US8864321B2 (en) 2011-03-16 2014-10-21 View, Inc. Controlling transitions in optically switchable devices
US9927674B2 (en) 2011-03-16 2018-03-27 View, Inc. Multipurpose controller for multistate windows
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US10908470B2 (en) 2011-03-16 2021-02-02 View, Inc. Multipurpose controller for multistate windows
US11640096B2 (en) 2011-03-16 2023-05-02 View, Inc. Multipurpose controller for multistate windows
US11073800B2 (en) 2011-03-16 2021-07-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11520207B2 (en) 2011-03-16 2022-12-06 View, Inc. Controlling transitions in optically switchable devices
US10712627B2 (en) 2011-03-16 2020-07-14 View, Inc. Controlling transitions in optically switchable devices
US11668991B2 (en) 2011-03-16 2023-06-06 View, Inc. Controlling transitions in optically switchable devices
US9523902B2 (en) 2011-10-21 2016-12-20 View, Inc. Mitigating thermal shock in tintable windows
US10254618B2 (en) 2011-10-21 2019-04-09 View, Inc. Mitigating thermal shock in tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11735183B2 (en) 2012-04-13 2023-08-22 View, Inc. Controlling optically-switchable devices
US11687045B2 (en) 2012-04-13 2023-06-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US10365531B2 (en) 2012-04-13 2019-07-30 View, Inc. Applications for controlling optically switchable devices
US10895796B2 (en) 2012-04-17 2021-01-19 View, Inc. Driving thin film switchable optical devices
US10520785B2 (en) 2012-04-17 2019-12-31 View, Inc. Driving thin film switchable optical devices
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US11796886B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US11927867B2 (en) 2012-04-17 2024-03-12 View, Inc. Driving thin film switchable optical devices
US10520784B2 (en) 2012-04-17 2019-12-31 View, Inc. Controlling transitions in optically switchable devices
US9921450B2 (en) 2012-04-17 2018-03-20 View, Inc. Driving thin film switchable optical devices
US10809589B2 (en) 2012-04-17 2020-10-20 View, Inc. Controller for optically-switchable windows
US9477131B2 (en) 2012-04-17 2016-10-25 View, Inc. Driving thin film switchable optical devices
US9454056B2 (en) 2012-04-17 2016-09-27 View, Inc. Driving thin film switchable optical devices
US9423664B2 (en) 2012-04-17 2016-08-23 View, Inc. Controlling transitions in optically switchable devices
US9348192B2 (en) 2012-04-17 2016-05-24 View, Inc. Controlling transitions in optically switchable devices
US9081247B1 (en) 2012-04-17 2015-07-14 View, Inc. Driving thin film switchable optical devices
US11592724B2 (en) 2012-04-17 2023-02-28 View, Inc. Driving thin film switchable optical devices
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
WO2014025690A1 (en) * 2012-08-06 2014-02-13 View, Inc. Driving thin film switchable optical devices
US11126057B2 (en) 2013-02-21 2021-09-21 View, Inc. Control method for tintable windows
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US11899331B2 (en) 2013-02-21 2024-02-13 View, Inc. Control method for tintable windows
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11940705B2 (en) 2013-02-21 2024-03-26 View, Inc. Control method for tintable windows
US10539854B2 (en) 2013-02-21 2020-01-21 View, Inc. Control method for tintable windows
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US12210261B2 (en) 2013-02-21 2025-01-28 View, Inc. Control method for tintable windows
US10802372B2 (en) 2013-02-21 2020-10-13 View, Inc. Control method for tintable windows
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US12061404B2 (en) 2013-06-28 2024-08-13 View, Inc. Controlling transitions in optically switchable devices
US11579509B2 (en) 2013-06-28 2023-02-14 View, Inc. Controlling transitions in optically switchable devices
US10969646B2 (en) 2013-06-28 2021-04-06 View, Inc. Controlling transitions in optically switchable devices
US10401702B2 (en) 2013-06-28 2019-09-03 View, Inc. Controlling transitions in optically switchable devices
US11829045B2 (en) 2013-06-28 2023-11-28 View, Inc. Controlling transitions in optically switchable devices
US12326640B2 (en) 2013-06-28 2025-06-10 View Operating Corporation Controlling transitions in optically switchable devices
US10120258B2 (en) 2013-06-28 2018-11-06 View, Inc. Controlling transitions in optically switchable devices
US10514582B2 (en) 2013-06-28 2019-12-24 View, Inc. Controlling transitions in optically switchable devices
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US12353111B2 (en) 2013-06-28 2025-07-08 View Operating Corporation Controlling transitions in optically switchable devices
US10451950B2 (en) 2013-06-28 2019-10-22 View, Inc. Controlling transitions in optically switchable devices
US11112674B2 (en) 2013-06-28 2021-09-07 View, Inc. Controlling transitions in optically switchable devices
US11835834B2 (en) 2013-06-28 2023-12-05 View, Inc. Controlling transitions in optically switchable devices
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
US11733660B2 (en) 2014-03-05 2023-08-22 View, Inc. Monitoring sites containing switchable optical devices and controllers
US12130597B2 (en) 2014-03-05 2024-10-29 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US12105395B2 (en) 2015-10-06 2024-10-01 View, Inc. Controllers for optically-switchable devices
US11300848B2 (en) 2015-10-06 2022-04-12 View, Inc. Controllers for optically-switchable devices
US11237449B2 (en) 2015-10-06 2022-02-01 View, Inc. Controllers for optically-switchable devices
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11709409B2 (en) 2015-10-06 2023-07-25 View, Inc. Controllers for optically-switchable devices
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US10809587B2 (en) 2015-10-06 2020-10-20 View, Inc. Controllers for optically-switchable devices
US11175178B2 (en) 2015-10-06 2021-11-16 View, Inc. Adjusting window tint based at least in part on sensed sun radiation
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US11030929B2 (en) 2016-04-29 2021-06-08 View, Inc. Calibration of electrical parameters in optically switchable windows
US12073752B2 (en) 2016-04-29 2024-08-27 View, Inc. Calibration of electrical parameters in optically switchable windows
US11482147B2 (en) 2016-04-29 2022-10-25 View, Inc. Calibration of electrical parameters in optically switchable windows
US11513412B2 (en) 2017-04-26 2022-11-29 View, Inc. Displays for tintable windows
US11493819B2 (en) 2017-04-26 2022-11-08 View, Inc. Displays for tintable windows
US11467464B2 (en) 2017-04-26 2022-10-11 View, Inc. Displays for tintable windows
US11454854B2 (en) 2017-04-26 2022-09-27 View, Inc. Displays for tintable windows
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11882111B2 (en) 2020-03-26 2024-01-23 View, Inc. Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness

Also Published As

Publication number Publication date
JP2007101947A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4799113B2 (en) Electrochromic device and driving method thereof
JP4938200B2 (en) Electrochromic electrochemical device or photovoltaic device and electrical connection means thereof
JP3972070B2 (en) Electrochromic device manufacturing tape
KR101535100B1 (en) Electrochromic smart window and manufacturing method thereof
RU2117972C1 (en) Electrochromatic device ( variants ) and electrochromatic combination ( variants )
JP3308033B2 (en) Electrochromic window glass
JP5675103B2 (en) Highly conductive transparent layer with metal grid with optimized electrochemical resistance
CN108363257B (en) Improved electrochromic device
JPH10206902A (en) Electrochemical device and its production
JPH04267227A (en) Electrochromic glass
GB2213606A (en) Method of producing an electrochromic device
US20220342269A1 (en) Method of manufacturing flexible electrochromic device
JP2009169229A (en) Electrochromic device and manufacturing method thereof
JP3534288B2 (en) Light control glass and manufacturing method thereof
JPH0728099A (en) Fully solid state type electrochromic element and its production
CN111650795B (en) Electrochromic glass
CN108169975B (en) Device integrating electrochromic and electric double-layer capacitor structure and laser processing method thereof
CN110658660B (en) Electrochromic device based on multilayer functional thin film and preparation method thereof
CN108121126B (en) Device integrating electrochromic and electric double-layer capacitor structure and carving tool processing method thereof
GB2190760A (en) Electrochromic element
JPH06167724A (en) Production of light control glass
JPH0693067B2 (en) Dimmer
JPS61245143A (en) light control body
CN213545009U (en) Electrochromic rearview mirror lens element for preventing reverse connection of lines and assembly thereof
JPH09127558A (en) Electrochromic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees