[go: up one dir, main page]

JP4796741B2 - Method for forming a layer containing metal, silicon, germanium and oxygen on a surface - Google Patents

Method for forming a layer containing metal, silicon, germanium and oxygen on a surface Download PDF

Info

Publication number
JP4796741B2
JP4796741B2 JP2002590431A JP2002590431A JP4796741B2 JP 4796741 B2 JP4796741 B2 JP 4796741B2 JP 2002590431 A JP2002590431 A JP 2002590431A JP 2002590431 A JP2002590431 A JP 2002590431A JP 4796741 B2 JP4796741 B2 JP 4796741B2
Authority
JP
Japan
Prior art keywords
layer
organosilane
oxygen
organic
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002590431A
Other languages
Japanese (ja)
Other versions
JP2004535038A (en
JP2004535038A5 (en
Inventor
コンウェイ,ナターシャ,エム.,ジェイ
モスリー,アラン
Original Assignee
シーディーティー オックスフォード リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーディーティー オックスフォード リミテッド filed Critical シーディーティー オックスフォード リミテッド
Priority claimed from PCT/GB2002/002181 external-priority patent/WO2002093662A2/en
Publication of JP2004535038A publication Critical patent/JP2004535038A/en
Publication of JP2004535038A5 publication Critical patent/JP2004535038A5/ja
Application granted granted Critical
Publication of JP4796741B2 publication Critical patent/JP4796741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0433Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a reactive gas
    • B05D3/0453After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/145After-treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、表面に金属又はシリコン又はゲルマニウム及び酸素を含む層を形成する方法に関する。 The present invention relates to a method of forming a layer containing metal or silicon or germanium and oxygen on a surface.

有機電子発光ダイオード(OLED)を有する液晶ディスプレイのためのディスプレイ及びバックライトのような光学装置が大きく発展してきている。OLEDの重要な利点は、発光効率であり、これは、カンデラ/アンペア(candelas per amp)で示される外部量子効率、及び/又はルーメン/ワット(lumens per watt)で示される発光効率として、しばしば測定される。OLEDの発光効率は発光時のOLEDによる電力消費を決め、それによってポータブルデバイスの電池寿命を決めるため、特に重要である。 Optical devices such as displays and backlights for liquid crystal displays with organic electroluminescent diodes (OLEDs) have been greatly developed. An important advantage of OLEDs is the luminous efficiency, which is often measured as the external quantum efficiency , expressed in candelas per amp, and / or the luminous efficiency, expressed in lumens per watt. Is done. The luminous efficiency of the OLED is particularly important because it determines the power consumption by the OLED during light emission and thereby determines the battery life of the portable device.

OLEDの一般的な構造(図1で示される)は、ガラス基板(1)の内側表面がインジウム錫酸化物のような透明な導電(2)によって被覆されており、その被膜上に電荷注入(3)、電荷輸送及び/又は発光(4)を行う有機及び/又は有機金属化学物質層、次にOLEDの第2電極を構成する1又は2以上の層(典型的には、アルミニウム層(6)でキャップされた非常に陽性である金属(5))からなるThe general structure of OLED (shown in Figure 1) is a transparent conductor, such as inner surfaces of indium tin oxide glass substrate (1) (2) is covered by the charge injected onto the coating (3) an organic and / or organometallic chemical layer that performs charge transport and / or light emission (4), and then one or more layers (typically an aluminum layer ( made of metal is a very positive capped (5)) in 6).

インジウム錫酸化物層に隣接する二酸化ケイ素のような非常に薄い誘電層(例えば、1nm未満の厚さ)は、インジウム錫酸化物からの電荷注入を加速し、装置の発光効率を高める。しかしながら、特に、OLEDの造で使用されるガラス基板、例えば、400×400mm2のような大面積にわたって薄い誘電層を均一に堆積させるのは非常に困難である。スパッタリングや電子ビーム蒸着のような従来の方法によってこのような堆積を試みた場合、一部の領域は1nmより厚い誘電層によって被覆される一方、他の領域は1nm未満の厚さの誘電層を有することになることがわかっている。誘電層の厚さのこの変化は、発光に要する電圧の変化を引き起こし、誘電層の厚みの増加に伴い電圧も増加する。電圧が増加すると、発光効率は減少し、したがってOLEDを使用するポータブル装置の電池寿命を減少させる。誘電層の厚さは少ないから、例えば、0.2nmのようなわずかな変化でもOLEDのパフォーマンスを大きく変化させる。 A very thin dielectric layer, such as silicon dioxide , adjacent to the indium tin oxide layer (eg, less than 1 nm thick ) accelerates charge injection from the indium tin oxide and increases the luminous efficiency of the device. However, in particular, a glass substrate used in manufacturing the OLED, for example, it is very difficult to uniformly sedimentary thin dielectric layer over a large area, such as 400 × 400 mm 2. Any attempt such deposited by conventional methods such as sputtering or electron beam evaporation, while some areas that will be covered by a thick dielectric layer than 1nm, the other areas of less than 1nm thick dielectric layer I know I will have it . This change in the thickness of the dielectric layer causes a change in voltage required for light emission, and the voltage increases as the thickness of the dielectric layer increases. As the voltage increases, the luminous efficiency decreases, thus reducing the battery life of portable devices using OLEDs. Since the thickness of the dielectric layer is small, a slight change such as 0.2 nm greatly changes the performance of the OLED.

本発明の第1の側面によれば、請求項1−7に記載される表面上に、シリコン(又はゲルマニウム)及び酸素を含む層を形成する方法が提供される。本発明の第2の側面によれば、請求項8及び9に記載される層を組み込んだ電子発光装置が提供される。
本発明の実施形態を、添付の概略図面を参照しながら以下に説明する。
According to a first aspect of the present invention there is provided a method of forming a layer comprising silicon (or germanium) and oxygen on a surface as defined in claims 1-7. According to a second aspect of the present invention there is provided an electroluminescent device incorporating a layer as claimed in claims 8 and 9.
Embodiments of the present invention will be described below with reference to the accompanying schematic drawings.

本発明は、インジウム錫酸化物のような透明性導電性金属酸化物の表面に、非常に薄い均一な誘電材料層を提供することができる。誘電材料層の厚さは3nm未満、好ましくは2nm未満であり、非常に好ましくは1nm未満である。本発明を用いると、発光効率1.5から2.3lm/Wに増加することを立証することができたThe present invention can provide a very thin uniform dielectric material layer on the surface of a transparent conductive metal oxide such as indium tin oxide. The thickness of the dielectric material layer is less than 3 nm, preferably less than 2 nm, very preferably less than 1 nm. With the present invention, the luminous efficiency was able to demonstrate that increased from 1.5 to 2.3lm / W.

この新しい技術は、接着促進剤として一般的に使用されるために容易に入手可能である有機シラン材料のようなシリコン又はゲルマニウム含有有機材料の使用を含む。典型的な有機シラン接着促進剤は、3−アミノプロピル−トリエトキシシランであり、商標名V651としてュポン社より供給されている。他の材料、例えば、ヘキサメチルジシロキサンが代替品として使用され得る。 This new technology involves the use of organic materials containing silicon or germanium , such as organosilane materials that are readily available for general use as adhesion promoters. Typical organosilane adhesion promoter, 3-aminopropyl - a triethoxysilane, is supplied from the de Yupon Corporation under the tradename V M 651. Other materials such as hexamethyldisiloxane can be used as an alternative.

インジウム錫酸化物の表面は、第1に、接着促進剤としての従来からの使用態様である液体又は気体状態の有機シラン接着促進剤にさらされる。これにより、ケイ素−酸素結合を介してITO及びガラスの表面に結合する有機シランの非常に薄く均一なが得られる。有機シラン層は、また、有機基を含む。VM651の場合、この基は、3−アミノプロピル基である。このような層を有する表面は、しばしば「下塗り」と呼ばれる。 The surface of indium tin oxide is first exposed to a liquid or gaseous organosilane adhesion promoter, which is a traditional use as an adhesion promoter. This results in a very thin and uniform layer of organosilane that bonds to the ITO and glass surfaces via silicon-oxygen bonds . The organosilane layer also contains organic groups. In the case of VM651, this group is a 3-aminopropyl group. A surface having such a layer is often referred to as a “priming”.

「下塗り」基体は、その後処理する、すなわち有機シランの存在下で酸素プラズマ又は酸素ラジカルを含むグロー放電のような酸化媒体で処理する。酸化媒体は酸化すべき吸着層のこの一部に酸素を加え、酸化させるため、この例では、有機部を、水及び二酸化炭素のような揮発性種に酸化し、ITO表面に二酸化ケイ素の薄いを残すことになろうしたがって、この技法は誘電材料の薄い均一層を生成する容易な手段を提供する。この層は、水素及び炭素のような他の成分を含むことができるため、シリコン酸化物層は必ずしも化学量論的ではない。 "Subbing" substrate is subsequently processed, i.e. treated with an oxidizing medium such as a glow discharge comprising oxygen plasma or oxygen radicals in the absence of an organic silane. The oxidation medium adds oxygen to this part of the adsorbed layer to be oxidized and oxidizes, so in this example, the organic part is oxidized to water and volatile species such as carbon dioxide, and the surface of ITO is coated with silicon dioxide . It would be to leave a thin layer. This technique therefore provides an easy means of producing a thin uniform layer of dielectric material. This layer, because it is possible to contain other components such as hydrogen and carbon, silicon oxide layer is not necessarily stoichiometric.

その化学的構造から有機シラン接着促進剤は、適切な基板上に単一層を製造するものとしばしば述べられている。本発明者らは、これは必ずしもあてはまらないことを確認した。 Because of its chemical structure, organosilane adhesion promoters are often described as producing a single layer on a suitable substrate. The present inventors have, it was confirmed that this is not the case necessarily.

より詳細を記載したプロセスの例が次に挙げられ、本発明にしたがって製造された装置の断面図の例が図2に示される。インジウム錫酸化物の層(2)で被覆されたガラス基板(1)、これは、例えば、米国のアプライドフィルム、又は台湾のメルクディスプレイテクノロジーのようないくつかのサプライヤーから購入することができるが、標準の洗剤及びフォトリソグラフィープロセスを用いて洗浄され、パターン化されるAn example of a process that describes in more detail is given below, and an example of a cross-sectional view of an apparatus made according to the present invention is shown in FIG. A glass substrate (1) coated with a layer of indium tin oxide (2), which can be purchased from several suppliers such as, for example, US Applied Film or Taiwan Merck Display Technology, It is cleaned and patterned using standard detergents and photolithography processes .

フォトリソグラフィープロセスの最終段階の後、すなわち、フォトレジストのはく離後、基板は洗剤中で洗浄され脱イオン水中で完全に洗浄、乾燥され、105℃で30分間焼成される。冷却後、基板は、メタノール(95ml)、水(5ml)及び3−アミノプロピル−トリエトキシシラン(3滴)からなる溶でスピンコート(30間で2000rpm)により下塗りされ、次いで105℃で乾燥窒素雰囲気中で必要とされるまで保管するAfter the final stage of the photolithographic process, i.e., after stripping the photoresist, the substrate is washed in detergent, thoroughly washed with deionized water, dried and calcined at 105 ° C. 30 min. After cooling, the substrate is selected from the group consisting of methanol (95 ml), water (5ml) and 3-aminopropyl - primed by (2000 rpm in 30 seconds) by spin coating at solvent solution consisting of triethoxysilane (3 drops), then with 105 ° C. Store in dry nitrogen atmosphere until needed .

OLED装置の形成の直前に、下塗り基板はケイ素及び酸素からなる、又は含む薄い層(10)を形成するために酸素プラズマ中にさらされる。例として、エミテックK1050Xプラズマエッチング装置を2分間、100ワットで稼動して、許容できる処理ができた。基板は、次いで、真空蒸着システムに直ちに移送され、そこでは、例えば、次の層が連続的に蒸着される。すなわち、4,4−ビス[N−(1−ナフチル)−N−フェニル−アミノ]ジフェニル(NPD)(3)及びトリ(8−ヒドロキシ−キノラト)アルミニウム(AlQ)(4)、フッ化リチウム(5)及びアルミニウム(6)であり、それぞれ、厚さ50、50、1.5及び150nmである。比較のため、有機層を有しない、及び有機シラン層を有するが有機シランの酸化処理がなされていない、類似のOLED装置が製造された。外部量子効率cd/A及び発光効率(lm/W)が測定された。下の表1に示されている。 Just before the formation of OLED devices, primed substrate is exposed to an oxygen plasma to form consisting of silicon and oxygen, or a thin electroformed layer (10). As an example, an Emitech K1050X plasma etcher was run at 100 watts for 2 minutes, resulting in acceptable processing. The substrate is then immediately transferred to a vacuum deposition system where, for example, the next layer is continuously deposited. That is, 4,4-bis [N-(1-naphthyl) -N- phenyl - amino] diphenyl (NPD) (3) and tri scan (8-hydroxy - quinolato) aluminum (AlQ) (4), lithium fluoride (5) and aluminum (6) with thicknesses of 50, 50, 1.5 and 150 nm, respectively. For comparison, a similar OLED device was produced that did not have an organic layer and that had an organic silane layer but no organosilane oxidation treatment. External quantum efficiency ( cd / A ) and luminous efficiency (lm / W) were measured . It is shown in Table 1 below.

Figure 0004796741
酸化有機シラン層の利点は、より低い電圧で同じ電荷量を注入でき、よってOLEDディスプレイ又はバックライトを有するポータブル製品の電池の長寿命化をもたらすより高い発光効率を提供することができることである
Figure 0004796741
The advantage of oxidized organosilane layer is that it can provide a high luminous efficiency than can inject the same amount of charge at a lower voltage, thus resulting in long battery life of portable products having an OLED display or backlight .

他の酸化有機シラン層の利点は、酸化有機シラン層を有しない装置に比較してこれを有する装置のOLED装置特性の再現性がよいことである。例として、酸化有機シラン無しで製造された3つの装置の電流−電圧曲線が図3に示される。酸化有機シラン層を有する3つの装置の曲線が図4に示されている。両者において、この特性を与えるために使用される装置の構造はITO/NPD/ALQ/LiF/AlであったThe advantage of other oxidized organic silane layers is that the reproducibility of the OLED device characteristics of a device having this is better than a device having no oxidized organic silane layer. As an example, the current-voltage curves of three devices made without an oxidized organosilane layer are shown in FIG. The curves for three devices with an oxidized organosilane layer are shown in FIG. In both, the structure of the device used to impart this characteristic ITO / NPD / ALQ / LiF / Al were Tsu der.

他の全ての点においては全く同じ方法で製造された装置にもかかわらず、酸化有機シラン層で作られた装置の電流−電圧曲線には非常に少ない広がりが見られる。 Despite the device manufactured in exactly the same way in all other respects, the current-voltage curve of the device made with the oxidized organosilane layer shows very little broadening.

有機シラン処理及び標準プラズマ処理ITO/NPD/AlQ/LiF/Al装置のNPD層(50nmから250nmの範囲)の厚さの影響が図5及び図6に示される。 The influence of the thickness of the NPD layer (in the range of 50 nm to 250 nm) of the organosilane treated and standard plasma treated ITO / NPD / AlQ / LiF / Al equipment is shown in FIGS.

図5は、有機シラン処理又は標準プラズマ処理装置のNPD厚さの変化に伴う電流密度と電圧の関係を示している。NPD厚さが増加するにしたがって電流は減少するが、減少はプラズマだけの装置のほうがより顕著である。図5の有機シラン処理装置で示されるNPD厚さに対する減少した感度は図6にも反映され、ここでは、有機シラン処理装置に比較して、標準プラズマ処理装置においては、NPD厚さの増加に伴い30cd/m2に必要な電圧がより顕著に増加することが示されている。これは、有機シラン層が正孔注入の効率を改良することを示している。有機シラン処理装置に比較して、標準プラズマ処理装置の場合の大きなNPD厚さでの高い電圧要求は、より低い発光結果にも示されるFIG. 5 shows the relationship between the current density and the voltage accompanying the change in the NPD thickness of the organosilane treatment or standard plasma treatment apparatus. The current decreases as the NPD thickness increases, but the decrease is more pronounced for plasma-only devices. The reduced sensitivity to the NPD thickness shown in the organosilane processing apparatus of FIG. 5 is also reflected in FIG. 6, where the NPD thickness is increased in the standard plasma processing apparatus compared to the organosilane processing apparatus. Accordingly, it is shown that the voltage required for 30 cd / m 2 increases more remarkably. This indicates that the organosilane layer improves the efficiency of hole injection. Compared to organosilane processing equipment , the high voltage requirement at large NPD thickness in the case of standard plasma processing equipment is also shown in lower light emission results.

有機シランプロセスのさらなる比較例は、イリジウムデンドリマー材料をドープしたホストらなる発光層を有するOLEDを使用して提供される。特に、発光層は、4,4’−N、N’−ジカルバゾール−ビフェニル(CBP)ホストの20重量%第1世代イリジウムデンドリマー(G1IrDen)、又は4,4’,4’’−トリ(N−カルバゾリル)トリフェニルアミン(TCTA)ホストの13重量%G1IrDenのどちらかの混合物からなる。こうした混合物の溶液は、クロロホルム及びトルエンをそれぞれ使用して作られ、その後、有機シラン処理、又は標準プラズマ処理ITO基板にスピンコートされる。その後、電子輸送層(2,2’,2’’−(1,3,5−フェニレン)トリス[1−フェニル−1H−ベンイミダリル](TPBI)50nm及びカソード層(LiF/Al)は、加熱蒸発により蒸着され。図7は,CBP及びTCTAホスト材料両方の標準プラズマ処理装置と比較した有機シラン処理装置の寿命における改良を示す。 A further comparative example of the organic silane process is provided using the OLED having a host or Ranaru emitting layer doped with iridium dendrimer material. In particular, the light emitting layer, 4,4'-N, N'-dicarbazole - biphenyl (CBP) 20 wt% first generation iridium dendrimer in the host (G1IrDen), or 4,4 ', 4''- tri ( consists N- carbazolyl) either a mixture of 13 wt% G1IrDen in triphenylamine (TCTA) host. The solution of such mixtures are made using chloroform and toluene, respectively, then, the organic silane treatment, or is spun on ITO substrate of a standard plasma treatment. Then, an electron transport layer (2, 2 ', 2''- (1,3,5-phenylene) tris [1-phenyl--1H- Ben's Imida zone Lil] (TPBI) 50 nm and a cathode layer (LiF / Al) is Ru are deposited by thermal evaporation. Figure 7 shows an improvement in lifetime of the organic silane treatment apparatus as compared to standard plasma processing apparatus both CBP and TCTA host material.

上記実施例の発光層に使用される有機部に加えて、本発明の方法により提供される有機シラン層は、高分子発光層に使用できることが考えられる。このような高分子を含む好ましい電子発光装置は、ITO/TOS/PFO/Ca/Al(青色発光体)及びITO/TOS/(PFO+5%BT)/Ca/Al(黄色発光)であり、ここで、TOSは処理済有機シラン層であり、PFOはポリ[9,9−ジ−(2−エチルヘキシル)フルオレニル−2,7’]−ジイル])であり、BTはポリ[(9,9−ジ−n−オクチルフルオレニル−2,7’−ジイル)−co−(1,4−ベンゾ{2,1’,3−チアダゾール})]である。 In addition to the organic part used in the light-emitting layer of the above-described embodiment, an organosilane layer provided by the method of the invention it is believed to be usable in the polymer light-emitting layer. Such preferred electroluminescent device containing polymer, be ITO / TOS / PFO / Ca / Al ( blue emitter) and ITO / TOS / (PFO + 5 % BT) / Ca / Al ( yellow emitter) , wherein, TOS is processed organosilane layer, PFO is poly [9,9-di - (2-ethylhexyl) fluorenyl-2,7 '] - a di-yl]), BT is poly [(9 , 9-di-n-octylfluorenyl-2,7′-diyl) -co- (1,4-benzo {2,1 ′, 3-thiadazole})].

適切な有機シランは、式(X)3SiRを有する炭素含有化合物である。ここで、Xは、OEt,OMe又はClのような加水分解基であり、Rは、NH2のような官能基を選択的に含むアルキル鎖のような有機部分である。Rは、酸化し揮発性種とならなければならず、したがって、Rは次の要素、C,H,N,O及びSを含み得る。知られているように、この式を有するオルガノシランは、ITOに化学的に吸着して、O−Si結合によって結合された単層を形成することができるSuitable organosilanes are carbon-containing compounds having the formula (X) 3 SiR. Here, X is a hydrolyzable group such as OEt, OMe or Cl, and R is an organic moiety such as an alkyl chain that selectively contains a functional group such as NH 2 . R must oxidize to a volatile species , so R can include the following elements: C, H, N, O, and S. As is known, organosilanes having this formula can be chemically adsorbed on ITO to form a monolayer bonded by O-Si bonds .

使用される条件に依存して、複数の層が最初の層の表面上に形成されるが、これは必ずしも欠点とはならない。しかしながら、この層は好ましくは12層の単分子層より薄い。
シロキサン使用できる。これは、次式を有する。

Figure 0004796741
ここで、n=0、1、2、3であり、Rは、アルキル基である。特別な例は、ヘキサメチルジシロキサンを含む。 Depending on the conditions used, but a plurality of layers that could be formed on the surface of the first layer, this is not necessarily a drawback. However, this layer is preferably thinner than 12 monolayers.
Siloxane can also be used. These have the following formula.
Figure 0004796741
Here, n = 0, 1, 2, and 3, and R is an alkyl group. A particular example includes hexamethyldisiloxane.

良好な誘電体である不揮発性酸化物(例えば、GeO x 、AlO x 、TiO x 等)を形成する要素Zを含み、分子の残りが酸化されて、揮発性化合物を形成する限り、有機シラン以外の化合物もまた好適である。好ましいその化合物も、好ましくは、均一な薄膜を形成するためにアノード表面に化学的又は物理的に吸着されよう。有機シランのように、有機チタン酸塩は、ITO上薄膜を形成できる接着促進剤として知られている。生成する誘電の性質は、望ましい化合物を選択するための明らかに1つの基準となる。 Is a good dielectric volatile oxides (e.g., GeO x, AlO x, TiO x , etc.) viewed including the element Z to form a remainder of the molecule is oxidized, so long as to form a volatile compound, an organic silane Other compounds are also suitable. The preferred compound will also preferably be chemically or physically adsorbed to the anode surface to form a uniform thin film. As organosilane, organotitanate, known as adhesion promoters capable of forming a thin film on ITO. The nature of the dielectric film produced is clearly one criterion for selecting the desired compound.

ITOの有機シランの単分子層の形成はよく知られており、自己集合技術一般はよく知られている。電子発光装置の製造における有機シランの使用例があり、例えば、米国特許5677545では、配向層を形成するために、固基を有するポリマーがITO上に堆積される。日本特許06325345では、有機シラン化合物がカソード層に化学的に吸収され、次いで、発光材料がその上堆積される。しかしながら、これらの全てのケースでは、有機シラン化合物が装置に残留し、このため、本発明のものと異なる組成物であり、異なる目的を有する。 Formation of monomolecular layers of an organic silane on ITO are well known, self-assembled coupling techniques generally are well known. There is an example use of organic silane in the manufacture of electroluminescent devices, for example, in U.S. Patent 5677545, in order to form an alignment layer, a polymer having a fixed group is deposited on the ITO. In Japanese Patent 06325345, an organosilane compound is chemically absorbed on the cathode layer, and then a luminescent material is deposited thereon . However, in all these cases, the organosilane compound remains in the device and is therefore a composition different from that of the present invention and has a different purpose.

上記実施態様においては、誘電材料が形成される表面はITOからなる実質的に透明な導電性アノードであるが、もし望むなら、酸化錫、酸化インジウム、酸化亜鉛又は亜鉛ドープ酸化インジウムなどの他の材料が代替として使用され得る。 In the above embodiment, the surface of the dielectric material is formed is substantially transparent conductive anode made of ITO, if desired, tin oxide, indium oxide, zinc oxide or zinc-doped indium oxide other such Materials can be used as an alternative.

上記実施態様において、グロー放電用ガスは酸素であった。例えば、プラズマ中で酸素ラジカルを供給する亜酸化窒素のような他の酸化媒体が代替として使用され得る。 In the above embodiment , the glow discharge gas was oxygen . For example, other oxidizing media, such as nitrous oxide supply of oxygen radicals in the plasma may be used as an alternative.

従来の有機発光装置の断面図を示す。A sectional view of a conventional organic light emitting device is shown. 本発明の有機発光装置の断面図を示す。1 shows a cross-sectional view of an organic light emitting device of the present invention. 従来の3つの有機発光装置の電流−電圧特性を示す。3 shows current-voltage characteristics of three conventional organic light emitting devices. 本発明の3つの有機発光装置の電流−電圧特性を示す。3 shows current-voltage characteristics of three organic light-emitting devices of the present invention. 異なるNPD厚さを有する、3つの有機シラン処理された、及び3つのプラズマ処理された装置の電流−電圧特性を示す。Having different NPD thicknesses, three organic silane treated, and three plasma treated device current - voltage characteristics thereof are shown. NPD層の厚さの増加に伴う有機シラン処理及びプラズマ処理された装置の電圧、収率及び発光効率を示す。Figure 2 shows the voltage, yield and luminous efficiency of organosilane and plasma treated devices with increasing NPD layer thickness. 2つの有機シラン処理された、及び2つのプラズマ処理された装置の寿命特性を示す。Figure 2 shows the lifetime characteristics of two organosilane treated and two plasma treated devices.

1 ガラス基板
2 インジウム錫酸化物(ITO)層
,4−ビス[N−(1−ナフチル)−N−フェニル−アミノ]ジフェニル
(NPD)層
4 トリ(8−ヒドロキシ−キノラト)アルミニウム(AlQ)層
フッ化リチウム
6 アルミニウム層
10 ケイ素及び酸素を含む薄
1 glass substrate 2 of indium tin oxide (ITO) layer 3 4, 4-bis [N-(1-naphthyl) -N- phenyl - amino] diphenyl (NPD) layer 4 tri scan (8-hydroxy - quinolato) aluminum ( AlQ) layer 5 lithium fluoride layer 6 aluminum layer thin electroformed layer comprising 10 silicon and oxygen

Claims (4)

酸化有機シランを含む層を、基板上に形成された透明導電性アノード表面上に形成し、前記アノードから発光層への正孔の注入を促進する誘電体層を前記アノードと前記発光層との間に形成することを含む電子発光装置を製造する方法であって、
a.基板上に形成された透明導電性アノード表面を、有機シランを含む液体又は気体にさらすことにより、前記表面上に11層以下の単分子層吸着層を形成し、
b.前記吸着層が形成された前記表面を前記液体又は気体から離脱させ、
c.前記吸着層を酸化媒体にさらすことによって、前記吸着層を酸化有機シランを含む層に変換し、2nm未満の厚さの前記誘電体層を形成することを含み、
ここで、有機シランは、一般式(X)3SiRを充足し、この式において、Xは加水分解性基であり、Rは有機部である電子発光装置を製造する方法。
A layer containing an oxidized organic silane is formed on the surface of the transparent conductive anode formed on the substrate, and a dielectric layer that promotes injection of holes from the anode to the light emitting layer is formed between the anode and the light emitting layer. A method of manufacturing an electroluminescent device comprising forming between,
a. By exposing the surface of the transparent conductive anode formed on the substrate to a liquid or gas containing organosilane, a monomolecular layer adsorption layer of 11 layers or less is formed on the surface,
b. Separating the surface on which the adsorption layer is formed from the liquid or gas;
c. Converting the adsorption layer to a layer comprising oxidized organosilane by exposing the adsorption layer to an oxidizing medium to form the dielectric layer having a thickness of less than 2 nm;
Here, the organic silane satisfies the general formula (X) 3 SiR, in which X is a hydrolyzable group, and R is an organic part.
前記XがOEt、OMe又はClからなる請求項1に記載の方法。The method of claim 1, wherein X comprises OEt, OMe, or Cl. 前記Rがアルキル基である請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein R is an alkyl group. 前記酸化媒体がグロー放電による酸素ラジカルを含むガスからなる請求項1ないし3のいずれかに記載の方法。The method according to claim 1, wherein the oxidation medium comprises a gas containing oxygen radicals generated by glow discharge .
JP2002590431A 2001-05-14 2002-05-13 Method for forming a layer containing metal, silicon, germanium and oxygen on a surface Expired - Fee Related JP4796741B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0111751.4 2001-05-14
GBGB0111751.4A GB0111751D0 (en) 2001-05-14 2001-05-14 A method of providing a layer including a metal or silicon or germanium and oxygen on a surface
GBGB0208230.3A GB0208230D0 (en) 2001-05-14 2002-04-10 A method of providing a layer including a metal or silicon or germanium and oxygen on a surface
GB0208230.3 2002-04-10
PCT/GB2002/002181 WO2002093662A2 (en) 2001-05-14 2002-05-13 A method of providing a layer including a metal or silicon or germanium and oxygen on a surface

Publications (3)

Publication Number Publication Date
JP2004535038A JP2004535038A (en) 2004-11-18
JP2004535038A5 JP2004535038A5 (en) 2011-04-07
JP4796741B2 true JP4796741B2 (en) 2011-10-19

Family

ID=9914604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002590431A Expired - Fee Related JP4796741B2 (en) 2001-05-14 2002-05-13 Method for forming a layer containing metal, silicon, germanium and oxygen on a surface

Country Status (3)

Country Link
JP (1) JP4796741B2 (en)
AU (1) AU2002253400A1 (en)
GB (2) GB0111751D0 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009022900A1 (en) * 2009-04-30 2010-11-18 Osram Opto Semiconductors Gmbh Optoelectronic component and method for its production

Also Published As

Publication number Publication date
AU2002253400A1 (en) 2002-11-25
GB0111751D0 (en) 2001-07-04
GB0208230D0 (en) 2002-05-22
JP2004535038A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4932925B2 (en) Light emitting device
CN100483783C (en) Light emitting element and manufacturing method thereof
KR101828662B1 (en) Organic electroluminescent element and lighting device
JP5848862B2 (en) Improving the water shielding performance of the encapsulated membrane
JP4350745B2 (en) Nitrogen plasma treated ITO film and organic light emitting device using the same as anode
JP2000512795A (en) Plasma treatment of conductive layer
CN1215500A (en) Transparent Contacts for Organic Devices
JP4516789B2 (en) Organic electroluminescent device using anode surface modification layer
JP2012519930A (en) Organic compound monomolecular layer on metal oxide surface or oxide-containing metal surface, and organic electronic device manufactured using the same
WO2007004627A1 (en) Patterning apparatus, organic electroluminescence element, method for manufacturing such organic electroluminescence element, and organic electroluminescence display device
JP2006318837A (en) Organic electroluminescence device and organic electroluminescence device
JP4006951B2 (en) Organic electroluminescent device and manufacturing method thereof
US20040195966A1 (en) Method of providing a layer including a metal or silicon or germanium and oxygen on a surface
JP2004047176A (en) Organic electroluminescent element
JPWO2016208237A1 (en) A gas barrier film, a transparent conductive member, an organic electroluminescence element, a method for producing a gas barrier film, a method for producing a transparent conductive member, and a method for producing an organic electroluminescence element.
JP4796741B2 (en) Method for forming a layer containing metal, silicon, germanium and oxygen on a surface
JP5168762B2 (en) Method for manufacturing organic electroluminescence element
JP2004535038A5 (en)
JPH08330071A (en) Optical element and manufacture thereof
JP2000164355A (en) Organic EL device and manufacturing method thereof
JP4443872B2 (en) Electroluminescent device, light emitting device, electric appliance
JP4527089B2 (en) Electroluminescent device and light emitting device using the electroluminescent device
JP2013179107A (en) Organic light-emitting diode and method for manufacturing the same
JP2005216677A (en) Organic electroluminescent element
JP2009301885A (en) Multi-unit type organic el element, and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081222

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091209

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101117

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110121

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4796741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees