[go: up one dir, main page]

JP4795754B2 - High thermal shock-resistant ceramic composite and manufacturing method thereof - Google Patents

High thermal shock-resistant ceramic composite and manufacturing method thereof Download PDF

Info

Publication number
JP4795754B2
JP4795754B2 JP2005243606A JP2005243606A JP4795754B2 JP 4795754 B2 JP4795754 B2 JP 4795754B2 JP 2005243606 A JP2005243606 A JP 2005243606A JP 2005243606 A JP2005243606 A JP 2005243606A JP 4795754 B2 JP4795754 B2 JP 4795754B2
Authority
JP
Japan
Prior art keywords
ceramic composite
composite material
thermal shock
high thermal
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005243606A
Other languages
Japanese (ja)
Other versions
JP2007055851A (en
Inventor
常夫 古宮山
治 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2005243606A priority Critical patent/JP4795754B2/en
Publication of JP2007055851A publication Critical patent/JP2007055851A/en
Application granted granted Critical
Publication of JP4795754B2 publication Critical patent/JP4795754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、高耐熱衝撃性セラミックス複合材及びその製造方法に関する。   The present invention relates to a high thermal shock resistant ceramic composite and a method for producing the same.

炭化珪素(SiC)耐火物は、優れた耐熱性、耐火性から、工業上重要な地位を占めており、例えば陶磁器焼成用の棚板、その他の焼成用治具、サヤ等の窯道具に多用されている。このようなSiC耐火物は、従来、SiC粒子に5〜10質量%程度の粘土を混合して、混練・成形・焼成し、珪酸塩鉱物、例えば粘土鉱物により、SiC粒子を結合させることにより製造されている。しかしながら、このように製造されるSiC耐火物は、耐火度が低い粘土鉱物を粒界結合部としているため、高温での軟化変形や酸化が生じ易いという問題があった。   Silicon carbide (SiC) refractory occupies an important industrial position due to its excellent heat resistance and fire resistance. For example, it is frequently used for shelf boards for firing ceramics, other firing jigs, and furnace tools such as Saya. Has been. Such SiC refractories are conventionally manufactured by mixing SiC particles with about 5 to 10% by mass of clay, kneading, molding and firing, and bonding the SiC particles with a silicate mineral such as clay mineral. Has been. However, the SiC refractory manufactured in this way has a problem that softening deformation and oxidation are likely to occur at high temperatures because a clay mineral having a low fire resistance is used as a grain boundary joint.

このため、SiC粒子にSiを混合、成形した後、成形体を非酸化性の窒素含有雰囲気下において焼成することにより、窒化珪素結合SiC炭化珪素耐火物(セラミックス複合材)を製造することが開示されている(特許文献1参照)。このSiC耐火物は、SiC粒子を窒化珪素からなる結合材により結合させたものであり、高温での機械的強度、耐熱衝撃性を向上させることを目的としたものである。しかしながら、特許文献1に記載の方法により製造されるSiC耐火物にあっても、高温強度、耐熱衝撃性等の特性においては未だ満足できるものではなかった。   For this reason, it is disclosed that a silicon nitride-bonded SiC silicon carbide refractory (ceramic composite material) is manufactured by mixing and shaping Si into SiC particles and then firing the shaped body in a non-oxidizing nitrogen-containing atmosphere. (See Patent Document 1). This SiC refractory is obtained by bonding SiC particles with a binder made of silicon nitride, and is intended to improve mechanical strength and thermal shock resistance at high temperatures. However, even the SiC refractory manufactured by the method described in Patent Document 1 has not yet been satisfactory in properties such as high-temperature strength and thermal shock resistance.

以上の問題点を解消するため、SiCを主相とし、副相としてSi34及び/又はSi22Oを含むとともに、曲げ強度が150MPa以上で、且つ嵩比重が2.6以上であり、且つ主相を構成するSiC骨材の周辺に、1μm以下のSiC超微粉が均一に分散されている窒化珪素結合SiC耐火物が開示されている(特許文献2参照)。このSiC耐火物は、酸化物結合SiC耐火物、窒化物結合SiC耐火物の使用温度に準ずる温度(1600℃程度)と、Si含浸SiCに準ずる強度(225〜250MPa程度)を有するものであり、従来の耐火物の長所を兼ね備えた耐火物である。 In order to solve the above problems, SiC is the main phase, Si 3 N 4 and / or Si 2 N 2 O is included as the sub phase, the bending strength is 150 MPa or more, and the bulk specific gravity is 2.6 or more. There is disclosed a silicon nitride-bonded SiC refractory in which SiC ultrafine powder of 1 μm or less is uniformly dispersed around the SiC aggregate constituting the main phase (see Patent Document 2). This SiC refractory has a temperature (about 1600 ° C.) corresponding to the use temperature of the oxide-bonded SiC refractory and nitride-bonded SiC refractory, and a strength (about 225 to 250 MPa) equivalent to the Si-impregnated SiC. This refractory combines the advantages of conventional refractories.

しかしながら、従来の窒化珪素結合炭化珪素耐火物(特許文献1及び特許文献2参照)は、その焼成過程での残留応力が内在しているため、耐熱衝撃性が必ずしも十分ではなかった。特に、トンネル炉用の窯道具として用いた場合、バーナーの火炎が直接当たる箇所や急激な昇降温が生じる箇所における破損が著しいため、より耐熱衝撃性に優れたセラミックス複合材が必要とされていた。
特許第2655699号公報 特開2005−82451号公報
However, the conventional silicon nitride-bonded silicon carbide refractories (see Patent Document 1 and Patent Document 2) are not necessarily sufficient in thermal shock resistance because residual stress is inherent in the firing process. In particular, when used as a kiln tool for a tunnel furnace, a ceramic composite material with more excellent thermal shock resistance has been required because of severe damage at locations where the flame of the burner directly hits or where the temperature rises or falls rapidly. .
Japanese Patent No. 2655699 JP 2005-82451 A

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的とするところは、バーナーの火炎が直接当たる箇所や急激な昇降温が生じる箇所や条件であっても破損することがない耐熱衝撃性に優れた特性を有する高耐熱衝撃性セラミックス複合材及びその製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and the object of the present invention is to be damaged even at a location where the flame of the burner directly hits or a location or condition where rapid heating / cooling occurs. An object of the present invention is to provide a high thermal shock-resistant ceramic composite material having excellent thermal shock resistance and a method for producing the same.

[1] 骨材である炭化珪素と、前記炭化珪素を窒化珪素で結合させた構造を有し、Al、Ca、Fe、Ti、Zr、Mgから選択された少なくとも1種類を酸化物換算で0.1〜3質量%含有し、且つ、Al が0.05〜2.0質量%、Fe が0.05〜1.0質量%、Na Oが0.1質量%未満であるセラミックス複合材であって、前記セラミックス複合材が中空パイプ形状を有するとともに、前記セラミックス複合材を長さ方向に切断した時、その切断部と直角方向に対向する面に1〜50MPaの圧縮応力が発生する高耐熱衝撃性セラミックス複合材。 [1] 0 to silicon carbide is aggregate, the silicon carbide have a structure obtained by binding silicon nitride, Al, Ca, Fe, Ti, Zr, at least one selected from Mg in terms of oxide 0.1 to 3 % by mass , Al 2 O 3 is 0.05 to 2.0% by mass, Fe 2 O 3 is 0.05 to 1.0% by mass, and Na 2 O is 0.1% by mass. A ceramic composite material having a hollow pipe shape, and when the ceramic composite material is cut in a length direction, the surface facing the cut portion at a right angle is 1 to 50 MPa. High thermal shock resistant ceramic composite that generates compressive stress.

[2] 中空パイプ形状が、角パイプ又は丸パイプである[1]に記載の高耐熱衝撃性セラミックス複合材。 [2] The high thermal shock resistant ceramic composite material according to [1], wherein the hollow pipe shape is a square pipe or a round pipe.

] セラミックス複合材が、窒化珪素結合SiC耐火物である[1]又は[2]に記載の高耐熱衝撃性セラミックス複合材。 [ 3 ] The high thermal shock resistant ceramic composite according to [1] or [2] , wherein the ceramic composite is a silicon nitride-bonded SiC refractory.

[4] 骨材であるSiC粉末とSi粉末を混合した原料を成形し、得られた中空パイプ形状の成形体を窒素雰囲気下で焼成し、焼成体を得、前記焼成体を10〜500℃に一旦冷却した後、更に、1000〜1500℃で再加熱することにより、[1]に記載のセラミックス複合材を得る高耐熱衝撃性セラミックス複合材の製造方法。 [4] A raw material in which SiC powder as an aggregate and Si powder are mixed is molded, and the obtained hollow pipe-shaped molded body is fired in a nitrogen atmosphere to obtain a fired body, and the fired body is heated to 10 to 500 ° C. The method for producing a high thermal shock resistant ceramic composite material according to [1], wherein the ceramic composite material according to [1] is obtained by further reheating at 1000 to 1500 ° C.

] 焼成体の再加熱時における焼成雰囲気が、大気雰囲気、窒素雰囲気、Ar雰囲気、He雰囲気のいずれかである[4]に記載の高耐熱衝撃性セラミックス複合材の製造方法。 [ 5 ] The method for producing a high thermal shock-resistant ceramic composite material according to [4 ] , wherein a firing atmosphere at the time of reheating the fired body is any one of an air atmosphere, a nitrogen atmosphere, an Ar atmosphere, and a He atmosphere.

本発明の高耐熱衝撃性セラミックス複合材は、バーナーの火炎が直接当たる箇所や急激な昇降温が生じる箇所や条件であっても破損することがない耐熱衝撃性に優れた特性を有する。   The high thermal shock-resistant ceramic composite material of the present invention has excellent thermal shock resistance that does not break even at locations where the flame of a burner directly hits, or where a rapid temperature rise / fall occurs.

以下、本発明の高耐熱衝撃性セラミックス複合材について詳細に説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。   Hereinafter, the high thermal shock-resistant ceramic composite material of the present invention will be described in detail. However, the present invention is not construed to be limited to this, and the knowledge of those skilled in the art will be understood without departing from the scope of the present invention. Various changes, modifications and improvements can be made based on this.

本発明に係る高耐熱衝撃性セラミックス複合材は、骨材である炭化珪素と、前記炭化珪素を窒化珪素で結合させた構造を有し、Al、Ca、Fe、Ti、Zr、Mgから選択された少なくとも1種類を酸化物換算で0.1〜3質量%含有し、且つ、Al が0.05〜2.0質量%、Fe が0.05〜1.0質量%、Na Oが0.1質量%未満であるセラミックス複合材であって、前記セラミックス複合材が中空パイプ形状を有するとともに、前記セラミックス複合材を長さ方向に切断した時、その切断部と直角方向に対向する面に1〜50MPaの圧縮応力が発生することにある。 High thermal shock resistance ceramic composite material according to the present invention, silicon carbide is the aggregate, the said silicon carbide is bonded by silicon nitride structures possess, selected Al, Ca, Fe, Ti, Zr, and Mg In addition, 0.1 to 3% by mass of at least one kind in terms of oxide, 0.05 to 2.0% by mass of Al 2 O 3 , and 0.05 to 1.0% by mass of Fe 2 O 3 , Na 2 O is a ceramic composite material of less than 0.1% by mass , the ceramic composite material has a hollow pipe shape, and when the ceramic composite material is cut in the length direction, the ceramic composite material is perpendicular to the cut portion. A compressive stress of 1 to 50 MPa is generated on the surface facing the direction.

これにより、本発明のセラミックス複合材は、従来のセラミックス複合材と異なり、その形状を板状ではなく、中空パイプ状にするとともに、セラミックス複合材を長さ方向に切断した時、その切断部と直角方向に対向する面に圧縮応力が発生することにより、本発明のセラミックス複合材中に引張応力が内在されていないため、バーナーの火炎が直接当たる箇所や急激な昇降温が生じる箇所であっても破損することがなく、従来のセラミックス複合材と比較して、更なる耐熱衝撃性の向上に寄与することができる。   Thus, unlike the conventional ceramic composite material, the ceramic composite material of the present invention has a hollow pipe shape instead of a plate shape, and when the ceramic composite material is cut in the length direction, Since compressive stress is generated on the surfaces facing each other in the perpendicular direction, tensile stress is not inherent in the ceramic composite material of the present invention. As a result, the thermal shock resistance can be further improved as compared with the conventional ceramic composite material.

一方、従来のセラミックス複合材は、通常、板状であり、その製造時の焼成過程で体積膨脹が発生するが、寸法が変化しないため、引張応力が内在された状態で使用されるため、急激な昇降温が生じると、比較的容易に破損してしまう。   On the other hand, conventional ceramic composites are usually plate-shaped, and volume expansion occurs during the firing process at the time of manufacture. However, since the dimensions do not change, they are used in a state where tensile stress is inherent, If the temperature rises and falls, it will be damaged relatively easily.

本発明のセラミックス複合材は、中空パイプ形状が、特に限定されないが、通常、角パイプ又は丸パイプであることが、中空の場合、窯道具として使用した場合の重量を軽くできることと、発生する圧縮応力が周方向に働き、効果的に耐熱衝撃性を上げることができる点で好ましい。   In the ceramic composite material of the present invention, the shape of the hollow pipe is not particularly limited, but it is usually a square pipe or a round pipe, and in the case of being hollow, the weight when used as a kiln tool can be reduced, and the generated compression It is preferable in that stress acts in the circumferential direction and the thermal shock resistance can be effectively increased.

また、本発明のセラミックス複合材は、圧縮応力が1〜50MPa、より好ましくは、1〜40MPa、更に好ましくは、1〜30MPaである。これは、1MPa未満の場合、小さすぎて耐熱衝撃性向上への効果が小さいからである。一方、50MPaを超過する場合、過剰な応力となり、わずかな熱応力で破壊する可能性がある。   Moreover, the ceramic composite material of the present invention has a compressive stress of 1 to 50 MPa, more preferably 1 to 40 MPa, and still more preferably 1 to 30 MPa. This is because if it is less than 1 MPa, it is too small and the effect for improving the thermal shock resistance is small. On the other hand, when it exceeds 50 MPa, it becomes an excessive stress and may be destroyed by a slight thermal stress.

更に、本発明のセラミックス複合材は、窒化珪素結合SiC耐火物であることが好ましい。これは、窒化珪素結合SiC耐火物が、耐熱性、耐熱衝撃性及び耐酸化性を有するとともに、高強度で且つ耐クリープ性、熱伝導性に優れた特性を有しているからである。   Furthermore, the ceramic composite material of the present invention is preferably a silicon nitride bonded SiC refractory. This is because the silicon nitride bonded SiC refractory has heat resistance, thermal shock resistance and oxidation resistance, and has high strength, excellent creep resistance and thermal conductivity.

次に、本発明に係る高耐熱衝撃性セラミックス複合材の製造方法は、骨材であるSiC粉末とSi粉末を混合した原料を成形し、得られた成形体を窒素雰囲気下で焼成し、焼成体を得、焼成体を10〜500に一旦冷却した後、更に、1000〜1500℃で再加熱することにある。 Next, in the method for producing a high thermal shock-resistant ceramic composite material according to the present invention, a raw material obtained by mixing SiC powder and Si powder as an aggregate is molded, and the obtained molded body is fired in a nitrogen atmosphere and fired. After the body was obtained and the fired body was once cooled to 10 to 500 ° C , it was further reheated at 1000 to 1500 ° C.

このとき、本発明のセラミックス複合材の製造方法の主な特徴は、(特に、中空パイプ形状の)成形体を焼成し、得られた焼成体(窒化珪素結合SiC耐火物)を10〜500℃に一旦冷却した後、更に、1000〜1500℃で再加熱することにある。これは、焼成後の焼成体を10〜500℃に一旦冷却することにより、焼成過程で発生した引張応力を緩和させることができるからである。 At this time, the main feature of the method for producing a ceramic composite material of the present invention is that a molded body (particularly in the shape of a hollow pipe) is fired, and the obtained fired body (silicon nitride bonded SiC refractory) is 10 to 500 ° C. Then, it is further re-heated at 1000 to 1500 ° C. This is because tensile stress generated in the firing process can be relaxed by once cooling the fired fired body to 10 to 500 ° C.

尚、本発明のセラミックス複合材の製造方法では、焼成体の一旦冷却時の温度が、10〜500℃であることが重要である。これは、焼成過程で生じた引張応力を圧縮応力に変換する際に、500℃を超過する場合、焼成で生じた応力がそのまま歪になっておらず、再昇温しても圧縮応力が得られない。一方、10℃未満の場合、工業的に実用性が十分でなく、安価に製造することが容易でないことが挙げられるからである。 In the method for producing a ceramic composite material of the present invention, it is important that the temperature when the fired body is once cooled is 10 to 500 ° C. This is because, when the tensile stress generated in the firing process is converted to compressive stress, if the temperature exceeds 500 ° C., the stress generated by firing is not distorted as it is, and the compressive stress is obtained even if the temperature is increased again. I can't. On the other hand, if it is less than 10 ° C., it is industrially not practical enough and it is not easy to produce at low cost.

また、本発明のセラミックス複合材の製造方法は、焼成後の焼成体を一旦冷却後、更に1300〜1500℃にて熱処理することが行われている。これは、得られた耐火物の表面に強固な酸化被膜を形成させることにより、高温で長時間使用した場合であっても、酸化劣化が抑制されるため、変形や膨れがほとんど無く、割れ等も生じない、という極めて優れた耐熱衝撃性を発現させることができるからである。   In the method for producing a ceramic composite material of the present invention, the fired fired body is once cooled, and then further heat treated at 1300 to 1500 ° C. This is because by forming a strong oxide film on the surface of the obtained refractory, even when used at a high temperature for a long time, oxidative degradation is suppressed, so there is almost no deformation or swelling, cracks, etc. This is because the extremely excellent thermal shock resistance can be expressed.

尚、本発明のセラミックス複合材の製造方法は、特に限定されないが、焼成体の再加熱時における焼成雰囲気が、大気雰囲気、窒素雰囲気、Ar雰囲気、He雰囲気のいずれか1つであることが好ましい。このとき、大気雰囲気中で焼成体を再加熱した場合、生産性の向上及び製造コストの削減に寄与することができる。   The method for producing the ceramic composite material of the present invention is not particularly limited, but the firing atmosphere during reheating of the fired body is preferably any one of an air atmosphere, a nitrogen atmosphere, an Ar atmosphere, and a He atmosphere. . At this time, when the fired body is reheated in an air atmosphere, it can contribute to an improvement in productivity and a reduction in manufacturing costs.

更に、本発明のセラミックス複合材の製造方法について詳細に説明する。本発明の耐火物は、通常、[1]原料調合、[2]混合、[3]鋳込成形、[4]離型、[5]乾燥、[6]焼成(窒素雰囲気焼成)、[7]冷却、[8]再加熱処理、[9]検査といった工程を経て製造される。   Furthermore, the manufacturing method of the ceramic composite material of this invention is demonstrated in detail. The refractories of the present invention are usually [1] raw material preparation, [2] mixing, [3] cast molding, [4] mold release, [5] drying, [6] firing (nitrogen atmosphere firing), [7 It is manufactured through processes such as cooling, [8] reheating treatment, and [9] inspection.

ここで、本発明のセラミックス複合材の製造方法の主な特徴は、骨材として30〜300μmのSiCを30〜70質量%と、0.05〜30μmのSiC粉末を10〜50質量%と、0.05〜30μmのSi粉末を10〜30質量%に、Al、Ca、Fe、Ti、Zr、Mgから選択された少なくとも1種類を酸化物換算で0.1〜3質量%を混合する工程([1]+[2])を有することにある。無機酸化物が多いと、使用時に結晶粒界中に生成してくるガラス相の量が増大して、セラミックス複合材として必要な耐クリープ性が低下し寿命が短くなってしまう。   Here, the main characteristics of the method for producing a ceramic composite material of the present invention are as follows: 30 to 70% by mass of 30 to 300 μm SiC as an aggregate, 10 to 50% by mass of 0.05 to 30 μm SiC powder, A step of mixing 0.05 to 30 μm of Si powder into 10 to 30% by mass and mixing at least one selected from Al, Ca, Fe, Ti, Zr, and Mg with 0.1 to 3% by mass in terms of oxide ([1] + [2]). When there are many inorganic oxides, the amount of the glass phase produced | generated in a crystal grain boundary at the time of use will increase, creep resistance required as a ceramic composite material will fall, and a lifetime will become short.

このとき、本発明のセラミックス複合材の製造方法では、原料調合([1])時点でSi粉末を添加することが、SiをSiC骨材の周辺に均一に分散させることができるため好ましい。また、本発明のセラミックス複合材の製造方法では、無機酸化物(Al、Ca、Fe、Ti、Zr、Mg)の内、少なくとも、Al23が0.05〜2.0質量%、Fe23が0.05〜1.0質量%、Na2Oが0.1質量%未満であることが好ましい。更に、本発明のセラミックス複合材の製造方法では、SiC粉末中に1μm以下の粒子径のSiC超微粉を10〜30質量%添加することにより、得られたセラミックス複合材の密度(緻密度)を向上することができる。従来の配合では無機酸化物が3質量%以下になると密度が低下していたが、SiC超微粉を添加することで無機酸化物量が少なくても2.6以上の嵩比重が得られる。 At this time, in the method for producing a ceramic composite material of the present invention, it is preferable to add Si powder at the time of raw material preparation ([1]) because Si can be uniformly dispersed around the SiC aggregate. In the method for producing a ceramic composite material of the present invention, at least Al 2 O 3 is 0.05 to 2.0% by mass of inorganic oxides (Al, Ca, Fe, Ti, Zr, Mg), Fe 2 O 3 is preferably 0.05 to 1.0% by mass and Na 2 O is preferably less than 0.1% by mass. Furthermore, in the method for producing a ceramic composite material of the present invention, 10 to 30% by mass of SiC ultrafine powder having a particle diameter of 1 μm or less is added to the SiC powder, whereby the density (denseness) of the obtained ceramic composite material is reduced. Can be improved. In the conventional blending, the density is reduced when the inorganic oxide is 3% by mass or less, but by adding SiC ultrafine powder, a bulk specific gravity of 2.6 or more can be obtained even if the amount of the inorganic oxide is small.

また、本発明のセラミックス複合材の製造方法は、成形工程が鋳込成形([3])で行われることが好ましい。これにより、本発明のセラミックス複合材の製造方法では、得られた成形品の緻密性が向上するため、焼成後のセラミックス複合材の強度(曲げ強度及びヤング率)を向上させることができる。   In the method for producing a ceramic composite material of the present invention, it is preferable that the forming step is performed by casting ([3]). Thereby, in the manufacturing method of the ceramic composite material of this invention, since the compactness of the obtained molded article improves, the intensity | strength (bending strength and Young's modulus) of the ceramic composite material after baking can be improved.

更に、本発明のセラミックス複合材の製造方法は、実質的に窒素雰囲気下で、1350〜1500℃にて焼成し、焼成時間は1〜30hrにすることが好ましい([6])。これにより、本発明のセラミックス複合材の製造方法は、成形体中のSiと雰囲気中の窒素とが反応し、窒化珪素と、微量の酸素から酸窒化物とがSiC粒子の粒界に生成され、SiC骨材を結合させることができる。   Furthermore, the method for producing a ceramic composite material of the present invention is preferably fired at 1350-1500 ° C. in a substantially nitrogen atmosphere, and the firing time is preferably 1-30 hr ([6]). Thereby, in the method for producing a ceramic composite material of the present invention, Si in the molded body reacts with nitrogen in the atmosphere, and silicon nitride and oxynitride from a small amount of oxygen are generated at the grain boundaries of the SiC particles. , SiC aggregate can be bonded.

ここで、1350〜1500℃にて熱処理するときの窒素雰囲気中の酸素濃度は、0.01〜2.00%であることがより好ましい。これは、微量の酸素の存在で酸窒化物が形成され、より強固にSiC粒界を結合させることができるからである。尚、窒素雰囲気中の窒素の含有割合が90容量%未満である場合、熱処理時に窒化速度の遅延や一部の酸素により未窒化現象が生じたり、原料が酸化してしまうため好ましくない。   Here, the oxygen concentration in the nitrogen atmosphere when the heat treatment is performed at 1350 to 1500 ° C. is more preferably 0.01 to 2.00%. This is because oxynitride is formed in the presence of a small amount of oxygen, and SiC grain boundaries can be bonded more firmly. Note that it is not preferable that the nitrogen content in the nitrogen atmosphere is less than 90% by volume because a nitriding rate is delayed during heat treatment, an unnitrided phenomenon occurs due to some oxygen, and the raw material is oxidized.

また、本発明のセラミックス複合材の製造方法では、(特に、中空パイプ形状の)成形体を焼成し([6])、得られた焼成体を、10〜500℃に冷却([7])することが、焼成過程で発生した引張応力を緩和させることができるため好ましい。   In the method for producing a ceramic composite material of the present invention, a molded body (particularly in the shape of a hollow pipe) is fired ([6]), and the obtained fired body is cooled to 10 to 500 ° C. ([7]). It is preferable to reduce the tensile stress generated in the firing process.

更に、本発明のセラミックス複合材の製造方法では、得られた焼成体を、10〜500℃に冷却([7])した後、更に1000〜1500℃(より好ましくは、1000〜1400℃)にて再加熱処理([8])することが好ましい。このとき、再加熱処理温度が1000℃未満である場合、圧縮応力が形成されず、引張応力となり充分な耐熱衝撃性能が発揮できない。一方、再加熱処理温度が1500℃を超過する場合、製造コストや生産性の面で好ましくない。尚、焼成体の再加熱時における焼成雰囲気は、特に限定されないが、大気雰囲気、窒素雰囲気、Ar雰囲気、He雰囲気のいずれか1つであることが好ましい。   Furthermore, in the method for producing a ceramic composite material of the present invention, the obtained fired body is cooled to 10 to 500 ° C. ([7]), and further to 1000 to 1500 ° C. (more preferably 1000 to 1400 ° C.). It is preferable to reheat ([8]). At this time, when the reheat treatment temperature is less than 1000 ° C., compressive stress is not formed, and tensile stress is generated and sufficient thermal shock resistance performance cannot be exhibited. On the other hand, when the reheating treatment temperature exceeds 1500 ° C., it is not preferable in terms of manufacturing cost and productivity. In addition, the firing atmosphere at the time of reheating the fired body is not particularly limited, but is preferably any one of an air atmosphere, a nitrogen atmosphere, an Ar atmosphere, and a He atmosphere.

本発明を実施例に基づいて、更に詳細に説明するが、本発明はこれらの実施例に限られるものではない。   The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

(実施例1〜19、比較例1〜13)
表1に示すSiC粉末、Si粉末、Fe23、Al23、分散材、イオン交換水を表1に示す配合比(質量%)になるように、原料調合した(原料調合[1])。
(Examples 1-19, Comparative Examples 1-13)
The SiC powder, Si powder, Fe 2 O 3 , Al 2 O 3 , dispersion material, and ion-exchanged water shown in Table 1 were prepared so that the mixing ratio (mass%) shown in Table 1 was obtained (raw material preparation [1 ]).

Figure 0004795754
Figure 0004795754

得られた原料を、トロンメル内に投入・混合し、原料の均一混合を図り、泥漿内の原料粒子の二次粒子と一次粒子を解砕した(混合[2])。このとき、トロンメル混合は、100kg/バッチで、20hr程度行った。上記トロンメル混合で得られた泥漿を、石膏型内に注入し、泥漿内の水分を石膏型に吸収させて、所定厚さを着肉させることにより、表2に示す形状の成形体をそれぞれ得た(成形(鋳込成形)[3])。得られた成形体を、石膏型から取り出し、成形体内の水分を乾燥させた(離型[4]、乾燥[5])。   The obtained raw material was charged into and mixed in the trommel, and the raw material was uniformly mixed to break up the secondary particles and primary particles of the raw material particles in the slurry (mixing [2]). At this time, the trommel mixing was performed at 100 kg / batch for about 20 hours. The slurry obtained by the above trommel mixing is poured into a gypsum mold, the moisture in the slurry is absorbed into the gypsum mold, and a predetermined thickness is set, thereby obtaining molded bodies having the shapes shown in Table 2. (Molding (casting molding) [3]). The obtained molded body was taken out from the gypsum mold and the moisture in the molded body was dried (release [4], dried [5]).

得られた乾燥成形体を、窒素雰囲気中、1450℃、10hrで焼成した(窒素雰囲気焼成([6])。次いで、得られた焼成体を、表2に示す温度で冷却([7])した後、更に表2に示す再加熱雰囲気及び温度で再加熱処理([8])した。   The obtained dried molded body was fired at 1450 ° C. for 10 hours in a nitrogen atmosphere (nitrogen atmosphere firing ([6]). Then, the obtained fired body was cooled at a temperature shown in Table 2 ([7]). After that, a reheating treatment ([8]) was performed at a reheating atmosphere and temperature shown in Table 2.

最後に、寸法(角パイプの場合:50mm×100mm×1000mmL[肉厚7mmt]、丸パイプの場合:外径40mmφ[内径30mmφ]×1000mmL)及び外観キレが検査(検査[9])されたセラミックス複合材(窒化珪素結合SiC耐火物)について、セラミックス複合材を長さ方向に切断した時(角パイプの場合:図1参照)、その切断部と直角方向に対向する面に発生する応力とその応力方向を測定するとともに、耐熱衝撃性の評価を行った。以上の結果を表2に示す。   Finally, ceramics whose dimensions (in the case of square pipes: 50 mm × 100 mm × 1000 mmL [thickness 7 mmt], in the case of round pipes: outer diameter 40 mmφ [inner diameter 30 mmφ] × 1000 mmL) and appearance cracks (inspection [9]) Regarding the composite material (silicon nitride bonded SiC refractory), when the ceramic composite material is cut in the length direction (in the case of a square pipe: see FIG. 1), the stress generated on the surface facing the cut portion and the direction perpendicular thereto While measuring the stress direction, thermal shock resistance was evaluated. The results are shown in Table 2.

尚、応力の測定方法は、それぞれ得られた中空パイプ形状のセラミックス複合材(図3参照)を、長さ100mmに切断し、供試体を得た。この供試体に、株式会社東京測器研究所製の歪ゲージを取り付けた後、供試体1の一辺を100mmLの長さ方向に中空部2に貫通するように切断し(角パイプの場合:図1参照)、得られた切断部4と直角方向に対向する面6に発生する応力とその応力方向を測定したものである(角パイプの場合:図2(a)(b)参照)。   In addition, the measuring method of stress cut | disconnected the obtained hollow pipe-shaped ceramic composite material (refer FIG. 3) to length 100mm, and obtained the test piece. A strain gauge manufactured by Tokyo Sokki Kenkyujo Co., Ltd. was attached to this specimen, and then one side of the specimen 1 was cut so as to penetrate the hollow portion 2 in the length direction of 100 mmL (in the case of a square pipe: figure 1), the stress generated on the surface 6 facing the obtained cut portion 4 in the direction perpendicular to the stress and the stress direction thereof were measured (in the case of a square pipe: see FIGS. 2A and 2B).

また、耐熱衝撃性の試験評価方法は、それぞれ得られた中空パイプ形状のセラミックス複合材を、25℃の室温と同一温度に調節した後、図3に示すように、この供試体の全長1000mmの中央を狙って、LPGバーナー(バーナー)10で加熱した。このLPGバーナー10で供試体を5分間加熱し、熱衝撃による破壊の有無を調査し、熱衝撃破壊割合として算出した。このとき、バーナー先端から供試体までの距離Lは、250mmに固定した。また、試験時のバーナー火炎温度については、火炎20先端部分の供試体との接触部付近の温度を熱電対で計測した結果、1300℃であった。   In addition, the thermal shock resistance test evaluation method is as follows. After adjusting the obtained hollow pipe-shaped ceramic composites to the same temperature as the room temperature of 25 ° C., as shown in FIG. Aiming at the center, it was heated with an LPG burner (burner) 10. The specimen was heated with this LPG burner 10 for 5 minutes, the presence or absence of destruction due to thermal shock was investigated, and the thermal shock fracture ratio was calculated. At this time, the distance L from the burner tip to the specimen was fixed to 250 mm. Further, the burner flame temperature at the time of the test was 1300 ° C. as a result of measuring the temperature in the vicinity of the contact portion of the flame 20 tip with the test piece with a thermocouple.

Figure 0004795754
Figure 0004795754

(考察)
表2に示すように、実施例1〜19では、成形体を焼成して得られた焼成体を、500℃以下に一旦冷却した後、更に、1000〜1500℃で再加熱することにより、セラミックス複合材を長さ方向に切断した時、例えば、図2(a)に示すように、その切断部(切欠部)4と直角方向に対向する面6に圧縮応力が発生することにより、本発明のセラミックス複合材中に引張応力が内在されていないため、バーナーの火炎が直接当たる箇所や急激な昇降温が生じる箇所であっても破損することがない耐熱衝撃性に優れた特性を有することを確認した。
(Discussion)
As shown in Table 2, in Examples 1 to 19, the fired body obtained by firing the molded body was once cooled to 500 ° C. or lower, and then reheated at 1000 to 1500 ° C. When the composite material is cut in the length direction, for example, as shown in FIG. 2 (a), the compressive stress is generated on the surface 6 facing the cut portion (notch portion) 4 in the direction perpendicular to the present invention. Because there is no tensile stress in the ceramic composite material, it has excellent thermal shock resistance that will not break even at locations where the flame of the burner directly hits or where rapid heating / cooling occurs. confirmed.

一方、比較例1〜13では、セラミックス複合材を長さ方向に切断した時、例えば、図2(b)に示すように、その切断部(切欠部)4と直角方向に対向する面6に引張応力が発生することにより、本発明のセラミックス複合材中に引張応力が内在されているため、急激な昇降温が生じると、比較的容易に破損してしまう(熱衝撃破壊割合が高い)ことを確認した。   On the other hand, in Comparative Examples 1 to 13, when the ceramic composite material is cut in the length direction, for example, as shown in FIG. 2 (b), the surface 6 facing the cut portion (notch portion) 4 in the direction perpendicular to it. Due to the generation of tensile stress, tensile stress is inherent in the ceramic composite material of the present invention. Therefore, when the temperature rises and falls rapidly, it is relatively easily damaged (the thermal shock breakdown rate is high). It was confirmed.

本発明の高耐熱衝撃性セラミックス複合材は、例えば、バーナーの火炎が直接当たる箇所や急激な昇降温が生じる箇所や条件での使用が要求される窯道具に好適に用いることができる。   The high thermal shock-resistant ceramic composite material of the present invention can be suitably used for, for example, a kiln tool that is required to be used at a location where a flame of a burner directly hits, a location where rapid temperature rise / fall occurs, or conditions.

セラミックス複合材(供試体:角パイプ)の一辺を長さ方向に中空部に貫通するように切断し、切断部(切欠部)を形成させた状態を示す斜視図である。It is a perspective view which shows the state which cut | disconnected so that the one side of ceramic composite material (test body: square pipe) might penetrate a hollow part in the length direction, and formed the cut part (notch part). セラミックス複合材(供試体:角パイプ)における切断部と直角方向に対向する面に発生する応力とその応力方向を示すものであり、(a)は圧縮応力発生時、(b)は引張応力発生時を示す説明図である。This shows the stress generated on the surface of the ceramic composite material (specimen: square pipe) facing the cut surface and the direction of the stress, (a) when compressive stress is generated, and (b) when tensile stress is generated. It is explanatory drawing which shows time. セラミックス複合材(角パイプ)の耐熱衝撃性の試験評価方法の概要を説明した説明図である。It is explanatory drawing explaining the outline | summary of the test evaluation method of the thermal shock resistance of a ceramic composite material (square pipe).

符号の説明Explanation of symbols

1…セラミックス複合材(供試体)、2…中空部、4…切断部(切欠部)、6…切断部(切欠部)に直角方向に対向する面、10…LPGバーナー(バーナー)、20…火炎。 DESCRIPTION OF SYMBOLS 1 ... Ceramics composite material (specimen), 2 ... Hollow part, 4 ... Cutting part (notch part), 6 ... The surface which faces a cutting part (notch part) at right angles, 10 ... LPG burner (burner), 20 ... flame.

Claims (5)

骨材である炭化珪素と、前記炭化珪素を窒化珪素で結合させた構造を有し、Al、Ca、Fe、Ti、Zr、Mgから選択された少なくとも1種類を酸化物換算で0.1〜3質量%含有し、且つ、Alが0.05〜2.0質量%、Feが0.05〜1.0質量%、NaOが0.1質量%未満であるセラミックス複合材であって、前記セラミックス複合材が中空パイプ形状を有するとともに、前記セラミックス複合材を長さ方向に切断した時、その切断部と直角方向に対向する面に1〜50MPaの圧縮応力が発生する高耐熱衝撃性セラミックス複合材。 It has a structure in which silicon carbide as an aggregate and the silicon carbide are bonded with silicon nitride, and at least one selected from Al, Ca, Fe, Ti, Zr, and Mg is 0.1 to 0.1 in terms of oxide. 3 contains by mass%, and, Al 2 O 3 is 0.05 to 2.0 mass%, Fe 2 O 3 is 0.05 to 1.0 wt%, Na 2 O is less than 0.1 wt% A ceramic composite material, wherein the ceramic composite material has a hollow pipe shape, and when the ceramic composite material is cut in a length direction, a compressive stress of 1 to 50 MPa is applied to a surface facing the cut portion at a right angle. High thermal shock resistant ceramic composite material. 前記中空パイプ形状が、角パイプ又は丸パイプである請求項1に記載の高耐熱衝撃性セラミックス複合材。   The high thermal shock-resistant ceramic composite material according to claim 1, wherein the hollow pipe shape is a square pipe or a round pipe. 前記セラミックス複合材が、窒化珪素結合SiC耐火物である請求項1又は2に記載の高耐熱衝撃性セラミックス複合材。   The high thermal shock resistant ceramic composite according to claim 1 or 2, wherein the ceramic composite is a silicon nitride bonded SiC refractory. 骨材であるSiC粉末とSi粉末を混合した原料を成形し、得られた中空パイプ形状の成形体を窒素雰囲気下で焼成し、焼成体を得、前記焼成体を10〜500℃に一旦冷却した後、更に、1000〜1500℃で再加熱することにより、請求項1に記載のセラミックス複合材を得る高耐熱衝撃性セラミックス複合材の製造方法。 A raw material obtained by mixing SiC powder and Si powder as an aggregate is molded, and the obtained hollow pipe-shaped molded body is fired in a nitrogen atmosphere to obtain a fired body, and the fired body is temporarily cooled to 10 to 500 ° C. Then, the method for producing a high thermal shock-resistant ceramic composite material is further obtained by reheating at 1000 to 1500 ° C. to obtain the ceramic composite material according to claim 1. 前記焼成体の再加熱時における焼成雰囲気が、大気雰囲気、窒素雰囲気、Ar雰囲気、He雰囲気のいずれか1つである請求項4に記載の高耐熱衝撃性セラミックス複合材の製造方法。 The method for producing a high thermal shock-resistant ceramic composite material according to claim 4, wherein a firing atmosphere during reheating of the fired body is any one of an air atmosphere, a nitrogen atmosphere, an Ar atmosphere, and a He atmosphere.
JP2005243606A 2005-08-25 2005-08-25 High thermal shock-resistant ceramic composite and manufacturing method thereof Active JP4795754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243606A JP4795754B2 (en) 2005-08-25 2005-08-25 High thermal shock-resistant ceramic composite and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005243606A JP4795754B2 (en) 2005-08-25 2005-08-25 High thermal shock-resistant ceramic composite and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007055851A JP2007055851A (en) 2007-03-08
JP4795754B2 true JP4795754B2 (en) 2011-10-19

Family

ID=37919655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243606A Active JP4795754B2 (en) 2005-08-25 2005-08-25 High thermal shock-resistant ceramic composite and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4795754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218434A (en) * 2018-01-15 2018-06-29 山东和宁顺窑业股份有限公司 High temperature resistance and high strength holds burning beam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220400B (en) 2011-11-29 2018-04-03 康宁股份有限公司 The method for handling ceramic component center tap

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316615A (en) * 1994-05-18 1995-12-05 Nkk Corp Sleeve-shaped refractories for blast furnace tap hole
KR100666430B1 (en) * 2003-08-12 2007-01-11 니뽄 가이시 가부시키가이샤 Silicon Carbide Catalysts and Manufacturing Method Thereof
JP4376579B2 (en) * 2003-09-09 2009-12-02 日本碍子株式会社 Silicon nitride bonded SiC refractory and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218434A (en) * 2018-01-15 2018-06-29 山东和宁顺窑业股份有限公司 High temperature resistance and high strength holds burning beam
CN108218434B (en) * 2018-01-15 2021-04-06 山东和宁顺窑业股份有限公司 High-temperature-resistant high-strength load bearing beam

Also Published As

Publication number Publication date
JP2007055851A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
JP7557328B2 (en) Manufacturing method of mag-carbon bricks for LF pots
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JP4704111B2 (en) Oxide bonded silicon carbide material
JP4795754B2 (en) High thermal shock-resistant ceramic composite and manufacturing method thereof
WO2019077318A1 (en) Refractory material
JP5126984B2 (en) Method for producing SiC-containing castable refractory
JP6620954B2 (en) Castable refractories for blast furnace firewood
JP6959809B2 (en) Amorphous refractory for pouring work
JP7032084B2 (en) Amorphous refractory
JP6420748B2 (en) Unburned silicon carbide-containing high alumina brick used for lining of containers holding molten metal
JPH0747507B2 (en) Nitride-bonded SiC refractory
JP6166854B1 (en) Silicic refractory brick and manufacturing method thereof
JP3373312B2 (en) SiC-based kiln tool and method of manufacturing the same
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
JP6468565B2 (en) Mortar and module block
JPH0243701B2 (en)
JP6975027B2 (en) Amorphous refractory
JP7527120B2 (en) Silicon carbide refractory and its manufacturing method
JP5108311B2 (en) Oxide-bonded silicon carbide sintered body and manufacturing method thereof
JPH0328393B2 (en)
JP6386317B2 (en) Silica brick for hot repair
RU2267469C1 (en) Raw mixture for refractory article production
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JPH0497952A (en) Silicon carbide-based composite body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Ref document number: 4795754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3