[go: up one dir, main page]

JP4787796B2 - Air separation method and apparatus - Google Patents

Air separation method and apparatus Download PDF

Info

Publication number
JP4787796B2
JP4787796B2 JP2007179457A JP2007179457A JP4787796B2 JP 4787796 B2 JP4787796 B2 JP 4787796B2 JP 2007179457 A JP2007179457 A JP 2007179457A JP 2007179457 A JP2007179457 A JP 2007179457A JP 4787796 B2 JP4787796 B2 JP 4787796B2
Authority
JP
Japan
Prior art keywords
pressure
air
oxygen
enriched
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007179457A
Other languages
Japanese (ja)
Other versions
JP2009014311A (en
Inventor
博志 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2007179457A priority Critical patent/JP4787796B2/en
Publication of JP2009014311A publication Critical patent/JP2009014311A/en
Application granted granted Critical
Publication of JP4787796B2 publication Critical patent/JP4787796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • F25J3/0463Simultaneously between rectifying and stripping sections, i.e. double dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/08Processes or apparatus using separation by rectification in a triple pressure main column system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、空気分離方法及び装置に関し、詳しくは、圧縮、精製、冷却した原料空気を低温蒸留することにより酸素と窒素とを製品として採取する空気分離方法及び装置に関する。   The present invention relates to an air separation method and apparatus, and more particularly to an air separation method and apparatus for collecting oxygen and nitrogen as products by low-temperature distillation of compressed, purified, and cooled raw material air.

空気を低温蒸留して窒素や酸素等を生産するには、高圧塔と低圧塔とからなる複式精留塔を用いた方法が最も一般的な方法となっている。空気分離を行う際の消費動力を抑制し、製造コストを低減するためには、原料空気圧縮機の消費動力を低減すること、すなわち、原料空気圧縮機の吐出圧力を低くすることが有効である。しかし、複式精留塔を用いた方法は、熱交換器により低圧塔の液化酸素を高圧塔の窒素ガスで蒸発させなければならないプロセス上の制約があるため、原料空気圧縮機の吐出圧力を大幅に低減することはできない。   In order to produce nitrogen, oxygen and the like by low-temperature distillation of air, a method using a double rectification column comprising a high-pressure column and a low-pressure column is the most common method. In order to suppress the power consumption when performing air separation and reduce the manufacturing cost, it is effective to reduce the power consumption of the raw air compressor, that is, to lower the discharge pressure of the raw air compressor. . However, the method using a double rectification column has a process restriction that requires the heat exchanger to evaporate the liquefied oxygen in the low pressure column with the nitrogen gas in the high pressure column, so the discharge pressure of the raw air compressor is greatly increased. It cannot be reduced.

原料空気圧縮機の消費動力を低減する方法として、高圧蒸留塔と低圧蒸留塔とに加えてこれらの中間圧力で運転される中圧蒸留塔を用いて酸素を製造する方法が知られている。この方法では、原料空気の一部を中圧蒸留塔に供給して窒素ガスと酸素富化液化空気とに分離し、中圧蒸留塔塔頂の凝縮器で窒素ガスと酸素富化液化空気とを熱交換させることにより中圧蒸留塔の還流液と低圧蒸留塔の還流液とを生成している。したがって、中圧蒸留塔の圧力は、窒素ガスと液化酸素とが熱交換する高圧蒸留塔に比べて低い圧力で運転することができ、圧縮機の消費動力の一部を削減できる(例えば、特許文献1参照。)。   As a method for reducing the power consumption of the raw air compressor, there is known a method for producing oxygen using a medium pressure distillation column operated at an intermediate pressure in addition to a high pressure distillation column and a low pressure distillation column. In this method, a part of the raw material air is supplied to a medium pressure distillation column and separated into nitrogen gas and oxygen-enriched liquefied air, and nitrogen gas and oxygen-enriched liquefied air are separated by a condenser at the top of the intermediate pressure distillation column. Is heated to produce a reflux liquid of a medium pressure distillation column and a reflux liquid of a low pressure distillation column. Therefore, the pressure of the intermediate pressure distillation column can be operated at a lower pressure than the high pressure distillation column in which nitrogen gas and liquefied oxygen exchange heat, and a part of the power consumption of the compressor can be reduced (for example, patents). Reference 1).

原料空気圧縮機の消費動力を更に低減する方法として、互いに熱交換可能に形成された空気蒸留通路と酸素蒸留通路とを有する熱交換型蒸留器を用いて酸素と窒素とを製造する方法が開示されている。熱交換型蒸留器を用いた方法では、原料空気を熱交換型蒸留器の空気蒸留通路で蒸留して窒素濃縮物と酸素富化液化空気とに分離し、窒素濃縮物を高純窒素塔で更に蒸留して高純窒素と低純液化窒素とに分離し、熱交換型蒸留器で得られた酸素富化液化空気及び低純液化窒素を蒸留塔で蒸留して高純窒素と粗液化酸素とに分離し、粗液化酸素を熱交換型蒸留器の酸素蒸留通路で蒸留して液化酸素を得るようにしている。熱交換型蒸留器で効率的に熱交換及び蒸留を行うことにより、原料空気の圧力を大幅に低減でき、中圧蒸留塔を用いた前記方法に比べて更に原料空気圧縮機の消費動力を削減できる(例えば、特許文献2参照。)。
米国特許第4254629号明細書 特開2006−349319号公報
As a method for further reducing the power consumption of the raw material air compressor, a method for producing oxygen and nitrogen using a heat exchange type distiller having an air distillation passage and an oxygen distillation passage formed so as to be able to exchange heat with each other is disclosed. Has been. In the method using a heat exchange type distiller, the raw material air is distilled in the air distillation passage of the heat exchange type distiller to separate into nitrogen concentrate and oxygen-enriched liquefied air, and the nitrogen concentrate is separated in a high purity nitrogen tower. Further distillation is performed to separate high pure nitrogen and low pure liquefied nitrogen, and the oxygen-enriched liquefied air and low pure liquefied nitrogen obtained in the heat exchange type distillation apparatus are distilled in a distillation column to obtain high pure nitrogen and crude liquefied oxygen. The crude liquefied oxygen is distilled in the oxygen distillation passage of the heat exchange type still to obtain liquefied oxygen. By efficiently exchanging heat and distilling with a heat exchange type distiller, the pressure of the raw material air can be greatly reduced, and the power consumption of the raw material air compressor is further reduced compared to the method using the medium pressure distillation column. (For example, refer to Patent Document 2).
U.S. Pat. No. 4,254,629 JP 2006-349319 A

しかし、特許文献2に記載された方法では、中圧窒素ガスの量が特許文献1に記載された方法に比べて大幅に少ないため、製品窒素として高圧、例えば1.0MPa(絶対圧力、以下同じ。)の窒素ガスを必要とする場合には、窒素圧縮機で所定量の低圧窒素ガスを圧縮しなければならず、窒素圧縮機の消費動力が増加し、全体の消費動力を効果的に低減できないという問題があった。   However, in the method described in Patent Document 2, the amount of medium-pressure nitrogen gas is significantly smaller than that described in Patent Document 1, so that the product nitrogen has a high pressure, for example, 1.0 MPa (absolute pressure, the same applies hereinafter). .)), The nitrogen compressor must compress a certain amount of low-pressure nitrogen gas, which increases the power consumption of the nitrogen compressor and effectively reduces the overall power consumption. There was a problem that I could not.

そこで本発明は、高圧窒素を必要とする場合においても全体の消費動力を低減することができる熱交換型蒸留器を用いた空気分離方法及び装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide an air separation method and apparatus using a heat exchange type distiller that can reduce the overall power consumption even when high pressure nitrogen is required.

上記目的を達成するため、本発明の空気分離方法は、原料空気を深冷液化分離して製品酸素及び製品窒素を採取する空気分離方法において、第1原料空気を中圧蒸留塔で蒸留することにより窒素成分が濃縮された第1中圧窒素ガスと酸素成分が濃縮された第1中圧酸素富化液化空気とに分離する第1分離工程と、前記第1中圧窒素ガスと前記第1中圧酸素富化液化空気とを第1中圧凝縮器で熱交換させることにより前記第1中圧窒素ガスを凝縮液化させて第1中圧液化窒素を得ると同時に前記第1中圧酸素富化液化空気を蒸発ガス化させて第1中圧酸素富化空気を得る第1熱交換工程と、第2原料空気を熱交換型蒸留器の空気蒸留通路に導入し、該空気蒸留通路に熱交換可能に配置された酸素蒸留通路の流体と熱交換させて冷却しつつ蒸留することにより第2原料空気を窒素成分が濃縮された第2中圧窒素ガスと酸素成分が濃縮された第2中圧酸素富化液化空気とに分離する第2分離工程と、前記第1原料空気及び前記第2原料空気よりも高い圧力の第3原料空気を高圧蒸留塔で蒸留することにより窒素成分が濃縮された高圧窒素ガスと酸素成分が濃縮された高圧酸素富化液化空気とに分離する第3分離工程と、前記第1中圧酸素富化空気と前記第2中圧酸素富化液化空気と前記高圧酸素富化液化空気とを低圧蒸留塔で蒸留することにより窒素成分が濃縮された低圧窒素ガスと酸素成分が濃縮された第1低圧酸素富化液化空気とに分離する第4分離工程と、前記第1低圧酸素富化液化空気を前記熱交換型蒸留器の酸素蒸留通路に導入し、前記空気蒸留通路の流体と熱交換させて加熱しつつ蒸留することにより酸素成分が濃縮された第1液化酸素と窒素成分が濃縮された第1低圧酸素富化空気とに分離する第5分離工程と、前記高圧窒素ガスと前記第1液化酸素とを高圧凝縮器で熱交換させることにより前記高圧窒素ガスを凝縮液化させて高圧液化窒素を得ると同時に前記第1液化酸素の少なくとも一部を蒸発ガス化させて酸素ガスを得る第2熱交換工程と、前記高圧液化窒素の一部を前記中圧蒸留塔に導入する第1送液工程と、前記第2中圧窒素ガスを前記中圧蒸留塔に導入する第1送ガス工程と、前記低圧窒素ガスを熱回収後に製品低圧窒素ガスとして導出する第1製品回収工程と、前記酸素ガスを熱回収後に製品酸素ガスとして導出する第2製品回収工程と、前記第1中圧窒素ガスの一部を熱回収後に製品中圧窒素ガスとして導出する第3製品回収工程とを含むことを特徴としている。   In order to achieve the above object, the air separation method of the present invention is the air separation method in which the raw material air is subjected to cryogenic liquefaction separation to collect product oxygen and product nitrogen, and the first raw material air is distilled in an intermediate pressure distillation column. A first separation step of separating the first intermediate pressure nitrogen gas enriched with the nitrogen component and the first intermediate pressure oxygen enriched liquefied air enriched with the oxygen component, the first intermediate pressure nitrogen gas and the first The first intermediate pressure nitrogen gas is obtained by condensing and liquefying the first intermediate pressure nitrogen gas by exchanging heat with the intermediate pressure oxygen enriched liquefied air in the first intermediate pressure condenser, and at the same time the first intermediate pressure oxygen enrichment. A first heat exchange step for evaporating the liquefied liquefied gas to obtain a first medium-pressure oxygen-enriched air, and introducing the second raw material air into the air distillation passage of the heat exchange-type distiller. Distilling while cooling by exchanging heat with the fluid in the exchangeable oxygen distillation passage A second separation step of separating the second raw material air into a second medium-pressure nitrogen gas enriched with a nitrogen component and a second medium-pressure oxygen-enriched liquefied air enriched with an oxygen component; and the first raw material air And the third raw material air having a pressure higher than that of the second raw material air is distilled in a high-pressure distillation column to separate high-pressure nitrogen gas enriched with nitrogen components and high-pressure oxygen-enriched liquefied air enriched with oxygen components. The nitrogen component was concentrated by distilling the first intermediate-pressure oxygen-enriched air, the second intermediate-pressure oxygen-enriched liquefied air, and the high-pressure oxygen-enriched liquefied air in a low-pressure distillation column. A fourth separation step for separating the low-pressure nitrogen gas and the first low-pressure oxygen-enriched liquefied air enriched with the oxygen component, and introducing the first low-pressure oxygen-enriched liquefied air into the oxygen distillation passage of the heat exchange-type distiller; And heat exchange with the fluid in the air distillation passage A fifth separation step of separating the first liquefied oxygen enriched with oxygen components and the first low-pressure oxygen-enriched air enriched with nitrogen components by distillation, and the high-pressure nitrogen gas and the first liquefied oxygen Heat exchange with a high pressure condenser to condense and liquefy the high pressure nitrogen gas to obtain high pressure liquefied nitrogen and at the same time to evaporate and gasify at least a part of the first liquefied oxygen to obtain oxygen gas. A first liquid feeding step for introducing a part of the high pressure liquefied nitrogen into the intermediate pressure distillation column, a first gas feeding step for introducing the second medium pressure nitrogen gas into the intermediate pressure distillation column, and the low pressure A first product recovery step for deriving nitrogen gas as product low-pressure nitrogen gas after heat recovery; a second product recovery step for deriving oxygen gas as product oxygen gas after heat recovery; and a portion of the first medium-pressure nitrogen gas After the heat recovery, the product medium pressure nitrogen gas And a third product recovery step derived as follows.

さらに、本発明の空気分離方法は、前記熱交換型蒸留器の前記空気蒸留通路を空気凝縮部と空気蒸留部とに分割し、前記第2分離工程を、前記第2原料空気を前記空気凝縮部で前記酸素蒸留通路の流体と熱交換させて冷却することにより部分液化させて気相の窒素富化空気と液相の第2中圧酸素富化液化空気とに分離する第6分離工程と、前記窒素富化空気を前記空気蒸留部で前記酸素蒸留通路の流体と熱交換させて冷却しつつ蒸留することにより窒素成分が濃縮された第2中圧窒素ガスと該第2中圧窒素ガスより窒素濃度が低い第3中圧酸素富化液化空気とに分離する第7分離工程とで行うことができる。加えて、前記第2中圧窒素ガスと前記第1低圧酸素富化液化空気とを第2中圧凝縮器で熱交換させることにより前記第2中圧窒素ガスを凝縮液化させて第2中圧液化窒素を得ると同時に前記第1低圧酸素富化液化空気の少なくとも一部を蒸発ガス化させて第2低圧酸素富化液化空気を得る第3熱交換工程と、前記第2中圧液化窒素を前記低圧蒸留塔に導入する第2送液工程とを行うこともできる。   Furthermore, in the air separation method of the present invention, the air distillation passage of the heat exchange type distiller is divided into an air condensing unit and an air distilling unit, and the second separation step is performed by condensing the second raw material air. A sixth separation step in which the liquid is partially liquefied by heat exchange with the fluid in the oxygen distillation passage and cooled to be separated into vapor-phase nitrogen-enriched air and liquid-phase second medium-pressure oxygen-enriched liquefied air; The second medium-pressure nitrogen gas and the second medium-pressure nitrogen gas in which the nitrogen component is concentrated by performing heat exchange with the fluid in the oxygen distillation passage in the air distillation section and distilling the nitrogen-enriched air while cooling. It can be carried out in the seventh separation step of separating into the third medium pressure oxygen-enriched liquefied air having a lower nitrogen concentration. In addition, the second intermediate-pressure nitrogen gas and the first low-pressure oxygen-enriched liquefied air are subjected to heat exchange in a second intermediate-pressure condenser to condense and liquefy the second intermediate-pressure nitrogen gas to obtain a second intermediate pressure. A third heat exchange step for obtaining liquefied nitrogen and evaporating gas at least a part of the first low-pressure oxygen-enriched liquefied air to obtain a second low-pressure oxygen-enriched liquefied air; and The 2nd liquid feeding process introduce | transduced into the said low pressure distillation column can also be performed.

また、本発明の空気分離装置は、原料空気を深冷液化分離して製品酸素及び製品窒素を採取する空気分離装置において、第1原料空気を蒸留することにより窒素成分が濃縮された第1中圧窒素ガスと酸素成分が濃縮された第1中圧酸素富化液化空気とに分離する中圧蒸留塔と、前記第1中圧窒素ガスと前記第1中圧酸素富化液化空気とを熱交換させることにより前記第1中圧窒素ガスを凝縮液化させて第1中圧液化窒素を得ると同時に前記第1中圧酸素富化液化空気を蒸発ガス化させて第1中圧酸素富化空気を得る第1中圧凝縮器と、空気蒸留通路と該空気蒸留通路に熱交換可能に配置された酸素蒸留通路とを有し、前記空気蒸留通路に導入される第2原料空気を前記酸素蒸留通路に導入される第1低圧酸素富化液化空気と熱交換させて冷却しつつ蒸留することにより前記第2原料空気を窒素成分が濃縮された第2中圧窒素ガスと酸素成分が濃縮された第2中圧酸素富化液化空気とに分離すると同時に前記第1低圧酸素富化液化空気を酸素成分が濃縮された第1液化酸素と窒素成分が濃縮された第1低圧酸素富化空気とに分離する熱交換型蒸留器と、前記第1原料空気及び前記第2原料空気よりも高い圧力の第3原料空気を蒸留することにより窒素成分が濃縮された高圧窒素ガスと酸素成分が濃縮された高圧酸素富化液化空気とに分離する高圧蒸留塔と、前記第1中圧酸素富化空気と前記第2中圧酸素富化液化空気と前記高圧酸素富化液化空気とを蒸留することにより窒素成分が濃縮された低圧窒素ガスと酸素成分が濃縮された前記第1低圧酸素富化液化空気とに分離する低圧蒸留塔と、前記高圧窒素ガスと前記第1液化酸素とを熱交換させることにより前記高圧窒素ガスを凝縮液化させて高圧液化窒素を得ると同時に前記第1液化酸素の少なくとも一部を蒸発ガス化させて酸素ガスを得る高圧凝縮器と、前記高圧液化窒素の一部を前記中圧蒸留塔に導入する第1送液経路と、前記第2中圧窒素ガスを中圧蒸留塔に導入する第1送ガス経路と、前記低圧窒素ガスを熱回収後に製品低圧窒素ガスとして導出する第1製品回収経路と、前記酸素ガスを熱回収後に製品酸素ガスとして導出する第2製品回収経路と、前記第1中圧窒素ガスの一部を熱回収後に製品中圧窒素ガスとして導出する第3製品回収経路とを備えていることを特徴としている。   Moreover, the air separation device of the present invention is a first air in which nitrogen components are concentrated by distilling the first raw material air in an air separation device that collects product oxygen and product nitrogen by cryogenic liquefaction separation of the raw material air. A medium pressure distillation column that separates pressurized nitrogen gas and first intermediate pressure oxygen-enriched liquefied air enriched with oxygen components, and heats the first intermediate pressure nitrogen gas and the first intermediate pressure oxygen-enriched liquefied air. By exchanging, the first intermediate pressure nitrogen gas is condensed and liquefied to obtain the first intermediate pressure liquefied nitrogen, and at the same time, the first intermediate pressure oxygen enriched liquefied air is evaporated and gasified to form the first intermediate pressure oxygen enriched air. A first intermediate pressure condenser, an air distillation passage, and an oxygen distillation passage disposed in the air distillation passage so as to be capable of exchanging heat, and the second raw material air introduced into the air distillation passage is subjected to the oxygen distillation. Cooled by heat exchange with the first low-pressure oxygen-enriched liquefied air introduced into the passage The second raw material air is separated into the second medium-pressure nitrogen gas enriched with the nitrogen component and the second medium-pressure oxygen-enriched liquefied air enriched with the oxygen component by distilling while being distilled. A heat exchange distiller that separates the liquefied liquefied air into a first liquefied oxygen enriched with oxygen components and a first low-pressure oxygen enriched air enriched with nitrogen components, the first feed air and the second feed air A high-pressure distillation column that separates high-pressure nitrogen gas enriched with nitrogen components and high-pressure oxygen-enriched liquefied air enriched with oxygen components by distilling the third raw material air having a higher pressure than the first raw material air; The low-pressure nitrogen gas enriched with the nitrogen component and the first low-pressure oxygen enriched with the oxygen component by distilling the oxygen-enriched air, the second medium-pressure oxygen-enriched liquefied air, and the high-pressure oxygen-enriched liquefied air Low pressure distillation separated into enriched liquefied air And by exchanging heat between the high-pressure nitrogen gas and the first liquefied oxygen, the high-pressure nitrogen gas is condensed and liquefied to obtain high-pressure liquefied nitrogen, and at the same time, at least a part of the first liquefied oxygen is evaporated and gasified. A high-pressure condenser for obtaining oxygen gas, a first liquid feed passage for introducing a part of the high-pressure liquefied nitrogen into the intermediate-pressure distillation column, and a first feed for introducing the second medium-pressure nitrogen gas into the intermediate-pressure distillation column. A gas path, a first product recovery path for deriving the low-pressure nitrogen gas as a product low-pressure nitrogen gas after heat recovery, a second product recovery path for deriving the oxygen gas as a product oxygen gas after heat recovery, and the first medium A third product recovery path is provided for extracting a part of the pressurized nitrogen gas as product intermediate-pressure nitrogen gas after heat recovery.

さらに、本発明の空気分離装置は、前記熱交換型蒸留器の前記空気蒸留通路は、前記第2原料空気を前記酸素蒸留通路に導入される前記第1低圧酸素富化液化空気と熱交換させて冷却することにより部分液化させて気相の窒素富化空気と液相の第2中圧酸素富化液化空気とに分離する空気凝縮部と、前記窒素富化空気を前記酸素蒸留通路に導入される前記第1低圧酸素富化液化空気と熱交換させて冷却しつつ蒸留することにより窒素成分が濃縮された第2中圧窒素ガスと該第2中圧窒素ガスより窒素濃度が低い第3中圧酸素富化液化空気とに分離する空気蒸留部とに分割することができる。また、前記第2中圧窒素ガスと前記第1低圧酸素富化液化空気とを熱交換させることにより前記第2中圧窒素ガスを凝縮液化させて第2中圧液化窒素を得ると同時に前記第1低圧酸素富化液化空気の少なくとも一部を蒸発ガス化させて第2低圧酸素富化液化空気を得る第2中圧凝縮器と、前記第2中圧液化窒素を前記低圧蒸留塔に導入する第2送液経路とを設けることもできる。   Further, in the air separation device of the present invention, the air distillation passage of the heat exchange type distiller causes the second raw material air to exchange heat with the first low-pressure oxygen-enriched liquefied air introduced into the oxygen distillation passage. The air condensing part that is partially liquefied by cooling and separated into nitrogen-rich air in the gas phase and second medium-pressure oxygen-enriched liquefied air in the liquid phase, and introduces the nitrogen-enriched air into the oxygen distillation passage The second low-pressure oxygen gas enriched liquefied air and the second medium-pressure nitrogen gas in which the nitrogen component is concentrated by distillation while cooling and the third low-pressure nitrogen gas is lower than the second medium-pressure nitrogen gas. It can divide | segment into the air distillation part isolate | separated into medium pressure oxygen enriched liquefied air. Further, the second intermediate pressure nitrogen gas and the first low pressure oxygen-enriched liquefied air are subjected to heat exchange to condense and liquefy the second intermediate pressure nitrogen gas to obtain second intermediate pressure liquefied nitrogen. 1. A second intermediate pressure condenser that evaporates and gasifies at least part of the low-pressure oxygen-enriched liquefied air to obtain a second low-pressure oxygen-enriched liquefied air, and the second intermediate-pressure liquefied nitrogen is introduced into the low-pressure distillation column. A second liquid feeding path can also be provided.

本発明によれば、熱交換型蒸留器を用いることによって原料空気圧縮機の消費動力を低減しながら、中圧窒素ガスの回収量を増大できるので、高圧の窒素ガスを必要とする際の窒素圧縮機を含めた全体の消費動力を低減することができる。   According to the present invention, the amount of medium-pressure nitrogen gas recovered can be increased while reducing the power consumption of the raw air compressor by using a heat exchange-type distiller, so that nitrogen when high-pressure nitrogen gas is required can be increased. The overall power consumption including the compressor can be reduced.

図1は本発明の空気分離方法を実施するための空気分離装置の第1形態例を示す系統図である。   FIG. 1 is a system diagram showing a first embodiment of an air separation device for carrying out the air separation method of the present invention.

この空気分離装置10は、原料空気RAを圧縮する空気圧縮機1と、圧縮された原料空気の圧縮熱を取り除く空気予冷器2と、空気予冷器2を経た原料空気中の不純物(水分、二酸化炭素等)を除去する精製器3と、精製器3を経た原料空気を冷却する第1主熱交換器4と、第1主熱交換器4を経た原料空気の一部を蒸留する中圧蒸留塔5と、前記中圧蒸留塔5を経て上部から取り出された蒸留物を凝縮する第1中圧凝縮器6と、主熱交換器4を経た原料空気の残部を蒸留する熱交換型蒸留器7と、熱交換型蒸留器7から抜き出した気液混合物を気液分離する第1気液分離器8と、前記空気圧縮機1で圧縮後の原料空気の一部を二次圧縮する二次空気圧縮機9と、二次空気圧縮機9で圧縮された原料空気を冷却する第2主熱交換器11と、第2主熱交換器11を経た原料空気を蒸留する高圧蒸留塔12と、前記高圧蒸留塔12を経て上部から取り出された蒸留物を凝縮する高圧凝縮器13と、前記中圧蒸留塔5の中部から取り出された蒸留物と前記第1気液分離器8の液相部から取り出された液体と前記第1中圧凝縮器6で蒸発した流体と前記高圧蒸留塔12の下部から取り出された蒸留物とをさらに蒸留する低圧蒸留塔14と、低圧蒸留塔14に導入する流体を過冷却状態にする過冷器15と、装置の運転に必要な寒冷を得るための膨張タービン16及びブロワ17とを主要な構成機器とするものであって、低温流体が流れる機器及び経路は保冷槽18内に収納されている。   The air separation device 10 includes an air compressor 1 that compresses the raw material air RA, an air precooler 2 that removes the compression heat of the compressed raw material air, and impurities (moisture, dioxide dioxide) in the raw material air that has passed through the air precooler 2. A purifier 3 that removes carbon, etc., a first main heat exchanger 4 that cools the raw air that has passed through the purifier 3, and a medium pressure distillation that distills a portion of the raw air that has passed through the first main heat exchanger 4. A column 5, a first medium pressure condenser 6 that condenses the distillate taken out from the upper part through the medium pressure distillation column 5, and a heat exchange type distiller that distills the remainder of the raw material air that has passed through the main heat exchanger 4. 7, a first gas-liquid separator 8 that gas-liquid separates the gas-liquid mixture extracted from the heat-exchange distiller 7, and a secondary that secondarily compresses part of the raw material air compressed by the air compressor 1 An air compressor 9, a second main heat exchanger 11 that cools the raw air compressed by the secondary air compressor 9, and From the high-pressure distillation column 12 that distills the raw air that has passed through the main heat exchanger 11, the high-pressure condenser 13 that condenses the distillate taken out from the upper part through the high-pressure distillation column 12, and the middle pressure distillation column 5 The distillate taken out, the liquid taken out from the liquid phase part of the first gas-liquid separator 8, the fluid evaporated in the first intermediate pressure condenser 6, and the distillate taken out from the lower part of the high-pressure distillation column 12. A low-pressure distillation column 14 for further distilling the liquid, a supercooler 15 for supercooling the fluid introduced into the low-pressure distillation column 14, and an expansion turbine 16 and a blower 17 for obtaining the cooling required for the operation of the apparatus. The device and the path through which the low-temperature fluid flows are housed in the cold storage tank 18.

前記熱交換型蒸留器7は、空気蒸留通路71と、該空気蒸留通路71に熱交換可能に配置された酸素蒸留通路72とを備えたものであって、本形態例では、空気蒸留通路71を、空気凝縮部73と空気蒸留部74とに分割した構成としている。この熱交換型蒸留器7には、プレートフィン式熱交換器を使用することができ、また、空気凝縮部73と空気蒸留部74とを分割した別々の機器とすることもできる。   The heat exchange-type distiller 7 includes an air distillation passage 71 and an oxygen distillation passage 72 disposed in the air distillation passage 71 so as to be capable of exchanging heat. In this embodiment, the air distillation passage 71 is provided. Is divided into an air condensing unit 73 and an air distillation unit 74. A plate fin type heat exchanger can be used for the heat exchange type distiller 7, and a separate device in which the air condensing unit 73 and the air distilling unit 74 are divided can be used.

原料空気RAは、空気圧縮機1で所定圧力に圧縮され、空気予冷器2で常温まで冷却された後、精製器3で原料空気中の水分や二酸化炭素等の不純物が吸着除去される。精製器3で精製された経路L0の原料空気は、経路L1を通って第1原料空気及び第2原料空気になる流れと、二次空気圧縮機9で二次圧縮されて第3原料空気になる流れとに分岐される。経路L1の原料空気は、第1主熱交換器4で第1製品低圧窒素ガスGN1、製品中圧窒素ガスMGN等の低温流体との熱交換により露点付近まで冷却された後、経路L2の第1原料空気と経路L3の第2原料空気とに分岐され、経路L2の第1原料空気は中圧蒸留塔5の下部に導入される。   The raw material air RA is compressed to a predetermined pressure by the air compressor 1 and cooled to room temperature by the air precooler 2, and then impurities such as moisture and carbon dioxide in the raw material air are adsorbed and removed by the purifier 3. The raw material air in the path L0 purified by the purifier 3 is second-compressed by the secondary air compressor 9 into the first raw material air and the second raw material air flowing through the path L1, and converted into the third raw material air. It is branched into a flow. The raw material air in the path L1 is cooled to near the dew point in the first main heat exchanger 4 by heat exchange with a low-temperature fluid such as the first product low-pressure nitrogen gas GN1 and the product intermediate-pressure nitrogen gas MGN, and then the first air in the path L2 The first raw material air is branched into the first raw material air and the second raw material air in the path L <b> 3, and the first raw material air in the path L <b> 2 is introduced into the lower part of the intermediate pressure distillation column 5.

中圧蒸留塔5では、塔下部に導入された前記第1原料空気と、前記空気蒸留通路71の空気蒸留部74上部から導出され、経路L4を経て塔中部に導入された第2中圧窒素ガスとが蒸留され、その過程で気相中に窒素成分が濃縮されるとともに、液相中に酸素成分が濃縮され、中圧蒸留塔5の上部に第1中圧窒素ガスが、下部に第1中圧酸素富化液化空気がそれぞれ分離される(第1分離工程)。中圧蒸留塔5の上部に得られた第1中圧窒素ガスの一部は、第1中圧凝縮器6に導入され、中圧蒸留塔5の下部から経路L5に導出されて過冷器15を通って過冷状態とされ、減圧弁V5で減圧された前記第1中圧酸素富化液化空気の少なくとも一部を蒸発ガス化させて第1中圧酸素富化空気を生成し、自らは凝縮液化して第1中圧液化窒素となり、その一部が中圧蒸留塔5の還流液となる(第1熱交換工程)。   In the medium pressure distillation column 5, the first raw material air introduced into the lower part of the column and the second medium pressure nitrogen introduced from the upper part of the air distillation part 74 of the air distillation passage 71 and introduced into the middle part of the tower via the path L4. In the process, the nitrogen component is concentrated in the gas phase, the oxygen component is concentrated in the liquid phase, the first intermediate pressure nitrogen gas is added to the upper part of the intermediate pressure distillation column 5, and the 1 Medium pressure oxygen-enriched liquefied air is separated (first separation step). A part of the first intermediate pressure nitrogen gas obtained at the upper part of the intermediate pressure distillation column 5 is introduced into the first intermediate pressure condenser 6 and led out from the lower part of the intermediate pressure distillation column 5 to the path L5 to be a supercooler. 15, the first intermediate pressure oxygen-enriched air is generated by evaporating and gasifying at least a part of the first intermediate-pressure oxygen-enriched liquefied air that has been cooled down through 15 and depressurized by the pressure reducing valve V5. Is condensed and liquefied to become the first medium pressure liquefied nitrogen, and a part thereof becomes the reflux liquid of the medium pressure distillation column 5 (first heat exchange step).

第1中圧凝縮器6で凝縮液化した第1中圧液化窒素の残部は、経路L6を経て過冷器15で冷却され、経路L7を経て減圧弁V1で減圧された後に低圧蒸留塔14の上部に導入される。また、中圧蒸留塔5の中部からは第2中圧液化窒素が経路L13に導出され、過冷器15、経路L14を経て減圧弁V2で減圧された後に低圧蒸留塔14の中部に導入される。また、中圧蒸留塔5の上部で得られた第1中圧窒素ガスの残部は、経路L32に導出されて前記第1主熱交換器4で熱回収された後に製品中圧窒素ガスMGNとして回収される(第3製品回収工程)。製品中圧窒素ガスMGNは、必要に応じて窒素圧縮機20により圧縮されて製品高圧窒素ガスHGNとなる。   The remainder of the first medium pressure liquefied nitrogen condensed and liquefied by the first medium pressure condenser 6 is cooled by the subcooler 15 via the path L6, and after being depressurized by the pressure reducing valve V1 via the path L7, Introduced at the top. Further, the second intermediate pressure liquefied nitrogen is led out from the middle part of the intermediate pressure distillation column 5 to the path L13, and after being depressurized by the pressure reducing valve V2 through the supercooler 15 and the path L14, is introduced into the middle part of the low pressure distillation column 14. The Further, the remainder of the first medium-pressure nitrogen gas obtained in the upper part of the medium-pressure distillation column 5 is led to the path L32 and is recovered by the first main heat exchanger 4 as the product medium-pressure nitrogen gas MGN. Recovered (third product recovery step). The product medium-pressure nitrogen gas MGN is compressed by the nitrogen compressor 20 as necessary to become a product high-pressure nitrogen gas HGN.

前記経路L3に分岐した前記第2原料空気は、熱交換型蒸留器7の空気凝縮部73に導入され、空気凝縮部73内を下降する過程で、酸素蒸留通路72内の流体(第1低圧酸素富化液化空気)と熱交換し、冷却されて一部が凝縮し、空気凝縮部73の下部から気液二相状態で経路L8に導出され、第1気液分離器8で液相部の第2中圧酸素富化液化空気と気相部の窒素富化空気とに気液分離される(第6分離工程)。   The second raw material air branched into the path L3 is introduced into the air condensing unit 73 of the heat exchange type distiller 7, and in the process of descending the air condensing unit 73, the fluid in the oxygen distillation passage 72 (first low pressure) Heat-exchanged with oxygen-enriched liquefied air), cooled and partially condensed, led out to the path L8 in the gas-liquid two-phase state from the lower part of the air condensing unit 73, and in the first gas-liquid separator 8 the liquid phase part The second medium-pressure oxygen-enriched liquefied air and the gas-phase nitrogen-enriched air are gas-liquid separated (sixth separation step).

第2中圧酸素富化液化空気は、第1気液分離器8の下部から経路L9に導出された後、一部が中圧蒸留塔5の下部に導入され、残部の第2中圧酸素富化液化空気は、過冷器15、経路L10を経て、減圧弁V3で減圧された後に低圧蒸留塔14の中部に導入される。窒素富化空気は、経路L11を経て、空気蒸留部74の下部に導入され、空気蒸留部74内を上昇する過程で、酸素蒸留通路72内の第1低圧酸素富化液化空気と熱交換して冷却されつつ蒸留され、気相中に窒素成分が濃縮されるとともに、液相中に酸素成分が濃縮される(第7分離工程)。   The second medium-pressure oxygen-enriched liquefied air is led out to the path L9 from the lower part of the first gas-liquid separator 8, and then a part thereof is introduced into the lower part of the intermediate-pressure distillation column 5, and the remaining second medium-pressure oxygen The enriched liquefied air is introduced into the middle of the low-pressure distillation column 14 after being depressurized by the pressure reducing valve V3 via the supercooler 15 and the path L10. The nitrogen-enriched air is introduced into the lower portion of the air distillation section 74 via the path L11 and exchanges heat with the first low-pressure oxygen-enriched liquefied air in the oxygen distillation passage 72 in the process of rising in the air distillation section 74. Then, it is distilled while being cooled, so that the nitrogen component is concentrated in the gas phase and the oxygen component is concentrated in the liquid phase (seventh separation step).

空気蒸留部74の上部で得られた第2中圧窒素ガスは、前述の通り経路L4を経て中圧蒸留塔5の中部に導入される(第1送ガス工程)。空気蒸留部74の下部で得られた第3中圧酸素富化液化空気は、経路L12に導出されて第1気液分離器8に導入される。   The second medium-pressure nitrogen gas obtained at the upper part of the air distillation unit 74 is introduced into the middle part of the medium-pressure distillation column 5 through the path L4 as described above (first gas feeding step). The third medium-pressure oxygen-enriched liquefied air obtained at the lower part of the air distillation section 74 is led to the path L12 and introduced into the first gas-liquid separator 8.

前記第3原料空気は、二次空気圧縮機9で更に昇圧された後、経路L15を経て第2主熱交換器11に導入され、第2製品低圧窒素ガスGN2や製品酸素ガスGO等の低温流体と熱交換して露点付近まで冷却され、経路L16を経て高圧蒸留塔12に導入される。第3原料空気は、高圧蒸留塔12で蒸留され、その過程で気相中に窒素成分が濃縮されるとともに、液相中に酸素成分が濃縮され、高圧蒸留塔12の上部に高圧窒素ガスが、下部に高圧酸素富化液化空気が分離される(第3分離工程)。   The third raw material air is further pressurized by the secondary air compressor 9 and then introduced into the second main heat exchanger 11 via the path L15, and the low temperature of the second product low-pressure nitrogen gas GN2, product oxygen gas GO, etc. It is cooled to near the dew point by exchanging heat with the fluid, and introduced into the high-pressure distillation column 12 via the path L16. The third raw material air is distilled in the high-pressure distillation column 12, and in the process, the nitrogen component is concentrated in the gas phase, the oxygen component is concentrated in the liquid phase, and high-pressure nitrogen gas is formed in the upper portion of the high-pressure distillation column 12. The high-pressure oxygen-enriched liquefied air is separated at the lower part (third separation step).

高圧蒸留塔12の上部で得られた高圧窒素ガスは、高圧凝縮器13に導入され、酸素蒸留通路72の下部から導出された第1液化酸素と熱交換を行い、第1液化酸素の少なくとも一部を蒸発ガス化させて酸素ガスを生成し、自らは凝縮液化して高圧液化窒素となり、その一部が高圧蒸留塔12の還流液となる。高圧液化窒素の残部は、経路L17を経て減圧弁V6で減圧された後に中圧蒸留塔5の上部に導入され、中圧蒸留塔5の還流液となる(第1送液工程)。   The high-pressure nitrogen gas obtained in the upper part of the high-pressure distillation column 12 is introduced into the high-pressure condenser 13, performs heat exchange with the first liquefied oxygen led out from the lower part of the oxygen distillation passage 72, and at least one of the first liquefied oxygens. The portion is vaporized to produce oxygen gas, which is condensed into liquefied nitrogen to become high-pressure liquefied nitrogen, and a part thereof becomes the reflux liquid of the high-pressure distillation column 12. The remainder of the high-pressure liquefied nitrogen is reduced in pressure by the pressure reducing valve V6 via the path L17 and then introduced into the upper portion of the intermediate pressure distillation column 5 and becomes the reflux liquid of the intermediate pressure distillation column 5 (first liquid feeding step).

高圧蒸留塔12の下部で得られた高圧酸素富化液化空気は、経路L18に導出され、過冷器15、経路L19を経て減圧弁V4で減圧された後に低圧蒸留塔14の中部に導入される。   The high-pressure oxygen-enriched liquefied air obtained at the lower portion of the high-pressure distillation column 12 is led to the path L18, and after being depressurized by the pressure reducing valve V4 via the supercooler 15 and the path L19, is introduced into the middle portion of the low-pressure distillation column 14. The

二次空気圧縮機9により二次圧縮された第3原料空気の一部は、タービン空気として経路L20に分岐され、ブロワ17に導入されて更に昇圧された後、第1主熱交換器4及び第2主熱交換器11で冷却されてから膨張タービン16で断熱膨張し、空気分離装置10に必要な寒冷を発生させる。膨張後のタービン空気は、経路L21を経て低圧蒸留塔14の中部に導入される。   A part of the third raw material air secondarily compressed by the secondary air compressor 9 is branched into the path L20 as turbine air, introduced into the blower 17 and further pressurized, and then the first main heat exchanger 4 and After being cooled by the second main heat exchanger 11, it is adiabatically expanded by the expansion turbine 16 to generate the necessary cold in the air separation device 10. The expanded turbine air is introduced into the middle of the low-pressure distillation column 14 via a path L21.

低圧蒸留塔14では、経路L7からの第1中圧液化窒素と、経路L14からの第2中圧液化窒素と、経路L10からの第2中圧酸素富化液化空気と、経路L19からの高圧酸素富化液化空気と、経路L5からの第1中圧酸素富化空気と、経路L21からのタービン空気とが蒸留され、その過程で気相中に窒素成分が濃縮されるとともに、液相中に酸素成分が濃縮され、低圧蒸留塔14の上部に低圧窒素ガスが、下部に第1低圧酸素富化液化空気が分離される(第4分離工程)。   In the low pressure distillation column 14, the first medium pressure liquefied nitrogen from the path L7, the second medium pressure liquefied nitrogen from the path L14, the second medium pressure oxygen enriched liquefied air from the path L10, and the high pressure from the path L19. The oxygen-enriched liquefied air, the first medium-pressure oxygen-enriched air from the path L5, and the turbine air from the path L21 are distilled, and in the process, the nitrogen component is concentrated in the gas phase, and in the liquid phase Then, the oxygen component is concentrated, the low-pressure nitrogen gas is separated in the upper part of the low-pressure distillation column 14, and the first low-pressure oxygen-enriched liquefied air is separated in the lower part (fourth separation step).

低圧蒸留塔14の上部に濃縮された低圧窒素ガスは、経路L22に導出され、過冷器15を経て経路L23から経路L24と経路L25とに分岐される。経路L24に分岐した低圧窒素ガスは、第1主熱交換器4に導入されて熱回収された後、第1製品低圧窒素ガスGN1として回収され、経路L25に分岐した低圧窒素ガスは、第2主熱交換器11に導入されて熱回収された後、第2製品低圧窒素ガスGN2として回収される(第1製品回収工程)。   The low-pressure nitrogen gas concentrated in the upper part of the low-pressure distillation column 14 is led out to the path L22 and branched from the path L23 to the path L24 and the path L25 via the supercooler 15. The low-pressure nitrogen gas branched into the path L24 is introduced into the first main heat exchanger 4 and recovered, and then recovered as the first product low-pressure nitrogen gas GN1. The low-pressure nitrogen gas branched into the path L25 is the second After being introduced into the main heat exchanger 11 and heat recovered, it is recovered as the second product low-pressure nitrogen gas GN2 (first product recovery step).

また、低圧蒸留塔14の下部からは、第1低圧酸素富化液化空気が経路L26に導出されて熱交換型蒸留器7の酸素蒸留通路72に導入される。第1低圧酸素富化液化空気は、酸素蒸留通路72を下降する過程で、空気蒸留部74内の窒素富化空気及び空気凝縮部73内の第2原料空気と熱交換して加熱されつつ蒸留され、その過程で気相中に窒素成分が濃縮されるとともに液相中に酸素成分が濃縮され、酸素蒸発通路72の上部に第1低圧酸素富化空気が、下部に第1液化酸素が濃縮される(第5分離工程)。   Further, from the lower part of the low-pressure distillation column 14, the first low-pressure oxygen-enriched liquefied air is led out to the path L 26 and is introduced into the oxygen distillation path 72 of the heat exchange type distiller 7. The first low-pressure oxygen-enriched liquefied air is distilled while being heated by exchanging heat with the nitrogen-enriched air in the air distillation unit 74 and the second source air in the air condensing unit 73 in the process of descending the oxygen distillation passage 72. In the process, the nitrogen component is concentrated in the gas phase, the oxygen component is concentrated in the liquid phase, the first low-pressure oxygen-enriched air is concentrated in the upper part of the oxygen evaporation passage 72, and the first liquefied oxygen is concentrated in the lower part. (Fifth separation step).

第1低圧酸素富化空気は酸素蒸留通路72の上部から経路L27に導出されて低圧蒸留塔14の下部に導入され、第1液化酸素は酸素蒸留通路72の下部から経路L28に導出されて高圧凝縮器13に導入される。   The first low-pressure oxygen-enriched air is led out from the upper part of the oxygen distillation passage 72 to the path L27 and introduced into the lower part of the low-pressure distillation column 14, and the first liquefied oxygen is led out from the lower part of the oxygen distillation passage 72 to the path L28. It is introduced into the condenser 13.

高圧凝縮器13に導入された第1液化酸素は、前記高圧窒素ガスを凝縮液化させて高圧液化窒素を生成し、自らは蒸発ガス化して酸素ガスとなる(第2熱交換工程)。この酸素ガスは、経路L29に導出され、第2主熱交換器11で熱回収された後に製品酸素ガスGOとして回収される(第2製品回収工程)。また、高圧凝縮器13で蒸発しなかった第2液化酸素は、経路L30に導出されて製品液化酸素LOとして回収される。   The first liquefied oxygen introduced into the high-pressure condenser 13 condenses and liquefies the high-pressure nitrogen gas to generate high-pressure liquefied nitrogen, which is vaporized into oxygen gas (second heat exchange step). This oxygen gas is led out to the path L29, and is recovered as product oxygen gas GO after being recovered by the second main heat exchanger 11 (second product recovery step). Further, the second liquefied oxygen that has not evaporated in the high-pressure condenser 13 is led out to the path L30 and recovered as product liquefied oxygen LO.

このように構成した空気分離装置において、酸素に加えて高圧窒素を製造する場合においても、熱交換型蒸留器7の空気蒸留通路71と酸素蒸留通路72との間の熱交換を効率よく行わせることにより、空気圧縮機1の吐出圧力を低減しつつ、中圧窒素の最大回収量を増加させることが可能となる。   In the air separation apparatus configured as described above, even when high-pressure nitrogen is produced in addition to oxygen, heat exchange between the air distillation passage 71 and the oxygen distillation passage 72 of the heat exchange-type distiller 7 is efficiently performed. This makes it possible to increase the maximum recovery amount of medium-pressure nitrogen while reducing the discharge pressure of the air compressor 1.

なお、本形態例では、気蒸留通路71を空気凝縮部73と空気蒸留部74に分割しているが、空気蒸留通路を一つのものとしても同様の効果が得られる。この場合には、経路L3に分岐した第2原料空気は、熱交換型蒸留器7の空気蒸留通路71に導入され、酸素蒸留通路72内の第1低圧酸素富化液化空気と熱交換し、上部の第2中圧窒素ガスと下部の第2中圧酸素富化液化空気とに分離される(第2分離工程)。このように空気蒸留通路を分割しない場合には、第1気液分離器8は不要となる。   In the present embodiment, the gas distillation passage 71 is divided into the air condensing unit 73 and the air distillation unit 74, but the same effect can be obtained even if there is only one air distillation passage. In this case, the second raw material air branched into the path L3 is introduced into the air distillation passage 71 of the heat exchange-type distiller 7, and exchanges heat with the first low-pressure oxygen-enriched liquefied air in the oxygen distillation passage 72, The upper second intermediate pressure nitrogen gas and the lower second intermediate pressure oxygen-enriched liquefied air are separated (second separation step). When the air distillation passage is not divided in this way, the first gas-liquid separator 8 is not necessary.

また、主熱交換器を第1主熱交換器4と第2主熱交換器11とに分割しているが、一つの熱交換器を主熱交換器として用いることもできる。また、ブロワ17で第3原料空気の昇圧を行う際には、ブロワ17を膨張タービン16と同軸とし、膨張タービン16でタービン空気を断熱膨張させる際に得られる動力を利用してブロワ17を駆動することが好ましいが、膨張タービン16の動力を他の機器の駆動源として使用することもできる。また、膨張タービンによる寒冷発生は外部より液化酸素、液化窒素等の低温流体を供給することにより代替することもできる。   Moreover, although the main heat exchanger is divided | segmented into the 1st main heat exchanger 4 and the 2nd main heat exchanger 11, one heat exchanger can also be used as a main heat exchanger. When the third raw material air is boosted by the blower 17, the blower 17 is coaxial with the expansion turbine 16, and the blower 17 is driven by using the power obtained when the expansion turbine 16 adiabatically expands the turbine air. However, the power of the expansion turbine 16 can also be used as a drive source for other equipment. Moreover, cold generation by the expansion turbine can be replaced by supplying a low-temperature fluid such as liquefied oxygen or liquefied nitrogen from the outside.

図2は、本発明の空気分離装置における第2形態例を示す系統図である。なお、以下の説明において、前記第1形態例に示した空気分離装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   FIG. 2 is a system diagram showing a second embodiment of the air separation device of the present invention. In the following description, the same components as those of the air separation device shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本形態例では、熱交換型蒸留器7の空気凝縮通路71を空気凝縮部と空気蒸留部とに分割せずに一つのものとし、第1主熱交換器4から導出されて経路L3に分岐した第2原料空気が空気蒸留通路71の下部に導入される。空気蒸留通路71の上部からは、第2中圧窒素ガスが導出されて第2中圧凝縮器19に導入され、低圧蒸留塔14の下部から経路L26に導出された第1低圧酸素富化液化空気と熱交換し、全量が凝縮液化して第2中圧液化窒素となり、経路L13に導出され、過冷器15、経路L14を経て減圧弁V2で減圧された後に低圧蒸留塔14の中部に導入される(第3熱交換工程及び第2送液工程)。   In the present embodiment, the air condensing passage 71 of the heat exchange type distiller 7 is not divided into an air condensing part and an air distilling part, but is one, and is led out from the first main heat exchanger 4 and branched to the path L3. The second raw material air thus introduced is introduced into the lower portion of the air distillation passage 71. From the upper part of the air distillation passage 71, the second medium-pressure nitrogen gas is led out and introduced into the second medium-pressure condenser 19, and the first low-pressure oxygen-enriched liquefaction led out from the lower part of the low-pressure distillation column 14 to the path L26. It exchanges heat with air, and the entire amount is condensed and liquefied to become second intermediate pressure liquefied nitrogen, which is led out to the path L13, depressurized by the pressure reducing valve V2 via the supercooler 15 and path L14, and then placed in the middle of the low pressure distillation column 14 Introduced (third heat exchange step and second liquid feeding step).

第2中圧凝縮器19で一部が蒸発した第1低圧酸素富化液化空気は、第2気液分離器21に導入され、気相の第2低圧酸素富化空気と液相の第2低圧酸素富化液化空気とに分離される。第2低圧酸素富化空気は、経路L33を経て低圧蒸留塔14の下部に導入され、第2低圧酸素富化液化空気は、経路L31を経て酸素蒸留通路72の上部に供給される。このとき、経路L26に導出された第1低圧酸素富化液化空気の一部を酸素蒸留通路72の上部に供給してもよい。   The first low-pressure oxygen-enriched liquefied air partially evaporated in the second intermediate-pressure condenser 19 is introduced into the second gas-liquid separator 21, and the second gas-phase second low-pressure oxygen-enriched air and the liquid phase second Separated into low pressure oxygen enriched liquefied air. The second low-pressure oxygen-enriched air is introduced into the lower part of the low-pressure distillation column 14 via the path L33, and the second low-pressure oxygen-enriched liquefied air is supplied to the upper part of the oxygen distillation passage 72 via the path L31. At this time, a part of the first low-pressure oxygen-enriched liquefied air led to the path L26 may be supplied to the upper part of the oxygen distillation passage 72.

本形態例に示す空気分離装置は、前記第1形態例に示した空気分離装置に比べて第2中圧凝縮器19などを追加する必要があるが、熱交換型蒸留器7や中圧蒸留塔5等に用いる機器の適用範囲を拡大できる。すなわち、図1に示す第1形態例においては、第1原料空気と第2原料空気とは同一の経路L1から分岐して同じ圧力でそれぞれ中圧蒸留塔5と熱交換型蒸留器7に導入される。   The air separation device shown in the present embodiment needs to add a second intermediate pressure condenser 19 and the like as compared with the air separation device shown in the first embodiment, but the heat exchange type distiller 7 and the intermediate pressure distillation. The applicable range of equipment used for the tower 5 and the like can be expanded. That is, in the first embodiment shown in FIG. 1, the first raw material air and the second raw material air are branched from the same path L1 and introduced into the intermediate pressure distillation column 5 and the heat exchange distiller 7 at the same pressure, respectively. Is done.

このとき、中圧蒸留塔5に棚段塔等の熱交換型蒸留器7に比べて十分に圧力損失が大きい機器を用いた場合は、空気蒸留通路71の上部の圧力が中圧蒸留塔5の中部の圧力よりも十分に高くなるため、経路L4の減圧弁V7で必要な弁差圧を確保することができ、経路L4を流れる第2中圧窒素ガスの流量を制御することができる。   At this time, when an apparatus having a sufficiently large pressure loss as compared with the heat exchange type distiller 7 such as a plate column is used for the medium pressure distillation column 5, the pressure at the upper part of the air distillation passage 71 is set to the medium pressure distillation column 5. Since the pressure is sufficiently higher than the middle pressure, a necessary valve differential pressure can be secured by the pressure reducing valve V7 in the path L4, and the flow rate of the second medium-pressure nitrogen gas flowing in the path L4 can be controlled.

しかし、中圧蒸留塔5に圧力損失の小さい充填物等を用いたり、熱交換型蒸留器7に圧力損失の大きい機器を用いたりした場合には、減圧弁V7で必要な弁差圧を確保できなくなり、流量制御できないことがある。そこで、第2中圧凝縮器19で第2中圧窒素ガスを凝縮させ、液化した第2中圧液化窒素を中圧蒸留塔5を介さずに、第2中圧凝縮器19で液化して経路L13及び経路L14から減圧弁V2を介して低圧蒸留塔14に直接導入するように形成することにより、中圧蒸留塔5に圧力損失の小さい充填物等を用いたり、熱交換型蒸留器7に圧力損失の大きい機器を用いたりした場合の弁差圧の問題を解決でき、中圧蒸留塔5や熱交換型蒸留器7等の機器の適用範囲を広げることができる。   However, when a packing with a small pressure loss or the like is used for the intermediate pressure distillation column 5 or a device with a large pressure loss is used for the heat exchange type distiller 7, the required valve differential pressure is secured by the pressure reducing valve V7. It becomes impossible to control the flow rate. Therefore, the second intermediate pressure nitrogen gas is condensed by the second intermediate pressure condenser 19, and the liquefied second intermediate pressure liquefied nitrogen is liquefied by the second intermediate pressure condenser 19 without going through the intermediate pressure distillation column 5. By forming so as to be directly introduced into the low-pressure distillation column 14 from the path L13 and the path L14 via the pressure reducing valve V2, a packing having a small pressure loss or the like is used for the intermediate-pressure distillation column 5, or the heat exchange type distiller 7 In addition, the problem of the valve differential pressure when using a device having a large pressure loss can be solved, and the application range of devices such as the medium pressure distillation column 5 and the heat exchange type distillation device 7 can be expanded.

ここで図1に示した第1形態例装置を使用したプロセスと、図3に示す前記特許文献1記載の従来のプロセスとを比較して第1形態例装置の作用効果を説明する。なお、図3に示した空気分離装置の系統図は、第1形態例装置との比較を容易にするため、特許文献1記載の装置系統図を第1形態例装置の系統図に合わせた機器配置としている。また、図3に示す空気分離装置においては、前記第1形態例に示した空気分離装置の構成要素と同一の構成要素には百を加算した符号を付して詳細な説明は省略する。   Here, the operation and effect of the first embodiment apparatus will be described by comparing the process using the first embodiment apparatus shown in FIG. 1 with the conventional process described in Patent Document 1 shown in FIG. In addition, the system diagram of the air separation device shown in FIG. 3 is a device in which the device system diagram described in Patent Document 1 is matched to the system diagram of the first example device in order to facilitate comparison with the first embodiment device. It is arranged. Further, in the air separation device shown in FIG. 3, the same components as those of the air separation device shown in the first embodiment are denoted by the reference numerals added with 100, and detailed description thereof is omitted.

図3に示す従来例の装置(以下、第1従来例装置という)100は、中圧蒸留塔105と、低圧蒸留塔114と、高圧蒸留塔112と、中圧凝縮器106と、高圧凝縮器113とを主な構成機器としており、比較的低い圧力(例えば0.3MPa)の第1原料空気が中圧蒸留塔105において中圧窒素ガスと中圧酸素富化液化空気とに分離され、比較的高い圧力(例えば0.5MPa)の第2原料空気が高圧蒸留塔112において高圧窒素ガスと高圧酸素富化液化空気とに分離され、前記中圧酸素富化液化空気と前記高圧酸素富化液化空気とが低圧蒸留塔114において低圧窒素ガスと液化酸素とに分離される。   A conventional apparatus 100 (hereinafter referred to as a first conventional apparatus) 100 shown in FIG. 3 includes an intermediate pressure distillation column 105, a low pressure distillation column 114, a high pressure distillation column 112, an intermediate pressure condenser 106, and a high pressure condenser. 113, the first raw material air having a relatively low pressure (for example, 0.3 MPa) is separated into medium-pressure nitrogen gas and medium-pressure oxygen-enriched liquefied air in the medium-pressure distillation column 105, for comparison. Second raw material air having a high pressure (for example, 0.5 MPa) is separated into high-pressure nitrogen gas and high-pressure oxygen-enriched liquefied air in the high-pressure distillation column 112, and the medium-pressure oxygen-enriched liquefied air and the high-pressure oxygen-enriched liquefied air Air is separated into low-pressure nitrogen gas and liquefied oxygen in the low-pressure distillation column 114.

低圧蒸留塔114の上部から導出された低圧窒素ガスは、熱回収後に製品低圧窒素ガスGNとして回収され、前記低圧蒸留塔114の下部から導出された酸素ガスは、熱回収後に製品酸素ガスGOとして回収される。また、前記中圧蒸留塔105の上部から導出された中圧窒素ガスの一部は、熱回収後に製品中圧窒素ガスMGNとして回収される。この第1従来例装置100における高圧凝縮器113の役割は、高圧蒸留塔112の上部の高圧窒素ガスとの熱交換により、低圧蒸留塔114の下部の液化酸素を蒸発ガス化させて製品となる酸素ガスを生成すると同時に低圧蒸留塔114での蒸留に必要な上昇ガスを生成することである。したがって、比較的圧力の高い第3原料空気は、高圧凝縮器113での熱交換に必要な量だけを供給することになる。   The low-pressure nitrogen gas derived from the upper part of the low-pressure distillation column 114 is recovered as a product low-pressure nitrogen gas GN after heat recovery, and the oxygen gas derived from the lower part of the low-pressure distillation column 114 is recovered as a product oxygen gas GO after heat recovery. Collected. A part of the medium-pressure nitrogen gas led out from the upper part of the medium-pressure distillation column 105 is recovered as product medium-pressure nitrogen gas MGN after heat recovery. The role of the high-pressure condenser 113 in the first conventional apparatus 100 is to produce a product by evaporating and gasifying the liquefied oxygen at the lower part of the low-pressure distillation column 114 by heat exchange with the high-pressure nitrogen gas at the upper part of the high-pressure distillation column 112. The oxygen gas is generated, and at the same time, the rising gas necessary for distillation in the low pressure distillation column 114 is generated. Accordingly, the third raw material air having a relatively high pressure supplies only the amount necessary for heat exchange in the high-pressure condenser 113.

これに対し、図1に示す本形態例の装置(以下、本形態例装置という)10における高圧凝縮器13の役割は、熱交換型蒸留器7の酸素蒸留通路72から流入した第1液化酸素を蒸発ガス化させて製品となる酸素ガスを生成するのみであり、比較的高い圧力(例えば0.5MPa)の第3原料空気の量は、第1従来例装置に比べて上昇ガスを生成しない分だけ少なくすることができる。酸素蒸留通路72の上昇ガスを生成するための原料空気は、熱交換型蒸留器7に導入される第2原料空気であり、これは熱交換型蒸留器7で効率的に熱交換することにより、第1原料空気と同程度の比較的低い圧力(例えば0.3MPa)で供給することができる。したがって、本形態例装置10は、第1従来例装置100に比べて、比較的圧力の高い第3原料空気の流量を低減することができるため、二次空気圧縮機9の処理量が少なくなって消費動力を低減することができる。   On the other hand, the role of the high-pressure condenser 13 in the apparatus (hereinafter referred to as the present embodiment apparatus) 10 shown in FIG. 1 is the first liquefied oxygen flowing from the oxygen distillation passage 72 of the heat exchange type distiller 7. The gas is vaporized to produce oxygen gas as a product, and the amount of the third raw material air at a relatively high pressure (for example, 0.5 MPa) does not produce rising gas as compared with the first conventional apparatus. It can be reduced by minutes. The raw material air for generating the rising gas in the oxygen distillation passage 72 is the second raw material air introduced into the heat exchange type distiller 7, which is efficiently exchanged by the heat exchange type distiller 7. , And can be supplied at a relatively low pressure (for example, 0.3 MPa) comparable to the first raw material air. Therefore, compared with the first conventional example apparatus 100, the present embodiment apparatus 10 can reduce the flow rate of the third raw material air having a relatively high pressure, so that the processing amount of the secondary air compressor 9 is reduced. Power consumption can be reduced.

次に、前記第1形態例装置のプロセスと、図4に示す前記特許文献2に記載された従来の空気分離装置(以下、第2従来例装置という)のプロセスとを比較して第1形態例装置における作用効果を説明する。なお、図4に示す第2従来例装置における前記第1形態例に示した空気分離装置の構成要素と同一の構成要素には二百を加算した符号を付して詳細な説明は省略する。   Next, the process of the first embodiment apparatus is compared with the process of the conventional air separation apparatus (hereinafter referred to as a second conventional apparatus) described in Patent Document 2 shown in FIG. The effects of the example apparatus will be described. In the second conventional apparatus shown in FIG. 4, the same constituent elements as those of the air separation apparatus shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示す第2従来例装置200は、熱交換型蒸留器207と、低圧蒸留塔214と、窒素蒸留塔205と、窒素凝縮器206と、酸素蒸発器213とを主な構成機器としている。比較的圧力の低い第1原料空気は、熱交換型蒸留器207の空気蒸留通路を構成する空気凝縮部273及び空気蒸留部274で第2中圧窒素ガスと中圧酸素富化液化空気とに分離され、比較的圧力の高い第2原料空気は、酸素蒸発器213において酸素蒸留通路272の下部から導出された液化酸素と熱交換して高圧液化空気となり、空気蒸留部274の上部から導出された第2中圧窒素ガスは、窒素蒸留塔205での蒸留によって第1中圧窒素ガスと第2液化窒素とに分離され、前記中圧酸素富化液化空気と前記高圧液化空気と前記第2液化窒素とが低圧蒸留塔214での蒸留によって低圧窒素ガスと低圧酸素富化液化空気とに分離され、前記低圧酸素富化液化空気が酸素蒸留通路272において低圧酸素富化空気と液化酸素とに分離され、この液化酸素が酸素蒸発器213で前記第2原料空気と熱交換し、蒸発気化して酸素ガスになる。   The second conventional example apparatus 200 shown in FIG. 4 includes a heat exchange distiller 207, a low pressure distillation column 214, a nitrogen distillation column 205, a nitrogen condenser 206, and an oxygen evaporator 213 as main components. . The first raw material air having a relatively low pressure is converted into the second medium-pressure nitrogen gas and the medium-pressure oxygen-enriched liquefied air by the air condensing unit 273 and the air distillation unit 274 constituting the air distillation passage of the heat exchange type distiller 207. The separated second raw material air having a relatively high pressure exchanges heat with liquefied oxygen derived from the lower portion of the oxygen distillation passage 272 in the oxygen evaporator 213 to become high-pressure liquefied air, and is derived from the upper portion of the air distillation section 274. The second medium-pressure nitrogen gas is separated into the first medium-pressure nitrogen gas and the second liquefied nitrogen by distillation in the nitrogen distillation column 205, and the medium-pressure oxygen-enriched liquefied air, the high-pressure liquefied air, and the second liquefied air The liquefied nitrogen is separated into low pressure nitrogen gas and low pressure oxygen enriched liquefied air by distillation in the low pressure distillation column 214, and the low pressure oxygen enriched liquefied air is converted into low pressure oxygen enriched air and liquefied oxygen in the oxygen distillation passage 272. Separated The liquefied oxygen is the second feed air exchanges heat with oxygen evaporator 213, the oxygen gas and vaporized.

低圧蒸留塔214の上部から導出された低圧窒素ガスは、熱回収後に製品低圧窒素ガスGNとして回収され、酸素蒸発器213から導出された酸素ガスは、熱回収後に製品酸素ガスGOとして回収され、窒素蒸留塔205の上部から導出された中圧窒素ガスの一部は、熱回収後に製品中圧窒素ガスMGNとして回収される。   The low-pressure nitrogen gas derived from the upper portion of the low-pressure distillation column 214 is recovered as product low-pressure nitrogen gas GN after heat recovery, and the oxygen gas derived from the oxygen evaporator 213 is recovered as product oxygen gas GO after heat recovery, Part of the medium-pressure nitrogen gas derived from the upper part of the nitrogen distillation column 205 is recovered as product medium-pressure nitrogen gas MGN after heat recovery.

この第2従来例装置200における窒素蒸留塔205では、還流液量に十分な余裕が無いため、上部から製品中圧窒素ガスMGNを少量しか回収できない。これに対し、図1の本形態例装置10では、比較的圧力の高い第3原料空気から分離された液化窒素が経路L17を経て中圧蒸留塔5の上部に供給されるため、還流液量に十分な余裕があり、第2従来例装置200に比べて製品中圧窒素ガスMGNを大量に回収することができる。   In the nitrogen distillation column 205 in the second conventional apparatus 200, since there is no sufficient margin in the amount of the reflux liquid, only a small amount of the product intermediate pressure nitrogen gas MGN can be recovered from the upper part. On the other hand, in the present embodiment apparatus 10 of FIG. 1, the liquefied nitrogen separated from the third raw material air having a relatively high pressure is supplied to the upper part of the intermediate pressure distillation column 5 via the path L17. Therefore, it is possible to recover a large amount of product intermediate pressure nitrogen gas MGN as compared with the second conventional apparatus 200.

次に、図1に示した本形態例装置を使用した空気分離方法を、具体的な数値を例示して説明する。まず、製品条件は、製品酸素ガスの酸素濃度が95%以上、圧力0.12MPa、製品窒素ガスの酸素濃度が1ppm以下、圧力1.0MPaとした。   Next, an air separation method using the apparatus of the present embodiment shown in FIG. 1 will be described with specific numerical values. First, the product conditions were such that the oxygen concentration of the product oxygen gas was 95% or more, the pressure was 0.12 MPa, the oxygen concentration of the product nitrogen gas was 1 ppm or less, and the pressure was 1.0 MPa.

空気圧縮機1で0.36MPaに圧縮された原料空気は、予冷、精製された後、2系統に分岐される。第1主熱交換器4で露点付近まで冷却された原料空気は、更に第1原料空気と第2原料空気とに分岐される。第1原料空気は、中圧蒸留塔5に導入され、酸素濃度1ppmの第1中圧窒素ガスと酸素濃度40.8%の中圧第1酸素富化液化空気とに分離される。第2原料空気は、熱交換型蒸留器7の空気凝縮部73及び空気蒸留部74において、酸素濃度1.6%の第2中圧窒素ガスと酸素濃度36.0%の第2中圧酸素富化液化空気とに分離される。   The raw material air compressed to 0.36 MPa by the air compressor 1 is precooled and purified, and then branched into two systems. The raw material air cooled to the vicinity of the dew point in the first main heat exchanger 4 is further branched into a first raw material air and a second raw material air. The first raw material air is introduced into the medium pressure distillation column 5 and separated into a first medium pressure nitrogen gas having an oxygen concentration of 1 ppm and a medium pressure first oxygen enriched liquefied air having an oxygen concentration of 40.8%. In the air condensing unit 73 and the air distillation unit 74 of the heat exchange distiller 7, the second raw material air is a second medium pressure nitrogen gas having an oxygen concentration of 1.6% and a second medium pressure oxygen having an oxygen concentration of 36.0%. Separated into enriched liquefied air.

圧縮、予冷、精製後に分岐された第3原料空気は、二次空気圧縮機9で0.53MPaまで昇圧され、第2主熱交換器11で露点付近まで冷却されて高圧蒸留塔12に導入され、酸素濃度4.9ppmの高圧窒素ガスと酸素濃度40.0%の高圧酸素富化液化空気とに分離される。第3原料空気の一部は、タービン空気としてブロワ17で圧縮され、第2主熱交換器11で冷却され、膨張タービン16で膨張し、低圧蒸留塔14に導入される。   The third raw material air branched after compression, precooling, and purification is pressurized to 0.53 MPa by the secondary air compressor 9, cooled to near the dew point by the second main heat exchanger 11, and introduced into the high pressure distillation column 12. And high pressure nitrogen gas having an oxygen concentration of 4.9 ppm and high pressure oxygen-enriched liquefied air having an oxygen concentration of 40.0%. Part of the third raw material air is compressed as turbine air by the blower 17, cooled by the second main heat exchanger 11, expanded by the expansion turbine 16, and introduced into the low-pressure distillation column 14.

低圧蒸留塔14では、中圧蒸留塔5の中部から導出された酸素濃度2.9%の第2中圧液化窒素と、第1中圧凝縮器6で蒸発した酸素濃度40.8%の第1中圧酸素富化空気と、前記タービン空気と、前記第2中圧酸素富化液化空気と、前記高圧酸素富化液化空気とが蒸留され、酸素濃度0.5%の低圧窒素ガスと酸素濃度76.1%の第1低圧酸素富化液化空気とに分離される。前記第1低圧酸素富化液化空気は、酸素蒸留通路72に導入され、酸素濃度50.9%の第1低圧酸素富化空気と酸素濃度95.0%の第1液化酸素とに分離される。前記第1液化酸素は、高圧凝縮器13で前記高圧窒素ガスと熱交換し、酸素濃度95.0%の酸素ガスになる。   In the low-pressure distillation column 14, the second intermediate-pressure liquefied nitrogen having an oxygen concentration of 2.9% derived from the middle portion of the intermediate-pressure distillation column 5 and the oxygen concentration 40.8% evaporated by the first intermediate-pressure condenser 6 are used. 1 medium-pressure oxygen-enriched air, the turbine air, the second medium-pressure oxygen-enriched liquefied air, and the high-pressure oxygen-enriched liquefied air are distilled and low-pressure nitrogen gas and oxygen having an oxygen concentration of 0.5% It is separated into first low-pressure oxygen-enriched liquefied air having a concentration of 76.1%. The first low-pressure oxygen-enriched liquefied air is introduced into the oxygen distillation passage 72 and separated into first low-pressure oxygen-enriched air having an oxygen concentration of 50.9% and first liquefied oxygen having an oxygen concentration of 95.0%. . The first liquefied oxygen is heat-exchanged with the high-pressure nitrogen gas in the high-pressure condenser 13 to become oxygen gas having an oxygen concentration of 95.0%.

前記低圧窒素ガスは、熱回収された後に酸素濃度0.5%の第1製品低圧窒素ガスGN1及び第2製品低圧窒素ガスGN2として回収され、前記第1中圧窒素ガスの一部は、熱回収後に酸素濃度1ppmの中圧窒素ガスMGNとして回収され、前記酸素ガスは熱回収後に酸素濃度95.0%の製品酸素ガスGOとして回収される。中圧窒素ガスMGNは、窒素圧縮機で1.0MPaまで圧縮されて製品窒素ガスHGNとなる。   The low-pressure nitrogen gas is recovered as a first product low-pressure nitrogen gas GN1 and a second product low-pressure nitrogen gas GN2 having an oxygen concentration of 0.5% after heat recovery, and a part of the first medium-pressure nitrogen gas is heated. After recovery, it is recovered as medium-pressure nitrogen gas MGN with an oxygen concentration of 1 ppm, and the oxygen gas is recovered as product oxygen gas GO with an oxygen concentration of 95.0% after heat recovery. The medium-pressure nitrogen gas MGN is compressed to 1.0 MPa by a nitrogen compressor to become product nitrogen gas HGN.

原料空気の流量を100としたときの各経路のプロセス値を表1に示す。

Figure 0004787796
Table 1 shows the process value of each path when the flow rate of the raw material air is 100.
Figure 0004787796

さらに、動力性能を評価するため、表1に示すケースについて前記両従来例装置100,200との消費動力の比較を行った。その結果を表2に示す。製品酸素ガスは流量22、圧力0.12MPaとし、製品窒素ガスは流量19、圧力1.0MPaとして条件を揃えた。製品窒素ガスHGNは保冷槽から導出された中圧窒素ガスMGNを窒素圧縮機で1.0MPaまで圧縮して製造することとし、窒素圧縮機の動力も含めて比較した。従来例装置200では、製品中圧窒素ガスMGNを流量6しか回収できないため、不足分の流量13は、製品低圧窒素ガスGNを1.0MPaまで圧縮して製品窒素ガスHGNを製造することとした。

Figure 0004787796
Further, in order to evaluate the power performance, the power consumption of the cases shown in Table 1 was compared with both the conventional devices 100 and 200. The results are shown in Table 2. The product oxygen gas had a flow rate of 22 and a pressure of 0.12 MPa, and the product nitrogen gas had a flow rate of 19 and a pressure of 1.0 MPa. The product nitrogen gas HGN was produced by compressing medium pressure nitrogen gas MGN derived from the cold storage tank to 1.0 MPa with a nitrogen compressor, and the power of the nitrogen compressor was also compared. In the conventional apparatus 200, since the product intermediate pressure nitrogen gas MGN can be recovered only at the flow rate 6, the shortage flow rate 13 is to compress the product low pressure nitrogen gas GN to 1.0 MPa to produce the product nitrogen gas HGN. .
Figure 0004787796

表2に示す結果から、本形態例装置では、第1従来例装置100に対して約5%、第2従来例装置200に対して約3%の消費動力を低減できることが分かる。また、本形態例装置では第2従来例装置200に比べて熱交換型蒸留器に導入される原料空気量が少なくなるため、熱交換型蒸留器のサイズを約4割小さくすることができ、蒸留塔に比べて構造が複雑で比較的高価格である熱交換型蒸留器のサイズを小さくすることにより、装置全体のコスト低減が期待できる。   From the results shown in Table 2, it can be seen that the power consumption of this embodiment apparatus can be reduced by about 5% for the first conventional apparatus 100 and about 3% for the second conventional apparatus 200. In addition, since the amount of raw material air introduced into the heat exchange type distiller is smaller than that of the second conventional example apparatus 200 in this embodiment, the size of the heat exchange distiller can be reduced by about 40%. By reducing the size of the heat exchange type distiller, which has a complicated structure and is relatively expensive as compared with the distillation column, the cost of the entire apparatus can be expected to be reduced.

なお、製品窒素ガスについては、更に高純度あるいは低純度の製品窒素ガスを採取することが可能であり、動力低減等の効果も同じ程度に期待できる。また、図2に示した第2形態例についても同様である。   In addition, about product nitrogen gas, it is possible to extract | collect a product nitrogen gas of higher purity or low purity, and can anticipate the effect of power reduction etc. to the same extent. The same applies to the second embodiment shown in FIG.

本発明の空気分離方法を実施するための空気分離装置の第1形態例を示す系統図である。1 is a system diagram showing a first embodiment of an air separation device for carrying out an air separation method of the present invention. 本発明の空気分離方法を実施するための空気分離装置の第2形態例を示す系統図である。It is a systematic diagram which shows the 2nd example of an air separation apparatus for enforcing the air separation method of this invention. 従来の空気分離装置の一構成例を示す系統図である。It is a systematic diagram which shows one structural example of the conventional air separation apparatus. 従来の空気分離装置の他の構成例を示す系統図である。It is a systematic diagram which shows the other structural example of the conventional air separation apparatus.

符号の説明Explanation of symbols

1…空気圧縮機、2…空気予冷器、3…精製器、4…第1主熱交換器、5…中圧蒸留塔、6…第1中圧凝縮器、7…熱交換型蒸留器、8…第1気液分離器、9…二次空気圧縮機、10…空気分離装置、11…第2主熱交換器、12…高圧蒸留塔、13…高圧凝縮器、14…低圧蒸留塔、15…過冷器、16…膨張タービン、17…ブロワ、18…保冷槽、19…第2中圧凝縮器、20…窒素圧縮機、21…第2気液分離器、71…空気蒸留通路、72…酸素蒸留通路、73…空気凝縮部、74…空気蒸留部   DESCRIPTION OF SYMBOLS 1 ... Air compressor, 2 ... Air precooler, 3 ... Purifier, 4 ... 1st main heat exchanger, 5 ... Medium pressure distillation tower, 6 ... 1st intermediate pressure condenser, 7 ... Heat exchange type distiller, DESCRIPTION OF SYMBOLS 8 ... 1st gas-liquid separator, 9 ... Secondary air compressor, 10 ... Air separation apparatus, 11 ... 2nd main heat exchanger, 12 ... High pressure distillation tower, 13 ... High pressure condenser, 14 ... Low pressure distillation tower, DESCRIPTION OF SYMBOLS 15 ... Supercooler, 16 ... Expansion turbine, 17 ... Blower, 18 ... Cold storage tank, 19 ... 2nd intermediate pressure condenser, 20 ... Nitrogen compressor, 21 ... 2nd gas-liquid separator, 71 ... Air distillation passage, 72 ... oxygen distillation passage, 73 ... air condensing part, 74 ... air distillation part

Claims (6)

原料空気を深冷液化分離して製品酸素及び製品窒素を採取する空気分離方法において、第1原料空気を中圧蒸留塔で蒸留することにより窒素成分が濃縮された第1中圧窒素ガスと酸素成分が濃縮された第1中圧酸素富化液化空気とに分離する第1分離工程と、前記第1中圧窒素ガスと前記第1中圧酸素富化液化空気とを第1中圧凝縮器で熱交換させることにより前記第1中圧窒素ガスを凝縮液化させて第1中圧液化窒素を得ると同時に前記第1中圧酸素富化液化空気を蒸発ガス化させて第1中圧酸素富化空気を得る第1熱交換工程と、第2原料空気を熱交換型蒸留器の空気蒸留通路に導入し、該空気蒸留通路に熱交換可能に配置された酸素蒸留通路の流体と熱交換させて冷却しつつ蒸留することにより第2原料空気を窒素成分が濃縮された第2中圧窒素ガスと酸素成分が濃縮された第2中圧酸素富化液化空気とに分離する第2分離工程と、前記第1原料空気及び前記第2原料空気よりも高い圧力の第3原料空気を高圧蒸留塔で蒸留することにより窒素成分が濃縮された高圧窒素ガスと酸素成分が濃縮された高圧酸素富化液化空気とに分離する第3分離工程と、前記第1中圧酸素富化空気と前記第2中圧酸素富化液化空気と前記高圧酸素富化液化空気とを低圧蒸留塔で蒸留することにより窒素成分が濃縮された低圧窒素ガスと酸素成分が濃縮された第1低圧酸素富化液化空気とに分離する第4分離工程と、前記第1低圧酸素富化液化空気を前記熱交換型蒸留器の酸素蒸留通路に導入し、前記空気蒸留通路の流体と熱交換させて加熱しつつ蒸留することにより酸素成分が濃縮された第1液化酸素と窒素成分が濃縮された第1低圧酸素富化空気とに分離する第5分離工程と、前記高圧窒素ガスと前記第1液化酸素とを高圧凝縮器で熱交換させることにより前記高圧窒素ガスを凝縮液化させて高圧液化窒素を得ると同時に前記第1液化酸素の少なくとも一部を蒸発ガス化させて酸素ガスを得る第2熱交換工程と、前記高圧液化窒素の一部を前記中圧蒸留塔に導入する第1送液工程と、前記第2中圧窒素ガスを前記中圧蒸留塔に導入する第1送ガス工程と、前記低圧窒素ガスを熱回収後に製品低圧窒素ガスとして導出する第1製品回収工程と、前記酸素ガスを熱回収後に製品酸素ガスとして導出する第2製品回収工程と、前記第1中圧窒素ガスの一部を熱回収後に製品中圧窒素ガスとして導出する第3製品回収工程とを含むことを特徴とする空気分離方法。   In an air separation method for collecting product oxygen and product nitrogen by cryogenic liquefaction separation of raw material air, first intermediate pressure nitrogen gas and oxygen in which nitrogen components are concentrated by distillation of the first raw material air in an intermediate pressure distillation column A first separation step of separating the first medium pressure oxygen-enriched liquefied air in which the components are concentrated; and the first medium-pressure nitrogen gas and the first medium-pressure oxygen-enriched liquefied air. The first intermediate pressure nitrogen gas is condensed and liquefied by exchanging heat to obtain the first intermediate pressure liquefied nitrogen, and at the same time, the first intermediate pressure oxygen enriched liquefied air is evaporated and gasified to obtain the first intermediate pressure oxygen enrichment. A first heat exchange step for obtaining liquefied air, and a second raw material air is introduced into an air distillation passage of a heat exchange type distiller, and heat exchange is performed with a fluid in an oxygen distillation passage disposed in the air distillation passage so as to be able to exchange heat. The second raw material air is concentrated with the nitrogen component by distilling while cooling. A second separation step for separating the medium-pressure nitrogen gas and the second medium-pressure oxygen-enriched liquefied air enriched with oxygen components; and the third material air having a pressure higher than that of the first material air and the second material air. A high-pressure nitrogen gas enriched in nitrogen components and a high-pressure oxygen-enriched liquefied air enriched in oxygen components by distilling in a high-pressure distillation column, and the first medium-pressure oxygen-enriched air And the second medium-pressure oxygen-enriched liquefied air and the high-pressure oxygen-enriched liquefied air in a low-pressure distillation column to concentrate a low-pressure nitrogen gas enriched with a nitrogen component and a first low-pressure oxygen enriched oxygen component. A fourth separation step for separating the liquefied liquefied air, and the first low-pressure oxygen-enriched liquefied air is introduced into the oxygen distillation passage of the heat exchange-type distiller, and is heated by exchanging heat with the fluid of the air distillation passage. The oxygen component was concentrated by distillation while A fifth separation step of separating the fluorinated oxygen and the first low-pressure oxygen-enriched air enriched with a nitrogen component; and the high-pressure nitrogen by heat-exchanging the high-pressure nitrogen gas and the first liquefied oxygen in a high-pressure condenser. A second heat exchange step of condensing and liquefying gas to obtain high-pressure liquefied nitrogen and at the same time evaporating and gasifying at least a part of the first liquefied oxygen to obtain oxygen gas; and a part of the high-pressure liquefied nitrogen to the intermediate pressure A first liquid feeding step for introducing into the distillation column; a first gas feeding step for introducing the second medium pressure nitrogen gas into the medium pressure distillation column; and the low pressure nitrogen gas is derived as product low pressure nitrogen gas after heat recovery. A first product recovery step, a second product recovery step of deriving the oxygen gas as product oxygen gas after heat recovery, and a second product recovery step of deriving a part of the first intermediate pressure nitrogen gas as product intermediate pressure nitrogen gas after heat recovery. 3 product recovery process Air separation method. 前記熱交換型蒸留器の前記空気蒸留通路を空気凝縮部と空気蒸留部とに分割し、前記第2分離工程を、前記第2原料空気を前記空気凝縮部で前記酸素蒸留通路の流体と熱交換させて冷却することにより部分液化させて気相の窒素富化空気と液相の第2中圧酸素富化液化空気とに分離する第6分離工程と、前記窒素富化空気を前記空気蒸留部で前記酸素蒸留通路の流体と熱交換させて冷却しつつ蒸留することにより窒素成分が濃縮された第2中圧窒素ガスと該第2中圧窒素ガスより窒素濃度が低い第3中圧酸素富化液化空気とに分離する第7分離工程とで行うことを特徴とする請求項1記載の空気分離方法。   The air distillation passage of the heat exchange type distiller is divided into an air condensing part and an air distilling part, and the second separation step is performed by using the air condensing part for the second raw material air and the fluid and heat of the oxygen distillation passage. A sixth separation step of partial liquefaction by exchanging and cooling to separate the gas-phase nitrogen-enriched air and liquid-phase second medium-pressure oxygen-enriched liquefied air; The second intermediate pressure nitrogen gas in which the nitrogen component is concentrated by performing heat exchange with the fluid in the oxygen distillation passage in the section and distilling while cooling, and the third intermediate pressure oxygen having a lower nitrogen concentration than the second intermediate pressure nitrogen gas The air separation method according to claim 1, wherein the air separation method is performed in a seventh separation step of separating into enriched liquefied air. 前記第2中圧窒素ガスと前記第1低圧酸素富化液化空気とを第2中圧凝縮器で熱交換させることにより前記第2中圧窒素ガスを凝縮液化させて第2中圧液化窒素を得ると同時に前記第1低圧酸素富化液化空気の少なくとも一部を蒸発ガス化させて第2低圧酸素富化液化空気を得る第3熱交換工程と、前記第2中圧液化窒素を前記低圧蒸留塔に導入する第2送液工程と、を含むことを特徴とする請求項1又は2記載の空気分離方法。   The second intermediate-pressure nitrogen gas and the first low-pressure oxygen-enriched liquefied air are subjected to heat exchange in a second intermediate-pressure condenser to condense and liquefy the second intermediate-pressure nitrogen gas, thereby generating second intermediate-pressure liquefied nitrogen. And at the same time, a third heat exchange step of evaporating and gasifying at least a part of the first low-pressure oxygen-enriched liquefied air to obtain a second low-pressure oxygen-enriched liquefied air; and The air separation method according to claim 1, further comprising a second liquid feeding step to be introduced into the tower. 原料空気を深冷液化分離して製品酸素及び製品窒素を採取する空気分離装置において、第1原料空気を蒸留することにより窒素成分が濃縮された第1中圧窒素ガスと酸素成分が濃縮された第1中圧酸素富化液化空気とに分離する中圧蒸留塔と、前記第1中圧窒素ガスと前記第1中圧酸素富化液化空気とを熱交換させることにより前記第1中圧窒素ガスを凝縮液化させて第1中圧液化窒素を得ると同時に前記第1中圧酸素富化液化空気を蒸発ガス化させて第1中圧酸素富化空気を得る第1中圧凝縮器と、空気蒸留通路と該空気蒸留通路に熱交換可能に配置された酸素蒸留通路とを有し、前記空気蒸留通路に導入される第2原料空気を前記酸素蒸留通路に導入される第1低圧酸素富化液化空気と熱交換させて冷却しつつ蒸留することにより前記第2原料空気を窒素成分が濃縮された第2中圧窒素ガスと酸素成分が濃縮された第2中圧酸素富化液化空気とに分離すると同時に前記第1低圧酸素富化液化空気を酸素成分が濃縮された第1液化酸素と窒素成分が濃縮された第1低圧酸素富化空気とに分離する熱交換型蒸留器と、前記第1原料空気及び前記第2原料空気よりも高い圧力の第3原料空気を蒸留することにより窒素成分が濃縮された高圧窒素ガスと酸素成分が濃縮された高圧酸素富化液化空気とに分離する高圧蒸留塔と、前記第1中圧酸素富化空気と前記第2中圧酸素富化液化空気と前記高圧酸素富化液化空気とを蒸留することにより窒素成分が濃縮された低圧窒素ガスと酸素成分が濃縮された前記第1低圧酸素富化液化空気とに分離する低圧蒸留塔と、前記高圧窒素ガスと前記第1液化酸素とを熱交換させることにより前記高圧窒素ガスを凝縮液化させて高圧液化窒素を得ると同時に前記第1液化酸素の少なくとも一部を蒸発ガス化させて酸素ガスを得る高圧凝縮器と、前記高圧液化窒素の一部を前記中圧蒸留塔に導入する第1送液経路と、前記第2中圧窒素ガスを中圧蒸留塔に導入する第1送ガス経路と、前記低圧窒素ガスを熱回収後に製品低圧窒素ガスとして導出する第1製品回収経路と、前記酸素ガスを熱回収後に製品酸素ガスとして導出する第2製品回収経路と、前記第1中圧窒素ガスの一部を熱回収後に製品中圧窒素ガスとして導出する第3製品回収経路とを備えていることを特徴とする空気分離装置。   In an air separation device that collects product oxygen and product nitrogen by cryogenic liquefaction separation of raw material air, the first medium-pressure nitrogen gas and oxygen component concentrated by distilling the first raw material air were concentrated The first intermediate pressure nitrogen is obtained by exchanging heat between the intermediate pressure distillation column separating the first intermediate pressure oxygen enriched liquefied air, the first intermediate pressure nitrogen gas and the first intermediate pressure oxygen enriched liquefied air. A first intermediate pressure condenser for condensing and liquefying gas to obtain first intermediate pressure liquefied nitrogen and simultaneously evaporating and gasifying the first intermediate pressure oxygen enriched liquefied air to obtain first intermediate pressure oxygen enriched air; A first low-pressure oxygen-rich gas having an air distillation passage and an oxygen distillation passage disposed in the air distillation passage so as to be capable of exchanging heat, and the second raw material air introduced into the air distillation passage is introduced into the oxygen distillation passage. The first solution is obtained by performing heat exchange with liquefied air and distilling while cooling. The raw material air is separated into a second medium pressure nitrogen gas enriched with nitrogen components and a second medium pressure oxygen enriched liquefied air enriched with oxygen components, and at the same time, the first low pressure oxygen enriched liquefied air is concentrated with oxygen components. A heat exchange-type distiller that separates the first liquefied oxygen and the first low-pressure oxygen-enriched air enriched with a nitrogen component, and a third raw material having a pressure higher than that of the first raw material air and the second raw material air A high-pressure distillation column that separates high-pressure nitrogen gas enriched with nitrogen components and high-pressure oxygen-enriched liquefied air enriched with oxygen components by distilling air, the first medium-pressure oxygen-enriched air, and the second By distilling the medium pressure oxygen-enriched liquefied air and the high-pressure oxygen-enriched liquefied air, the low-pressure nitrogen gas enriched with nitrogen components and the first low-pressure oxygen-enriched liquefied air enriched with oxygen components are separated. A low-pressure distillation column, the high-pressure nitrogen gas, and the first A high-pressure condenser for condensing and liquefying the high-pressure nitrogen gas by heat exchange with liquefied oxygen to obtain high-pressure liquefied nitrogen and at the same time evaporating and gasifying at least a part of the first liquefied oxygen to obtain oxygen gas; and A first liquid feed path for introducing a part of the high pressure liquefied nitrogen into the intermediate pressure distillation tower, a first gas feed path for introducing the second intermediate pressure nitrogen gas into the intermediate pressure distillation tower, and the low pressure nitrogen gas as heat. A first product recovery path for deriving as product low-pressure nitrogen gas after recovery, a second product recovery path for deriving the oxygen gas as product oxygen gas after heat recovery, and a portion of the first intermediate-pressure nitrogen gas after heat recovery An air separation device comprising a third product recovery path that is led out as product intermediate pressure nitrogen gas. 前記熱交換型蒸留器の前記空気蒸留通路は、前記第2原料空気を前記酸素蒸留通路に導入される前記第1低圧酸素富化液化空気と熱交換させて冷却することにより部分液化させて気相の窒素富化空気と液相の第2中圧酸素富化液化空気とに分離する空気凝縮部と、前記窒素富化空気を前記酸素蒸留通路に導入される前記第1低圧酸素富化液化空気と熱交換させて冷却しつつ蒸留することにより窒素成分が濃縮された第2中圧窒素ガスと該第2中圧窒素ガスより窒素濃度が低い第3中圧酸素富化液化空気とに分離する空気蒸留部とに分割されていることを特徴とする請求項4記載の空気分離装置。   The air distillation passage of the heat exchange-type distiller is partially liquefied by cooling the second raw material air by heat exchange with the first low-pressure oxygen-enriched liquefied air introduced into the oxygen distillation passage. An air condensing section that separates into a phase nitrogen enriched air and a liquid phase second medium pressure oxygen enriched liquefied air; and the first low pressure oxygen enriched liquefied gas introduced into the oxygen distillation passage. Separation into a second medium-pressure nitrogen gas enriched with nitrogen components and a third medium-pressure oxygen-enriched liquefied air having a nitrogen concentration lower than that of the second medium-pressure nitrogen gas by performing heat exchange with air and distillation while cooling. The air separation device according to claim 4, wherein the air separation device is divided into an air distillation section. 前記第2中圧窒素ガスと前記第1低圧酸素富化液化空気とを熱交換させることにより前記第2中圧窒素ガスを凝縮液化させて第2中圧液化窒素を得ると同時に前記第1低圧酸素富化液化空気の少なくとも一部を蒸発ガス化させて第2低圧酸素富化液化空気を得る第2中圧凝縮器と、前記第2中圧液化窒素を前記低圧蒸留塔に導入する第2送液経路とを備えていることを特徴とする請求項4又は5記載の空気分離装置。   The second medium-pressure nitrogen gas and the first low-pressure oxygen-enriched liquefied air are heat-exchanged to condense and liquefy the second medium-pressure nitrogen gas to obtain second medium-pressure liquefied nitrogen, and at the same time, the first low-pressure nitrogen gas A second intermediate pressure condenser for evaporating and gasifying at least part of the oxygen-enriched liquefied air to obtain a second low-pressure oxygen-enriched liquefied air; and a second intermediate-pressure liquefied nitrogen introduced into the low-pressure distillation column. The air separation device according to claim 4, further comprising a liquid feeding path.
JP2007179457A 2007-07-09 2007-07-09 Air separation method and apparatus Expired - Fee Related JP4787796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007179457A JP4787796B2 (en) 2007-07-09 2007-07-09 Air separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007179457A JP4787796B2 (en) 2007-07-09 2007-07-09 Air separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2009014311A JP2009014311A (en) 2009-01-22
JP4787796B2 true JP4787796B2 (en) 2011-10-05

Family

ID=40355423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179457A Expired - Fee Related JP4787796B2 (en) 2007-07-09 2007-07-09 Air separation method and apparatus

Country Status (1)

Country Link
JP (1) JP4787796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104903669A (en) * 2013-02-26 2015-09-09 大阳日酸株式会社 Air separation method and air separation apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959802B1 (en) * 2010-05-10 2013-01-04 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
CN101929789B (en) * 2010-05-12 2012-07-18 李大仁 Method for air separation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104903669A (en) * 2013-02-26 2015-09-09 大阳日酸株式会社 Air separation method and air separation apparatus
US10436508B2 (en) 2013-02-26 2019-10-08 Taiyo Nippon Sanso Corporation Air separation method and air separation apparatus

Also Published As

Publication number Publication date
JP2009014311A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
CN103620330B (en) Air separating method and device
JP5655104B2 (en) Air separation method and air separation device
US5170630A (en) Process and apparatus for producing nitrogen of ultra-high purity
JPH102664A (en) Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
US4895583A (en) Apparatus and method for separating air
JP5417054B2 (en) Air separation method and apparatus
JP4787796B2 (en) Air separation method and apparatus
JP5032407B2 (en) Nitrogen production method and apparatus
US20240353173A1 (en) Ultra-high-purity oxygen production method and ultra-high-purity oxygen production apparatus
JP5685168B2 (en) Low purity oxygen production method and low purity oxygen production apparatus
JP5005708B2 (en) Air separation method and apparatus
JP2000346546A (en) Low-temperature distilling system for separating air
JP4520667B2 (en) Air separation method and apparatus
JP4520668B2 (en) Air separation method and apparatus
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP4782077B2 (en) Air separation method and apparatus
JP4519010B2 (en) Air separation device
JP7329714B1 (en) Nitrogen production method and apparatus
JP5027173B2 (en) Argon production method and apparatus thereof
JP7588271B1 (en) Nitrogen production method and nitrogen production device
JP4447501B2 (en) Air liquefaction separation method and apparatus
JP2024134911A (en) Nitrogen production method and nitrogen production device
JP6431828B2 (en) Air liquefaction separation method and apparatus
JP2024129928A (en) Nitrogen production method and nitrogen production device
JP4451438B2 (en) Nitrogen production method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Ref document number: 4787796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees