JP4784103B2 - Non-tempered steel with high yield strength ratio - Google Patents
Non-tempered steel with high yield strength ratio Download PDFInfo
- Publication number
- JP4784103B2 JP4784103B2 JP2005017353A JP2005017353A JP4784103B2 JP 4784103 B2 JP4784103 B2 JP 4784103B2 JP 2005017353 A JP2005017353 A JP 2005017353A JP 2005017353 A JP2005017353 A JP 2005017353A JP 4784103 B2 JP4784103 B2 JP 4784103B2
- Authority
- JP
- Japan
- Prior art keywords
- ratio
- alloy
- steel
- heat treated
- yield strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 32
- 239000010959 steel Substances 0.000 title claims description 32
- 238000005242 forging Methods 0.000 claims description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 17
- 239000000956 alloy Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229910000859 α-Fe Inorganic materials 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910001562 pearlite Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 7
- 229910001563 bainite Inorganic materials 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Forging (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、機械部品の材料とする、高耐力比を示す非調質鋼と、それを使用した機械部品の製造方法に関する。ここで、「耐力比」とは、(0.2%耐力/引張強さ)の比を意味する。 The present invention relates to a non-heat treated steel having a high yield strength ratio as a material for machine parts and a method for producing machine parts using the same. Here, “bearing ratio” means a ratio of (0.2% yield strength / tensile strength).
機械部品の設計・製作において、材料の耐力が重要な因子であることはいうまでもない。一方、被削性は、製造コストや部品精度などに影響を与える、これも重要な因子である。一般に被削性は、引張強さが増大すると低下する。したがって、耐力設計の部品の場合、耐力比が高いということは、同等の被削性を有する材料から、より高い強度をもった部品を製作することが可能になるということを意味する。 Needless to say, material strength is an important factor in the design and manufacture of machine parts. On the other hand, machinability affects manufacturing costs and component accuracy, which is also an important factor. In general, machinability decreases with increasing tensile strength. Therefore, in the case of a component with a proof stress design, a high proof stress ratio means that a component having a higher strength can be manufactured from a material having equivalent machinability.
従来、非調質鋼を使用してコンロッドなどの部品を製造した場合、その耐力比は、通常の1200℃前後の加熱温度における鍛造・空冷の製造条件では、0.75レベルが上限である。1050℃前後の低温鍛造・空冷という製造条件を選択し、鍛造金型の寿命が低下すること、製品に欠肉が生じるおそれ、鍛造後の冷却速度を増加させる必要にこたえた衝風冷却の採用など、製造コストの増大を忍んで非調質鋼部品を製造しても、得られる改善は僅かであって、実現する耐力比は0.80近辺が限界であり、これ以上の耐力比が必要な場合には、一般に調質鋼が使用されていた。 Conventionally, when parts such as connecting rods are manufactured using non-tempered steel, the yield strength ratio is the upper limit of 0.75 level under the forging / air cooling manufacturing conditions at a normal heating temperature of around 1200 ° C. Select the manufacturing conditions of low temperature forging and air cooling at around 1050 ° C, use of blast cooling that responds to the need to increase the cooling rate after forging, which may reduce the life of the forging die, cause the product to be thin. Even if non-refined steel parts are manufactured with an increase in manufacturing cost, etc., the improvement that can be obtained is slight, and the yield ratio that can be realized is limited to around 0.80, and a greater yield ratio is required. In some cases, tempered steel was generally used.
コンロッドの製造に関しては、キャップ部分の構成を機械切断でなく、脆性破壊により行なう改善が実施されている。この目的に適した低延性の非調質鋼であって、高強度かつ高降伏比のものが提案された(特許文献1)。その鋼は、C:0.20〜0.65%、Si:0.1〜1.5%、Mn:0.3〜2.0、P:0.02〜0.15%、S:0.1〜0.105%、Cr:0.02〜1.50%、V:0.05〜0.50%、Nb:0〜0.10%、Ti:0〜0.20%、Al:0〜0.100%およびN:0〜0.02%を含有し、残部Feおよび不可避不純物からなり、Si(%)+2V(%)+5P(%)−0.8≧0およびC(%)+Si(%)/10+Mn(%)/5+5Cr(%)/22+1.65V(%)−5S(%)/7−0.8≧0である合金組成を特徴とする。この発明が確保した降伏比のレベルは「0.7以上」である。(「降伏比」の定義が与えられていないので、本発明で意図した耐力比との関係は明らかでないが、類似の物性を理解した。)
発明者らは、調質鋼レベルの耐力比0.80以上を確実に示す非調質鋼を実現することを意図して、種々研究の結果、下記の知見を得た。
・固溶強化によってフェライトを強化するSiおよびPを、また析出強化によりフェライトを強化するVを積極添加するとよいこと。
・これらの強化機構を効果的に発揮させるには、フェライトの量をともに、生成するフェライトが微細化するよう、SおよびPをそれぞれ適正な量添加するとよいこと。そして、PおよびSの複合添加効果によって、高耐力比が得られること。
・鋼の合金組成が特定の範囲にある場合、Mn+Cr+2Mo:1.8以下の条件を満たせば、被削性にとって有害なベイナイト組織の生成を抑えられること。
・そのような鋼において、C+0.07Si+0.16Mn+0.61P+0.19Cu+0.17Ni+0.2Cr+0.4Mo+Vであらわされる炭素当量Ceqの値が0.80〜1.15以上であるという条件を満たせば、通常の鍛造・空冷を行なって、一般に部品に要求される硬さ20HRC以上を有するフェライト・パーライト型非調質鋼部品が得られること。
・鍛造後の冷却速度は、ベイナイト組織が生成しない範囲内では高い方がよいこと。少なくとも800〜500℃の温度範囲を、平均値にして0.8℃/sec以上の速度で冷却するのが望ましく、それにより、さらに耐力比が向上すること。これには、衝風冷却が効果的であること。
The inventors have obtained the following findings as a result of various studies with the intention of realizing a non-heat treated steel that reliably shows a proof steel level proof stress ratio of 0.80 or more.
-Si and P for strengthening ferrite by solid solution strengthening and V for strengthening ferrite by precipitation strengthening should be positively added.
-In order to effectively exhibit these strengthening mechanisms, it is preferable to add appropriate amounts of S and P so that the ferrite to be produced is refined together with the amount of ferrite. A high yield strength ratio is obtained by the combined effect of P and S.
-When the alloy composition of steel is in a specific range, if the condition of Mn + Cr + 2Mo: 1.8 or less is satisfied, generation of a bainite structure that is harmful to machinability can be suppressed.
In such steel, if the condition that the value of carbon equivalent Ceq represented by C + 0.07Si + 0.16Mn + 0.61P + 0.19Cu + 0.17Ni + 0.2Cr + 0.4Mo + V is satisfied is 0.80 to 1.15 or more, normal forging -A ferrite-pearlite type non-heat treated steel part having a hardness of 20 HRC or more generally required for parts is obtained by air cooling.
-The cooling rate after forging should be higher within the range where no bainite structure is generated. It is desirable to cool the temperature range of at least 800 to 500 ° C. at an average value of 0.8 ° C./sec or more, thereby further improving the yield ratio. For this, blast cooling is effective.
本発明の目的は、上記した発明者らが得た新しい知見を利用して、通常の1200℃前後の鍛造、または1250℃程度の高温の鍛造を行なった場合でも、常に調質鋼レベルの耐力比0.80以上が得られる非調質鋼と、それを使用した機械部品の製造方法を提供することにある。それによって、機械部品のコンパクト化、軽量化を可能にし、しかも製造コストの増大は抑制することが、最終的な目的である。 The purpose of the present invention is to always use the new knowledge obtained by the above-described inventors, even when performing normal forging at around 1200 ° C. or forging at a high temperature of about 1250 ° C. An object of the present invention is to provide a non-heat treated steel with a ratio of 0.80 or more and a method of manufacturing a machine part using the same. Accordingly, the final purpose is to make the machine parts compact and lightweight, and to suppress an increase in manufacturing cost.
本発明の高耐力比非調質鋼は、基本的な態様においては、質量%で(以下同じ)、C:0.10〜0.35%、Si:0.4〜1.0%、Mn:0.6〜1.5%、P:0.06〜0.15%、S:0.07〜0.15%、Cu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50%、Mo:(0%を含み)0.05%以下、Al:0.001〜0.050%、V:0.20〜0.45%およびN:0.008〜0.025%を含有し、残部Feおよび不可避的不純物からなる合金組成を有し、ただし、
P+S:0.14%以上、
Mn+Cr+2Mo:1.8%以下、
Ceq=C+0.07Si+0.16Mn+0.61P+0.19Cu+0.17Ni+0.2Cr+0.4Mo+V:0.80〜1.15
であって、鍛造後の組織が主として(フェライト+パーライト)からなり、0.80以上の耐力比を示す非調質鋼である。
In a basic aspect, the high yield strength non-heat treated steel of the present invention is in mass % (hereinafter the same) , C: 0.10 to 0.35%, Si: 0.4 to 1.0%, Mn : 0.6 to 1.5%, P: 0.06 to 0.15%, S: 0.07 to 0.15%, Cu: 0.05 to 0.50%, Ni: 0.05 to 0 .50%, Cr: 0.05 to 0.50%, Mo: (including 0%) 0.05% or less, Al : 0.001 to 0.050% , V: 0.20 to 0.45% And N: 0.008 to 0.025%, and having an alloy composition consisting of the balance Fe and inevitable impurities,
P + S: 0.14% or more,
Mn + Cr + 2Mo: 1.8% or less,
Ceq = C + 0.07Si + 0.16Mn + 0.61P + 0.19Cu + 0.17Ni + 0.2Cr + 0.4Mo + V: 0.80 to 1.15
And, the structure after forging mainly consists of (ferrite + pearlite) , and is a non-tempered steel showing a proof stress ratio of 0.80 or more.
本発明の高耐力比非調質鋼は、適切な合金組成の選択により、既存の非調質鋼がもっていた被削性を損なうことなく、0.8以上の高い耐力比を確実に達成することができるから、従来と変わりのない加工性で高耐力の機械部品を製作することを可能にする。この高い耐力比は、低温鍛造をえらばず、通常の1200℃前後の鍛造、または1250℃程度の高温の鍛造を行なった場合でも、常に得られる。 The high yield strength untempered steel of the present invention reliably achieves a high yield ratio of 0.8 or more without degrading the machinability of the existing untempered steel by selecting an appropriate alloy composition. Therefore, it is possible to manufacture mechanical parts with high yield strength with the same processability as before. This high yield strength ratio is always obtained even when low-temperature forging is not selected and normal forging at around 1200 ° C. or high-temperature forging at about 1250 ° C. is performed.
その結果、機械部品の小型化および軽量化が実現する。これは、その部品自体の性能の向上と製造コストの低減という効果を奏するだけでなく、その部品を組み込む機械の小型化・軽量化にも寄与する。鍛造に当たって、通常の加熱温度またはより高温の加熱温度を採用することができ、低温鍛造をする必要がないから、長い鍛造金型寿命を享受することができ、これも部品製造コストにとって有利に作用する。 As a result, the machine parts can be reduced in size and weight. This not only has the effect of improving the performance of the component itself and reducing the manufacturing cost, but also contributes to reducing the size and weight of the machine in which the component is incorporated. In forging, normal heating temperature or higher heating temperature can be adopted, and it is not necessary to perform low-temperature forging, so that a long forging die life can be enjoyed, which also has an advantageous effect on component manufacturing costs. To do.
本発明の高耐力比非調質鋼は、上記した基本的な合金成分に加えて、下記のグループに属する任意添加元素のひとつまたはふたつ以上を含有することができる。
(I)Nb:0.001〜0.050%およびTi:0.001〜0.050%の1種または2種
これらの元素は結晶粒微細化作用を有するから、鍛造温度が1250℃またはそれ以上の高温である場合、成形品の組織が粗くなって所望の耐力比が得られないという事態を避けたいときに推奨される任意添加成分である。
(II)Ca:0.0001〜0.0100%およびO:0.001〜0.010%の1種または2種
これらは、介在物の形態を制御するはたらきがある。合金組成によって被削性が低い場合や、とくに高い被削性を望む場合添加するとよい。
The high yield strength non-heat treated steel of the present invention can contain one or two or more optional additional elements belonging to the following groups, in addition to the basic alloy components described above.
(I) One or two elements of Nb: 0.001 to 0.050% and Ti: 0.001 to 0.050% These elements have a grain refining action, so the forging temperature is 1250 ° C or higher When the temperature is higher than the above, it is an optional additive component that is recommended when it is desired to avoid a situation in which the structure of the molded product is coarse and a desired yield strength ratio cannot be obtained.
(II) One or two of Ca: 0.0001 to 0.0100 % and O: 0.001 to 0.010 %. These serve to control the form of inclusions. It may be added when the machinability is low depending on the alloy composition or when high machinability is desired.
以下に、本発明の高耐力比非調質鋼における各合金成分のはたらきと、合金組成を上記のように限定した理由を、基本的な合金組成および変更態様について説明する。 Hereinafter, the basic alloy composition and the modification mode will be described for the function of each alloy component in the high yield strength non-heat treated steel of the present invention and the reason for limiting the alloy composition as described above.
C:0.10〜0.35%
Cは強度を確保するために必要であって、少なくとも0.10%を存在させる。多量に添加すると耐力比が低下するため、上限を0.35%とした。
C: 0.10 to 0.35%
C is necessary for securing the strength, and at least 0.10% is present. When added in a large amount, the yield ratio decreases, so the upper limit was made 0.35%.
Si:0.4〜1.0%
Siは鋼の溶製時に脱酸剤としてはたらくとともに、フェライト中に固溶してこれを強化し、耐力や強度を向上させる。このような効果を明確に得るためには、0.4%以上のSiを含有させる必要がある。多量に添加すると、鍛造用金型の寿命を短くするので、1.0%までの添加に止める。
Si: 0.4 to 1.0%
Si acts as a deoxidizer when steel is melted, and solid-dissolves in ferrite to strengthen it, thereby improving proof stress and strength. In order to clearly obtain such an effect, it is necessary to contain 0.4% or more of Si. If added in a large amount, the life of the forging die is shortened, so the addition is limited to 1.0%.
Mn:0.6〜1.5%
Mnは脱酸に必要であるだけでなく、強度を向上させる作用がある。この効果は、その含有量が0.6%未満の少量では得られず、一方、多すぎるとベイナイトが生成して被削性が低くなるため、1.5%以下の添加量をえらぶ。
Mn: 0.6 to 1.5%
Mn is not only necessary for deoxidation, but also has the effect of improving strength. This effect cannot be obtained with a small content of less than 0.6%. On the other hand, if the content is too large, bainite is generated and the machinability is lowered, so an addition amount of 1.5% or less is selected.
P:0.06〜0.15%
S:0.07〜0.15%
ただし、P+S:0.14%以上
Pは耐力比を向上させる上で有効な元素であり、その効果を発揮させるためには、0.06%以上の含有が必要であるが、多量に含有されると熱間加工性が低くなるので、0.15%を上限とした。Sもまた耐力比を向上させるのに有効な元素であり、その効果を発揮させるためには、0.07%以上の含有が必要であるが、多量に含有されると、かえって耐力比が低下する。本発明で意図した耐力比0.8以上を確保するためには、S量は0.15%が適正な上限である。P+Sの合計量は、耐力比0.8以上を得るためには、0.14%以上とすべきである。
P: 0.06-0.15%
S: 0.07 to 0.15%
However, P + S: 0.14% or more P is an element effective in improving the yield ratio, and in order to exert its effect, it is necessary to contain 0.06% or more, but it is contained in a large amount. Then, since hot workability becomes low, the upper limit was made 0.15%. S is also an element effective for improving the yield ratio, and in order to exert its effect, it is necessary to contain 0.07% or more. However, if it is contained in a large amount, the yield ratio is lowered. To do. In order to ensure the yield strength ratio of 0.8 or more intended in the present invention, the appropriate upper limit is 0.15% for the amount of S. The total amount of P + S should be 0.14% or more in order to obtain a yield ratio of 0.8 or more.
Cu:0.05〜0.50%
Ni:0.05〜0.50%
CuもNiも、Pと同様に耐力比の向上に有効な成分であり、その存在意義は、ともに含有量0.05%以上において見出されるが、多量に添加することは経済的に不利であるから、それぞれの上限として選択した0.50%までの範囲から添加量を選ぶ。
Cu: 0.05 to 0.50%
Ni: 0.05 to 0.50%
Both Cu and Ni are effective components for improving the proof stress ratio, as is the case with P, and the significance of their existence is found at a content of 0.05% or more, but adding a large amount is economically disadvantageous. From the range up to 0.50% selected as the upper limit of each, the addition amount is selected.
Cr:0.05〜0.50%
Crは、強度を向上させる作用がある。しかし、その含有量が0.05%未満では所望の効果が得られず、また多すぎるとベイナイトが生成して被削性を損なうから、0.05〜0.50%の範囲内の添加量が適切である。
Cr: 0.05 to 0.50%
Cr has an effect of improving strength. However, if the content is less than 0.05%, the desired effect cannot be obtained, and if it is too much, bainite is generated and the machinability is impaired, so the addition amount in the range of 0.05 to 0.50% Is appropriate.
Mo:0.05%以下
Moは強度を向上させる元素であるが、多すぎるとベイナイトを生成し、被削性に不利にはたらくので、0.05%を添加の上限とした。
Mo: 0.05% or less Mo is an element that improves the strength. However, if it is too much, bainite is formed, which adversely affects machinability, so 0.05% was made the upper limit of addition.
V:0.20〜0.45%
Vは、PならびにCuおよびNiと同様、耐力比の向上に有効な成分である。0.8以上の耐力比を安定に得るために、0.2%以上のVを添加する。多量に添加してもその効果が飽和するし、コスト面で不利になるから、0.45%までの添加が得策である。
V: 0.20 to 0.45%
V, like P and Cu and Ni, is an effective component for improving the yield ratio. In order to stably obtain a yield ratio of 0.8 or more, V of 0.2% or more is added. Even if it is added in a large amount, its effect is saturated and disadvantageous in terms of cost, so it is advantageous to add up to 0.45%.
N:0.008〜0.025%
Nは、V,Al,Ti,Nbなどと窒化物や炭窒化物を生成して、結晶粒を微細化させ、結果として耐力を向上させる点で有用である。この効果を得るためには、0.008%以上のNが必要である。多量に添加しようとすると、ブローホールが発生して健全な鋼塊が得られないおそれがあるから、その上限を0.025%とした。
N: 0.008 to 0.025%
N is useful in that it produces nitrides or carbonitrides with V, Al, Ti, Nb, etc., thereby refining the crystal grains and consequently improving the yield strength. In order to obtain this effect, N of 0.008% or more is necessary. If an attempt is made to add a large amount, blow holes may occur and a healthy steel ingot may not be obtained, so the upper limit was made 0.025%.
Mn+Cr+2Mo:1.8%以下
この値が1.8を超えるとベイナイトが多量に析出し、被削性を悪くするし、耐力比も低下するため、Mn+Cr+2Moをこの限度に止める。
Mn + Cr + 2Mo: 1.8% or less If this value exceeds 1.8, a large amount of bainite precipitates, worsening the machinability and lowering the yield ratio, so Mn + Cr + 2Mo is limited to this limit.
Ceq=C+0.07Si+0.16Mn+0.61P+0.19Cu+0.17Ni+0.2Cr+0.4Mo+V:0.80〜1.15
強度を確保するという観点から、非調質鋼製部品のほとんどは、その硬さが20HRC以上であることが必要であり、一方、被削性の観点からは、25HRC程度までであることを要する。トラック用クランクシャフトなどの大物部品を別にすれば、通常の非調質鋼製部品は、鍛造後の800〜500℃の温度領域における平均冷却速度が、約0.7℃/sec(鋼材相当径を約35mmと考えた場合)以上となる。このような条件下で、所望の硬さ20HRC以上を得るためには、炭素当量Ceqの値が0.80以上であることが必要である。Ceqが1.15を超えると、硬さが高くなりすぎて被削性が低下する。そこで、Ceqの範囲を、上記の0.80〜1.15とした。
Ceq = C + 0.07Si + 0.16Mn + 0.61P + 0.19Cu + 0.17Ni + 0.2Cr + 0.4Mo + V: 0.80 to 1.15
From the viewpoint of ensuring strength, most of the non-heat treated steel parts need to have a hardness of 20 HRC or more, while from the viewpoint of machinability, it is necessary that the hardness is up to about 25 HRC. . Aside from large parts such as truck crankshafts, ordinary non-heat treated steel parts have an average cooling rate in the temperature range of 800-500 ° C after forging of about 0.7 ° C / sec (equivalent steel material diameter). Is about 35 mm) or more. Under such conditions, in order to obtain a desired hardness of 20 HRC or more, the value of the carbon equivalent Ceq needs to be 0.80 or more. When Ceq exceeds 1.15, the hardness becomes too high and the machinability deteriorates. Therefore, the range of Ceq is set to the above 0.80 to 1.15.
Nb:0.001〜0.050%およびTi:0.001〜0.050%の1種または2種
NbおよびTiは、窒化物および炭窒化物を生成し、鍛造後の結晶粒を微細化して強度を向上させるが、多量に添加すると、逆に強度が低下する。適切な添加量はいずれも、0.001〜0.050%である。
One or two types of Nb: 0.001 to 0.050% and Ti: 0.001 to 0.050% Nb and Ti produce nitrides and carbonitrides, and refine crystal grains after forging However, when added in a large amount, the strength decreases. The appropriate addition amount is 0.001 to 0.050% for all.
Ca:0.0001〜0.0100%およびO:0.001〜0.010%の1種または2種
Caおよび0は、MnS介在物の形態を制御する作用があり、それによって工具摩耗を抑制し、被削性を改善する効果がある。この効果を得るためには、Ca:0.0001%以上、O:0.001%以上が必要である。多量に添加すると、どちらも熱間加工性を低くするので、上限を、いずれも0.010%とした。
One or two of Ca: 0.0001 to 0.0100% and O: 0.001 to 0.010% Ca and 0 have an action of controlling the form of MnS inclusions, thereby suppressing tool wear. And has the effect of improving machinability. In order to obtain this effect, Ca: 0.0001% or more and O: 0.001% or more are required. When added in a large amount, both lower the hot workability, so the upper limit was made 0.010% for both.
表1(実施例)および表2(比較例)に示す合金組成(重量%、残部Fe)をもつ鋼を真空溶解し、常法にしたがって鋼片にしたのち、1200℃以上に加熱してから、1200〜1000℃の温度範囲で熱間鍛造し、直径25mmの丸棒とし、つづいて常温まで空冷した。このときの、800〜500℃の温度領域における平均冷却速度は、0.8℃/secであった。 Steels having the alloy compositions (% by weight, balance Fe) shown in Table 1 (Examples) and Table 2 (Comparative Examples) are vacuum-melted into steel pieces according to a conventional method, and then heated to 1200 ° C. or higher. The steel was hot forged in a temperature range of 1200 to 1000 ° C. to form a round bar with a diameter of 25 mm, and then air-cooled to room temperature. At this time, the average cooling rate in the temperature range of 800 to 500 ° C. was 0.8 ° C./sec.
この熱間鍛造・空冷材からJlS4号試験片を切り出して、常温における引張試験を行なった。あわせて、引張試験片を採取した位置に隣接する部分から硬さ測定用およびミクロ組織用のサンプルを採取し、硬さ測定およびミクロ組織を観察した。それらの結果を、P+SおよびMn+Cr+2Moの値とともに、表3(実施例)および表4(比較例)に示す。 A JlS4 test piece was cut out from the hot forged / air-cooled material and subjected to a tensile test at room temperature. At the same time, samples for hardness measurement and microstructure were collected from the portion adjacent to the position where the tensile test piece was collected, and the hardness measurement and microstructure were observed. The results are shown in Table 3 (Examples) and Table 4 (Comparative Examples) together with the values of P + S and Mn + Cr + 2Mo.
本発明の高耐力比非調質鋼は、その高い耐力と低い製造コストにより、代表的には自動車エンジンのクランクシャフトや、コンロッドのような部品を製造する材料として最適である。そのほか、小型で軽量であることを要求される、さまざまな機械部品の材料としても有用である。
The high yield strength non-heat treated steel of the present invention is typically optimal as a material for producing parts such as a crankshaft of an automobile engine and a connecting rod because of its high yield strength and low production cost. In addition, it is useful as a material for various machine parts that are required to be small and lightweight.
Claims (4)
P+S:0.14%以上、
Mn+Cr+2Mo:1.8%以下、
Ceq=C+0.07Si+0.16Mn+0.61P+0.19Cu+0.17Ni+0.2Cr+0.4Mo+V:0.80〜1.15
であって、鍛造後の組織が主として(フェライト+パーライト)からなり、0.80以上の耐力比を示す非調質鋼。 % By mass (hereinafter the same) , C: 0.10 to 0.35%, Si: 0.4 to 1.0%, Mn: 0.6 to 1.5%, P: 0.06 to 0.15 %, S: 0.07 to 0.15%, Cu: 0.05 to 0.50%, Ni: 0.05 to 0.50%, Cr: 0.05 to 0.50%, Mo: (0 % hints) 0.05% or less, Al: 0.001 to 0.050%, V: 0.20 to 0.45% and N: containing 0.008 to 0.025%, the balance Fe and unavoidable Having an alloy composition of mechanical impurities, provided that
P + S: 0.14% or more,
Mn + Cr + 2Mo: 1.8% or less,
Ceq = C + 0.07Si + 0.16Mn + 0.61P + 0.19Cu + 0.17Ni + 0.2Cr + 0.4Mo + V: 0.80 to 1.15
And the structure after forging mainly consists of (ferrite + pearlite), non-heat treated steel showing a proof stress ratio of 0.80 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005017353A JP4784103B2 (en) | 2005-01-25 | 2005-01-25 | Non-tempered steel with high yield strength ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005017353A JP4784103B2 (en) | 2005-01-25 | 2005-01-25 | Non-tempered steel with high yield strength ratio |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006206934A JP2006206934A (en) | 2006-08-10 |
JP4784103B2 true JP4784103B2 (en) | 2011-10-05 |
Family
ID=36964108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005017353A Expired - Lifetime JP4784103B2 (en) | 2005-01-25 | 2005-01-25 | Non-tempered steel with high yield strength ratio |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4784103B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2431694C2 (en) * | 2008-02-26 | 2011-10-20 | Ниппон Стил Корпорейшн | Hot-stamped micro-alloyed steel with super destruction at fracture and processability |
EP2305851B1 (en) * | 2008-07-29 | 2015-03-18 | Nippon Steel & Sumitomo Metal Corporation | High-strength untempered steel for fracture splitting and steel component for fracture splitting |
JP2015025162A (en) * | 2013-07-25 | 2015-02-05 | 大同特殊鋼株式会社 | Ferrite pearlite type non-heat treated steel |
KR101612367B1 (en) * | 2014-02-17 | 2016-04-14 | 현대자동차주식회사 | Non-normalized steel composition with improved material properties and the connecting rod using the same and method for manufacturing the connecting rod |
CN106756580B (en) * | 2016-11-25 | 2018-04-03 | 常熟市龙腾特种钢有限公司 | A kind of ultralow warm forging 06Ni9DR steel ingots and its production method |
CN110616363B (en) * | 2018-06-20 | 2021-08-17 | 宝山钢铁股份有限公司 | Medium-carbon non-quenched and tempered expansion-fracture connecting rod steel and manufacturing method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09111412A (en) * | 1995-10-19 | 1997-04-28 | Sumitomo Metal Ind Ltd | High strength, high yield ratio, low ductility non-heat treated steel |
JP3887271B2 (en) * | 2002-05-29 | 2007-02-28 | 大同特殊鋼株式会社 | High-strength non-tempered steel that can be separated by breakage and intermediate products |
-
2005
- 2005-01-25 JP JP2005017353A patent/JP4784103B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006206934A (en) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5245997B2 (en) | High strength hot forged non-tempered steel with excellent toughness and method for producing the same | |
JP6111763B2 (en) | Steam turbine blade steel with excellent strength and toughness | |
AU2015281542A1 (en) | Carburized alloy steel, method for preparing same, and use thereof | |
JP5655366B2 (en) | Bainite steel | |
KR101750643B1 (en) | Age hardening steel | |
JP6620490B2 (en) | Age-hardening steel | |
JP4784103B2 (en) | Non-tempered steel with high yield strength ratio | |
JP5050515B2 (en) | Non-tempered steel containing V for crankshaft | |
JP5762217B2 (en) | Non-tempered steel for hot forging with excellent machinability | |
JP5413350B2 (en) | Rolled steel for hot forging and method for producing the same | |
JP4752800B2 (en) | Non-tempered steel | |
JP7223997B2 (en) | Steel with high hardness and excellent toughness | |
JP6390685B2 (en) | Non-tempered steel and method for producing the same | |
KR20140056767A (en) | Axle beam and method of manufacturing the same | |
JP5233848B2 (en) | Non-tempered steel bar for direct cutting | |
KR20140002256A (en) | Micro-alloyed steel and method of manufacturing the same | |
JP3874557B2 (en) | Free-cutting non-tempered steel with excellent toughness | |
JP5701047B2 (en) | Steel with excellent resistance to pitting, bending fatigue and torsional fatigue | |
JP2003342677A (en) | Steel for mechanical structure excellent in machinability and method for producing part for mechanical structure comprising the steel | |
JP6245278B2 (en) | Age-hardening steel | |
JP4347033B2 (en) | Manufacturing method of steel for pre-hardened mold | |
JP6282078B2 (en) | Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics | |
JP2014025105A (en) | Steel for connecting rod and connecting rod | |
KR101254782B1 (en) | Air hardening high strength machine structural steel without oil quenching and tempering after carburizing heat treatment and method producing the same | |
KR20130002191A (en) | Non-heat treated steel and method of manufacturing the non-heat treated steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110614 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4784103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 3 |