JP4777112B2 - Manufacturing method of high strength wire rod with excellent weldability - Google Patents
Manufacturing method of high strength wire rod with excellent weldability Download PDFInfo
- Publication number
- JP4777112B2 JP4777112B2 JP2006093769A JP2006093769A JP4777112B2 JP 4777112 B2 JP4777112 B2 JP 4777112B2 JP 2006093769 A JP2006093769 A JP 2006093769A JP 2006093769 A JP2006093769 A JP 2006093769A JP 4777112 B2 JP4777112 B2 JP 4777112B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- high strength
- wire
- less
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、用途上高強度でありながら溶接性も要求されるような製品に適し、PC用鋼材をはじめ自動車用シート枠や自動車のホイールリングや溶接金網を用いた高強度パレートなどに用いられる高強度線材の製造方法に関する。 The present invention is suitable for products that require high weldability while having high strength for use, and is used for high-strength pareto using PC steel, automobile seat frames, automobile wheel rings, and welded wire mesh. The present invention relates to a method for producing a high-strength wire.
高強度用鋼線などは通常JIS G3521の硬鋼線またはJIS G3522のピアノ線を用いて伸線加工を付与することにより高強度を得ている。この場合、共析鋼に近い成分となり極端に溶接性能が劣るため、一般的には溶接性能が要求される場合はJIS G3505の軟鋼線材を伸線加工して用いている場合がほとんどであった。しかしながら、この場合は炭素量が低いため高強度を要求される場合には適用が困難である。 A high strength steel wire or the like is usually obtained by applying a wire drawing process using a JIS G3521 hard steel wire or a JIS G3522 piano wire. In this case, since it becomes a component close to eutectoid steel and welding performance is extremely inferior, generally, when welding performance is required, JIS G3505 mild steel wire was mostly used after drawing. . However, in this case, since the amount of carbon is low, application is difficult when high strength is required.
このように高強度でかつ溶接性が優れているという要求は、硬鋼線や軟鋼線の個別特性すなわち硬鋼線の高強度と軟鋼線材のもつ溶接性能を同時に満足させる必要があり、強度および溶接性を両立させるためには従来とは異なった成分系および熱処理を行う必要がある。このような考え方から特許文献1に開示されているように、Cレベルを適正に制御した線材を用いて再度オーステナイト化後に調整冷却を実施し、その焼き戻し処理を行った後に真歪1.5〜2.2まで伸線加工することにより所定の組織を得て高強度と溶接性を両立させる方法が提案されている。 The demand for such high strength and excellent weldability must satisfy the individual characteristics of hard steel wire and mild steel wire, that is, the high strength of hard steel wire and the welding performance of mild steel wire at the same time. In order to achieve both weldability, it is necessary to perform a component system and heat treatment different from the conventional ones. From such a view, as disclosed in Patent Document 1, using the wire material with the C level appropriately controlled, after adjusting to austenite, the adjustment cooling is performed again, and after the tempering process, the true strain is 1.5. A method has been proposed in which a predetermined structure is obtained by drawing up to ~ 2.2 to achieve both high strength and weldability.
しかしながら、この方法では線材圧延を行った後に再度オーステナイト化を行い、その後焼き戻しを行うなど製品化されるまでの加工熱処理工程が長く製造コスト面および生産性の面からさらなる低コスト化の要求が高まっている。特に市場が活況を呈している現在においてその要求はさらに強まっている。 However, this method requires a further cost reduction from the viewpoint of production cost and productivity because the process heat treatment process is long, such as performing austenite again after performing wire rod rolling, and then tempering, etc. until commercialization. It is growing. The demand is getting stronger, especially in the current booming market.
本発明の最大の特徴は、線材圧時に500℃〜550℃の溶融塩などによるインライン熱処理を付与させることにより効率的に高強度を得ることであり、再加熱する場合よりもオーステナイト結晶粒が微細になるために、従来よりも延性において良好な特性を有するものが得られる。その要旨は、質量%で、C:0.15〜0.20%以下、Si:0.8〜1.0%以下、Mn:1.4〜1.6%、P:0.01%以下、S:0.01%以下、Cr:0.3〜0.5%、Ti:0.005〜0.100%、B:0.0010〜0.0025%を含有し、残部Feおよび不可避的不純物からなる鋼成分を有する線材を熱間圧延後、850℃〜900℃で巻き取った後、インライン熱処理により470〜550℃の温度で50〜90秒保持させた後、25〜100℃/secの冷却速度で冷却し、金属組織をフェライト、パーライト、ベイナイト、マルテンサイトそれぞれが2%以上の混合組織とすることを特徴とする1250MPa以上の強度を有する溶接性の優れた高強度線材の製造方法である。 The greatest feature of the present invention is to obtain high strength efficiently by applying in-line heat treatment with molten salt at 500 ° C. to 550 ° C. at the time of wire pressure, and the austenite crystal grains are finer than when reheating. Therefore, a material having better ductility than the conventional one can be obtained. The gist is mass%, C: 0.15 to 0.20% or less, Si: 0.8 to 1.0% or less, Mn: 1.4 to 1.6%, P: 0.01% or less. , S: 0.01% or less, Cr: 0.3-0.5%, Ti: 0.005-0.100%, B: 0.0010-0.0025%, the balance Fe and inevitable After hot rolling a wire having a steel component composed of impurities, it is wound at 850 ° C. to 900 ° C., held at a temperature of 470 to 550 ° C. for 50 to 90 seconds by in-line heat treatment, and then 25 to 100 ° C./sec. And producing a high strength wire with excellent weldability having a strength of 1250 MPa or more, characterized in that the metal structure is a mixed structure of ferrite, pearlite, bainite, martensite and each 2% or more. It is.
本発明は、高強度でかつ優れた溶接性を合わせ持つ線材を直接インラインの熱処理で製造可能であるため、従来の再加熱による熱処理法に比較して安価に製造することが可能となった。 In the present invention, since a wire having high strength and excellent weldability can be produced by direct in-line heat treatment, it has become possible to produce the wire at a lower cost than the conventional heat treatment method by reheating.
以下にその詳細について述べる。
最初に本発明の限定理由について述べる。
Cの上限を0.20%に限定したのは、これ以上の添加は鋼の延性を劣化させ亀裂の伝播を助長するため却って強度の低下を招くためである。下限を0.15%に限定したのはこれ以下の場合、目標とする高強度1250Mpa以上を満たすことができなくなるためである。
The details are described below.
First, the reasons for limitation of the present invention will be described.
The upper limit of C is limited to 0.20% because addition of more than this deteriorates the ductility of the steel and promotes the propagation of cracks, leading to a decrease in strength. The reason why the lower limit is limited to 0.15% is that if it is less than this, the target high strength of 1250 Mpa or more cannot be satisfied.
Siの上限を1.0%にしたのは、これ以上の添加は強度の上昇への寄与よりも熱処理温度との乖離が大きくなることが組織コントロール上好ましくないためである。下限を0.8%にしたのは高強度化へのTS確保が困難になるためである。 The reason why the upper limit of Si is set to 1.0% is that addition of more than this is not preferable in terms of structure control because the deviation from the heat treatment temperature becomes larger than the contribution to the increase in strength. The reason why the lower limit is set to 0.8% is that it is difficult to secure TS for high strength.
Mnの上限を1.6%にしたのはこれ以上の添加の場合、焼入れ性能が必要以上に高まり延性の劣化を招くことによる。下限を1.4%に限定した理由は、強度の確保および焼入れ性を適正に確保するために必要な量とした。 The reason why the upper limit of Mn is 1.6% is that when it is added more than this, the quenching performance is increased more than necessary and the ductility is deteriorated. The reason why the lower limit is limited to 1.4% is an amount necessary for ensuring the strength and properly securing the hardenability.
Pの上限を0.01%と限定したのは、これ以上の添加を行うと鋼の延性の低下を招き、破壊を早期に招くことを懸念して設定した。下限は少ないほど延性の向上に繋がるが、極端な低P化は鋼の溶製コストの上昇を招くため特に規定はしない。 The upper limit of P was limited to 0.01% because the addition of more than this would lead to a decrease in the ductility of the steel, and was feared to cause early destruction. The smaller the lower limit, the better the ductility. However, there is no particular restriction because an extremely low P leads to an increase in steel melting costs.
Sの上限を0.01%以下としたのは、これ以上の添加の場合MnSによる赤熱脆化などを生じて熱間圧延時の表面品位を低下させるためである。 The reason why the upper limit of S is set to 0.01% or less is that when it is added more than this, red heat embrittlement or the like is caused by MnS and the surface quality during hot rolling is lowered.
Crは焼入れ性を高めて強度を得るために使用するほか溶接時の入熱による軟化を抑制させる効果があるため、本発明においてSiと同様に重要な役割を担う。上限を0.5%にしたのはこれ以上の添加では焼入れ性能が飽和するため経済的理由により上限を設定した。下限を0.3%に限定したのはこれ以下では焼入れ性能の低下により狙いとする高強度が得られないためである。 In addition to being used for increasing the hardenability and obtaining strength, Cr has an effect of suppressing softening due to heat input during welding, and therefore plays an important role in the present invention in the same manner as Si. The upper limit was set to 0.5% because the quenching performance was saturated with addition beyond this limit because of economic reasons. The reason why the lower limit is limited to 0.3% is that if it is less than this, the desired high strength cannot be obtained due to a decrease in quenching performance.
Tiの添加はNの固定を促し、TiNとすることによりBNの析出を抑制して焼入れ性に必要なフリーBを確保するために用いる。上限を0.100%としたのはこれ以上の添加はN固定には充分すぎる量となり、過剰Tiの弊害が生じるためである。下限の0.005%以下の量ではNの固定が不十分となりBNの析出が生じBの有効利用が困難になるためである。 The addition of Ti promotes the fixation of N, and TiN is used to secure the free B necessary for hardenability by suppressing the precipitation of BN. The upper limit is set to 0.100% because addition beyond this amount is too much for N fixation, resulting in an adverse effect of excess Ti. This is because if the amount is 0.005% or less of the lower limit, the fixation of N becomes insufficient and BN precipitates, making it difficult to effectively use B.
Bの上限を0.0025としたのはBが過剰になるとFe23(CB)6などの析出物がフェライト結晶粒界などに多量に析出して延性を劣化させるためである。下限を0.0010%としたのは、これ以下だとBの焼入れ性向上効果がなくなるためである。 The upper limit of B is set to 0.0025 because when B is excessive, precipitates such as Fe 23 (CB) 6 are precipitated in a large amount at the ferrite grain boundaries and the ductility is deteriorated. The reason why the lower limit is set to 0.0010% is that if it is less than this, the effect of improving the hardenability of B is lost.
次に線材の捲取り温度の理由について述べる。
捲取温度の上限を900℃に限定したのは、インライン熱処理設備に投入されるまでの間に二次スケールの成長厚みが増加するため、インライン熱処理内の熱処理過程でスケールの剥離量が増え、熱処理槽内でスケール剥離量が増えるためスケール堆積が生じやすくなるためである。捲取温度の下限温度を850℃にしたのは、この温度以下の場合はインライン投入口までの間に変態が進行するため、所定の組織を安定して得ることが出来なくなるためである。
Next, the reason for the wire cutting temperature will be described.
The upper limit of the scraping temperature is limited to 900 ° C., because the growth thickness of the secondary scale increases until it is put into the in-line heat treatment equipment. This is because scale deposition tends to occur because the amount of scale peeling increases in the heat treatment bath. The reason why the lower limit temperature of the coiling temperature is set to 850 ° C. is that when the temperature is equal to or lower than this temperature, the transformation proceeds until the in-line inlet, and thus a predetermined structure cannot be stably obtained.
インライン熱処理温度の上限を550℃にしたのは、これ以上の温度では熱処理に用いる溶融塩の分解により安定した熱伝達率を得ることが出来なくなり安定した熱処理が不能となるためである。また、下限温度を470℃にしたのは、これ以下の温度の場合には所定の複合組織(フェライト、パーライト、ベイナイト、マルテンサイト)を得ることが困難になるためである。フェライト、パーライト、ベイナイト、マルテンサイトのそれぞれの組織は各々2%以上存在すれば強度を1250MPa以上に保つことが出来る。これ以下の値になると強度の確保が困難となる。 The reason why the upper limit of the in-line heat treatment temperature is set to 550 ° C. is that if the temperature is higher than this, a stable heat transfer coefficient cannot be obtained due to decomposition of the molten salt used in the heat treatment, and stable heat treatment is impossible. The reason why the lower limit temperature is set to 470 ° C. is that it becomes difficult to obtain a predetermined composite structure (ferrite, pearlite, bainite, martensite) at temperatures lower than this. If the respective structures of ferrite, pearlite, bainite, and martensite are present in an amount of 2% or more, the strength can be maintained at 1250 MPa or more. If the value is less than this, it is difficult to ensure the strength.
また、インライン熱処理の保持時間は、所定の組織生成の理由から50秒以上必要である。また、90秒超では熱処理時後の線材にマルテンサイトは生成しなくなるため、強度を1250MP以上にすることが出来ないため保持間の上限を90秒とした。また、インライン熱処理後の冷却速度は25〜100℃/secとする必要があり、その下限の理由は25℃/sec以下ではフェライトとパーライト主体の組織となり強度の上昇が見込めないためであり、上限を100℃/secとする理由は利用する冷媒の冷却能力の制約である。 In addition, the holding time of the in-line heat treatment needs to be 50 seconds or more for the reason of generating a predetermined structure. If it exceeds 90 seconds, no martensite is generated in the wire after the heat treatment, so the strength cannot be increased to 1250 MP or more. The cooling rate after in-line heat treatment needs to be 25-100 ° C / sec. The reason for the lower limit is that at 25 ° C / sec or less, it becomes a structure mainly composed of ferrite and pearlite and an increase in strength cannot be expected. The reason for setting the temperature to 100 ° C./sec is the restriction of the cooling capacity of the refrigerant to be used.
表1に示す実施例はすべて250tonの転炉で溶製したのち、連続鋳造して500mm×300mmのブルームにした後、分塊工程で122mm角のビレットとした。その後、線材加熱炉〜圧延〜直接熱処理工程を経て直径5.5mmあるいは11.5mmの線材とした。表1のPcmは溶接割れ感受性指数を示しており、算出方法は以下に示す(1)式により求めた。この値が小さい程、溶接性能が良くなることを表している。
Pcm=C+1/30Si+1/20Mn+1/20Cu+1/60Ni+1/20Cr +1/15Mo+1/10V+10×B …(1)式
All the examples shown in Table 1 were melted in a 250-ton converter, continuously cast into a 500 mm × 300 mm bloom, and then a 122 mm square billet was formed in the lump process. Thereafter, a wire rod having a diameter of 5.5 mm or 11.5 mm was obtained through a wire heating furnace, rolling, and direct heat treatment process. Pcm in Table 1 represents a weld cracking sensitivity index, and the calculation method was obtained by the following equation (1). It represents that welding performance improves, so that this value is small.
Pcm = C + 1 / 30Si + 1 / 20Mn + 1 / 20Cu + 1 / 60Ni + 1 / 20Cr + 1 / 15Mo + 1 / 10V + 10 × B (1) formula
また、スポット溶接性は、突合せ溶接を行った後、溶接部の張り出し部分を削って引張試験をn数5本行い、その平均値が母材強度の7割以上の値を示す場合に○印とし、7割を下回る場合を×印で表している。 In addition, spot weldability is indicated by ◯ when butt welding is performed and then the overhanging portion of the welded portion is shaved and a tensile test is performed with a number n of 5 and the average value indicates a value of 70% or more of the base material strength. The case of less than 70% is indicated by a cross.
鋼種AはJIS G3505に準拠した軟鋼線を比較として用いたものである。この場合、溶接性は極めて良好な特性を示すが強度が低く、本発明要件である高強度を満たしていない。一方、鋼種BはJIS G3506に準拠した硬鋼線を比較として用いたものであり、この場合、強度は発明要件の高強度を満たしておらず、スポット溶接性も劣化していることが判る。 Steel type A uses a mild steel wire based on JIS G3505 as a comparison. In this case, the weldability shows very good characteristics, but the strength is low and the high strength which is a requirement of the present invention is not satisfied. On the other hand, steel type B uses a hard steel wire conforming to JIS G3506 as a comparison, and in this case, the strength does not satisfy the high strength of the invention requirement, and it is understood that the spot weldability is also deteriorated.
このようにフェライト主体の鋼種Aやパーライト主体の鋼種Bの場合、溶接性と強度の両立を実現させることは困難である。鋼種Aのように溶接性が良くても強度が低い場合、強度を高めるためにC量を増加するがこの方法では鋼種Bの様に溶接性が悪化するため、従来法では目標とする特性、すなわち強度および溶接性の両方を満足させる特性が得られないことが判る。鋼種C,Dは比較法を示す。鋼種E〜Lは本発明法を用いた5.5mmφ線材の実施例を示す。また、鋼種J〜Lは線材を11.5mmφで製造した場合の本発明法の実施例を示す。 As described above, in the case of steel type A mainly composed of ferrite and steel type B mainly composed of pearlite, it is difficult to realize both weldability and strength. Even if the weldability is good as in steel type A, if the strength is low, the amount of C is increased in order to increase the strength, but in this method the weldability deteriorates as in steel type B. That is, it can be seen that characteristics satisfying both strength and weldability cannot be obtained. Steel types C and D show comparative methods. Steel types E to L show examples of 5.5 mmφ wire rods using the method of the present invention. Steel types J to L show examples of the method of the present invention when the wire is manufactured at 11.5 mmφ.
いずれもPcmの値が0.3前後の値でスポット溶接性は良好であることが判る。強度に関しても本発明の実施例C〜Kは1250MPaの強度を確保出来ていることが判る。これらはいずれも本発明の特徴であるインライン熱処理を行ったものであり、組織はフェライト、パーライト、ベイナイト、マルテンサイトをそれぞれ2%以上含んでいる。 In any case, it is understood that the spot weldability is good when the value of Pcm is around 0.3. Regarding strength, it can be seen that Examples C to K of the present invention can secure a strength of 1250 MPa. These are all subjected to in-line heat treatment, which is a feature of the present invention, and the structure contains 2% or more of ferrite, pearlite, bainite, and martensite.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006093769A JP4777112B2 (en) | 2006-03-30 | 2006-03-30 | Manufacturing method of high strength wire rod with excellent weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006093769A JP4777112B2 (en) | 2006-03-30 | 2006-03-30 | Manufacturing method of high strength wire rod with excellent weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007270165A JP2007270165A (en) | 2007-10-18 |
JP4777112B2 true JP4777112B2 (en) | 2011-09-21 |
Family
ID=38673271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006093769A Active JP4777112B2 (en) | 2006-03-30 | 2006-03-30 | Manufacturing method of high strength wire rod with excellent weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4777112B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101714903B1 (en) * | 2014-11-03 | 2017-03-10 | 주식회사 포스코 | Steel wire rod having high strength and impact toughness, and method for manufacturing thereof |
-
2006
- 2006-03-30 JP JP2006093769A patent/JP4777112B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007270165A (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6433512B2 (en) | Double-annealed steel sheet having high mechanical strength and ductility characteristics, method for producing such a sheet and use thereof | |
JP4410836B2 (en) | Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness | |
JP5659758B2 (en) | TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability | |
JP4838862B2 (en) | Manufacturing method of high workability high strength steel sheet with excellent hot dip galvanizing characteristics | |
JP6700400B2 (en) | Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same | |
JP7411072B2 (en) | High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same | |
JP6160574B2 (en) | High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same | |
JP6056235B2 (en) | Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more | |
JP2008189987A (en) | Hot rolled steel sheet for tailored blanks and tailored blanks | |
JP7082669B2 (en) | High-strength, high-toughness hot-rolled steel sheet and its manufacturing method | |
JP6051735B2 (en) | Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance | |
JP2008189973A (en) | Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance | |
JP4926447B2 (en) | Manufacturing method of high strength steel with excellent weld crack resistance | |
CN102154592A (en) | Micro-alloying martensite stainless steel for blades of water turbine and manufacturing method thereof | |
JPH07173530A (en) | Manufacturing method of high toughness rail with pearlite metal structure. | |
JP5082500B2 (en) | Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance | |
JP7076311B2 (en) | Manufacturing method of Ni-containing steel sheet | |
JP4777112B2 (en) | Manufacturing method of high strength wire rod with excellent weldability | |
JP6398576B2 (en) | Steel sheet with excellent toughness and method for producing the same | |
JP7229827B2 (en) | Manufacturing method of high carbon steel sheet | |
JP4770415B2 (en) | High tensile steel plate excellent in weldability and method for producing the same | |
JP6728816B2 (en) | High-strength spring steel, spring, and method for manufacturing high-strength spring steel | |
KR20040004137A (en) | STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL | |
JP2005350736A (en) | High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor | |
JP2022510209A (en) | Medium- and high-temperature steel sheets with excellent high-temperature strength and their manufacturing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110629 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4777112 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |