[go: up one dir, main page]

JP4775679B2 - Method and apparatus for manufacturing laminated ribbon - Google Patents

Method and apparatus for manufacturing laminated ribbon Download PDF

Info

Publication number
JP4775679B2
JP4775679B2 JP2001145136A JP2001145136A JP4775679B2 JP 4775679 B2 JP4775679 B2 JP 4775679B2 JP 2001145136 A JP2001145136 A JP 2001145136A JP 2001145136 A JP2001145136 A JP 2001145136A JP 4775679 B2 JP4775679 B2 JP 4775679B2
Authority
JP
Japan
Prior art keywords
magnetic ribbon
ribbon
resin film
magnetic
adhesive roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001145136A
Other languages
Japanese (ja)
Other versions
JP2002337232A (en
Inventor
征郎 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001145136A priority Critical patent/JP4775679B2/en
Publication of JP2002337232A publication Critical patent/JP2002337232A/en
Application granted granted Critical
Publication of JP4775679B2 publication Critical patent/JP4775679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アモルファスを熱処理して得られる磁性薄帯のハンドリング性を向上した積層薄帯の製造方法と製造装置に関する。
【0002】
【従来の技術】
優れた磁気特性を有する磁性薄帯として、アモルファス材料やナノ結晶材料が知られている。代表的なアモルファス材料は、溶湯をロール表面で急冷し、厚さ50μm以下のリボンとして得ることができる。このまま使用する場合も多いが、加熱処理を施し、磁気特性の向上を行う場合がある。
また、ナノ結晶材料は、たとえばFe−Cu−Nb−(Si,B)系のごときナノ結晶組織に調整可能な合金組成を有する溶湯を、上記アモルファス合金と同様にして急冷しアモルファスリボンを製造し、その後加熱処理により結晶組織に調整して得ることができる。ナノ結晶材料は、たとえば、特公平4−4393号に示されるような、組織の少なくとも50%以上が平均結晶粒径100nm以下の微細な結晶粒からなる材料である。
【0003】
上述した熱処理を施したアモルファス材料あるいはナノ結晶材料の磁性薄帯は、急冷したままのアモルファス材料に比べて靱性が低下して、脆化する傾向がある。特に、熱処理により結晶化させてナノ結晶組織に調整すると脆化傾向は著しく、ハンドリング時に薄帯が容易に破断する問題がある。
上記のアモルファス材料あるいはナノ結晶材料の用途として、たとえば特公平5−19196号等に記載されるセンサー材料や特開平1−241200号等に記載されるシールド材料がある。このような用途において、脆化した状態の薄帯を用いることは、加工時および使用時のハンドリングにおいて割れ、欠け等を生じ問題となるため、通常は磁性薄帯の片面若しくは両面に樹脂を貼付することで複合し、積層薄帯としたものを使用することが多い。
【0004】
磁性薄帯と樹脂とを複合して上記の積層薄帯とする場合、一般に樹脂の耐熱性は高くても300℃程度しかなく、たとえば上述したナノ結晶材料への加熱処理のように400℃を越える温度を適用する場合は、加熱処理の前に樹脂を予め貼付けたり被覆しておくことができず、従って熱処理後に複合し積層薄帯とすることが行われる。
従来、熱処理後の磁性薄帯と樹脂との複合は、例えば図4、図5に示すように、二つの接着ロールを用いて磁性薄帯と樹脂とを接着することで製造されている。また特開平12−51933号公報には図6に示すように磁性薄帯コイルに直接ローラ等を押付けて樹脂を貼付ける製造方法が記載されている。
【0005】
【発明が解決しようとする課題】
図4、図5に示す従来の方法では、磁性薄帯コイル7から巻出され接着ロール2と接触するまでの非拘束磁性薄帯4が長いため、アモルファス材料やナノ結晶材料のような不均質な脆性材料を取り扱う場合においては、磁性薄帯を装置にセットする段階で破断を生じる場合がある。
また、製造開始後も振動により図5に示すような捩れや、さらにひどい場合には蛇行を生じ、加えて非拘束磁性薄帯部分の重量が大きいため、非拘束磁性薄帯4の端部、すなわち磁性薄帯コイル10または接着ロール2との接触開始部分の応力周中部10で局所的に大きな応力を生じ易い。アモルファス薄帯などのような不均質な脆性材料では、特に脆化した部分が応力集中部10となった場合に容易に磁性薄帯の破断を生じる。
【0006】
上記の振動による捩れや蛇行は、非拘束磁性薄帯に引張り張力を付与した状態で磁性薄帯を巻出すことにより緩和することが出来るが、この場合には、常に一定の応力が端部に付加されており、やはり捩れを生じた場合には非拘束磁性薄帯の端部で局所的にその応力が集中する。
既述のように熱処理後の磁性薄帯は非常に脆いため、このように局所的に集中する応力により容易に破断を生じる。
【0007】
これに対し図6に示す特開平12−51933号公報に記載の装置は、非拘束磁性薄帯に相当する部分が無いため上記のような捩れや蛇行による応力集中を生じ難く、それによる破断を生じ難い。
しかしながら、磁性薄帯コイルに圧着ロール9等を押付けて樹脂フィルム6を貼付けるため、磁性薄帯コイル7上に常時応力が発生している。そのため磁性薄帯の巻取りが均一でない部分等があると、その部分で応力集中を生じて局部的破断を生じ、必ずしも安定した方法とは言えない。また、樹脂フィルムの走行方向と磁性薄帯コイルの回転軸とが正確に直交していないと、わずかな角度のズレが積層を続けるにしたがい大きくなり、ついには磁性薄帯がコイル上で破断する問題を生じる。
本発明の目的は、上述した問題に鑑み、熱処理により脆化した磁性薄帯が破断することなく安定して樹脂と複合することが出来る磁性薄帯の製造方法および製造装置を提供することである。
【0008】
【課題を解決するための手段】
本発明者は、脆化後の磁性薄帯であっても捩れや蛇行などの曲げに起因する応力集中を発生させず、かつ磁性薄帯が均一な弱い応力状態であれば破断が生じないことに着目し本発明に想到した。すなわち本発明は、Fe−Cu−Nb−(Si,B)系アモルファス薄帯を熱処理して得られる組織の少なくとも50%以上が平均結晶粒径100nm以下のナノ結晶組織である磁性薄帯に連続的にホットメルト剤付き樹脂フィルムを熱圧着する積層薄帯の製造装置であって、
磁性薄帯コイルから磁性薄帯を巻出す磁性薄帯巻出し機と、
ホットメルト剤付き樹脂フィルムを巻出す樹脂フィルム巻出し機と、
外周上で前記磁性薄帯とホットメルト剤付き樹脂フィルムとが重なり合う接着ロールと、
前記磁性薄帯に前記ホットメルト剤付き樹脂フィルムを熱圧着する熱圧着ロールと、
前記ホットメルト剤付き樹脂フィルムが熱圧着された磁性薄帯を巻取る巻取り機と、
を具備し、
前記接着ロールは該接着ロールを加熱するための加熱手段を具備し、
前記磁性薄帯巻出し機の軸受け部にベアリングが設けられ、前記磁性薄帯の巻き出し張力が、前記ベアリング抵抗と巻取り機の張力のみであり、
これらを、
前記磁性薄帯とホットメルト剤付き樹脂フィルムのそれぞれの接着ロール外周での接触開始位置が異なり、かつ前記磁性薄帯の磁性薄帯コイル外周上の巻出し位置と、前記磁性薄帯の接着ロールの接触開始位置との距離Lが0<L≦20mmとなるよう配することを特徴とする積層薄帯の製造装置である
【0009】
上記本発明の製造方法は、以下の本発明の製造装置により好適に実施することが出来る。
すなわち、アモルファス薄帯を熱処理して得られる磁性薄帯に連続的に樹脂フィルムを貼付する積層薄帯の製造装置であって、
磁性薄帯コイルから磁性薄帯を巻出す磁性薄帯巻出し機と、
樹脂フィルムを巻出す樹脂フィルム巻出し機と、
外周上で前記磁性薄帯と樹脂フィルムとが重なり合う接着ロールとを具備し、
これらを、
前記磁性薄帯と樹脂フィルムのそれぞれの接着ロール外周での接触開始位置が異なり、
かつ前記磁性薄帯の磁性薄帯コイル外周上の巻出し位置と、前記磁性薄帯の接着ロール外周での接触開始位置との距離Lが0<L≦20mmとなるよう配する積層薄帯の製造装置である。前記距離Lは0<L≦10mmであることが好ましい。
【0010】
上記装置であって、二つの樹脂フィルム巻出し機を具備し、接着ロール外周での磁性薄帯の接触開始位置の円周方向の前後二箇所に樹脂フィルムの接触開始位置が位置する装置により磁性薄帯の両面に樹脂フィルムを貼付することが出来る。
また、前記接着ロールは接着ロールを加熱するための加熱手段を具備することにより熱可塑性の接着樹脂を効率的に加熱することができ好ましい。さらに、前記接着ロールと協働して積層薄帯を圧着する圧着ロールを具備することで、気泡などの少ない健全な積層薄帯を製造することができ好ましい。
加えて、前記磁性薄帯コイルを前記接着ロールの幅方向に複数配置することにより磁性薄帯の帯幅以上の幅のシートを連続的に製造することができる。
【0011】
【発明の実施の形態】
上記のように本発明の積層薄帯の製造方法における重要な特徴は、磁性薄帯が、前記磁性薄帯コイルから巻出され前記接着ロールと接触するまでの非拘束磁性薄帯の長さLを0<L≦20(mm)、好ましくは0<L≦10(mm)とした点である。
以下本発明を一実施形態に基づいて説明する。図1は片面に接着剤がついた樹脂フィルム6を樹脂フィルム巻出し機1から巻出し、磁性薄帯を磁性薄帯巻出し機3に設置した磁性薄帯コイル7から巻出して、接着ロール2の外周上で接合して積層薄帯11とする積層薄帯の製造装置の概略構成図である。図2は図1の磁性薄帯巻出し機3および接着ロール2を拡大した概略図である。
【0012】
本発明で磁性薄帯コイル7から巻出され接着ロール2と接触するまでの非拘束磁性薄帯4の長さLを20mm以下とするのは、20mmより大きくなると非拘束磁性薄帯4の捩れや蛇行を生じ破断を生じやすくなるからである。これに対し20mm以下とすると、弱い張力で磁性薄帯の巻出しを行っても、大きな捩れや蛇行を生じることなく磁性薄帯が安定するからある。10mm以下では特に安定する。その結果、非拘束磁性薄帯の端部での応力集中、破断を防止できる。
【0013】
また、L>0mm、すなわち磁性薄帯コイルと接着ロールの外周面とを非接触とするのは、接触させた場合磁性薄帯コイル7に接触ロール2を押付けることで生じる圧縮応力が破断の原因となるからである。
さらに非接触とすることで、磁性薄帯コイルから巻出された磁性薄帯は樹脂フィルムの走行方向に対する垂直方向の動きについて自由度を持ち、樹脂フィルムの走行方向と磁性薄帯コイルの回転軸とが正確に直交していない場合でも、自発的なズレの補正が可能であり、ズレを生じた後に積層を続けても破断を生じ難い。
なお、本発明で非拘束磁性薄帯の振動による捩れや蛇行の程度は、磁性薄帯の帯幅、帯厚にも影響されるが、上記本発明の製造方法は、磁性薄帯の帯幅が20〜100mm、帯厚が15〜30μmの磁性薄帯に適用することが好ましい。
以上に説明したように本発明の方法により磁性薄帯が破断することなく安定して樹脂と複合することが出来る。
【0014】
本発明の方法は、組織の少なくとも50%以上が平均結晶粒径100nm以下のナノ結晶組織を有するナノ結晶材料を用いて積層薄帯を製造するにおいて特に有効である。ナノ結晶材料は、アモルファス薄帯を熱処理した後の通常のアモルファス材料と比べても脆化が著しい。上記のように本発明の製造方法によれば磁性薄帯での応力集中を生じ難いため、脆化が著しく容易に破断を生じるナノ結晶材料を用いても製造中に破断を生じにくい。
【0015】
次に、上記本発明の製造方法を実施するのに適する本発明の製造装置について同じく図1、図2に基づき説明する。
本発明の装置では、磁性薄帯の接着ロール外周での接触開始位置12と樹脂フィルムの接着ロール外周での接触開始位置13がそれぞれ異なり、かつ磁性薄帯の磁性薄帯コイル外周面の巻出し位置14と、磁磁性薄帯の接着ロール外周での接触開始位置12との距離L、すなわち積層薄帯製造時の非拘束磁性薄帯の長さLが0<L≦20mm、好ましくは0<L≦10mmとなるよう磁性薄帯巻出し機3と、樹脂フィルム巻出し機1と、接着ロール2と、ガイドロール8を配する。
それぞれの接触開始位置12、13が異なるように各部を配することで、各部が干渉することなく磁性薄帯の磁性薄帯コイル外周面の巻出し位置14と、磁磁性薄帯の接着ロール外周での接触開始位置12とを近接させることが可能となる。これにより前記本発明の方法で説明したように、磁性薄帯が破断することなく安定して樹脂と複合することが出来る。
【0016】
さらに、磁性薄帯と樹脂フィルムとの接着に、熱可塑性の樹脂を用いる場合等には接着ロールには該接着ロールを加熱するための加熱手段を具備することが好ましい。
図4に示す従来の装置では、磁性薄帯と樹脂フィルムとが実質的に線で接着ロールと接するに対し、図1に示す本発明の装置では磁性薄帯および樹脂フィルムがそれぞれ接着ロールと接触した後、積層薄帯を形成して離間するまで接着ロールの外周面と接触した状態を維持する。そのため接着ロール上で十分に磁性薄帯と樹脂フィルムを加熱でき、その結果、別途加熱機器を要することなく、良好な接合を有する積層薄帯を効率的に製造することが可能であり、また別途加熱機器を具備する場合のように装置全体が大型化することもない。
【0017】
加えて本願発明は、圧着ロールを具備することが好ましい。図1に示すように磁性薄帯と樹脂フィルムを積層した後、圧着ロール9により適度に圧下することで密着が強固となり、さらに薄帯の接着界面に巻きこまれた気泡を外部へ排出することが出来る。
図1では樹脂フィルムのガイドロールの位置にガイドロールを兼ねる形で圧着ロール9を設けたが、それぞれ別個に設けても良い。また、本発明の装置では既述のように磁性薄帯および樹脂フィルムがそれぞれ接着ロールと接触した後、積層薄帯を形成して離間するまで接着ロールの外周面と接触した状態を維持するので、必要に応じて複数の圧着ロールを配することが可能であり、装置を大型化することなく密着をより強固とすることができる。
【0018】
さらに、図3に示すように磁性薄帯コイル7を幅方向に複数配することにより幅広の積層薄帯を製造出来る。本発明の装置では接着ロール2上の任意の位置に磁性薄帯コイルを適宜配置することが可能であり、ロール幅以外に装置を大型化することなく磁性薄帯の帯幅以上の積層薄帯を製造することが出来る。図3では二つの磁性薄帯コイル7を配しているが、接着ロール外周上にスペースがあれば三つ以上の磁性薄帯コイルを配することも可能である。
【0019】
上記、本発明の装置において樹脂フィルム巻出し機1には樹脂フィルムに張力を与えて走行を安定させるためブレーキを設け、巻取り機5も巻取り張力付加機構を設けることにより積層薄帯上のしわの発生を抑制でき好ましい。また非拘束磁性薄帯4に大きな張力が発生することを防止するため、磁性薄帯コイル巻出し機3の軸受け部にベアリングを設け、このベアリングの抵抗と巻取り機5の巻取り張力のみにより磁性薄帯を巻出すことが好ましい。
また、磁性薄帯コイルから磁性薄帯を巻出すに従いコイル径が減少し、その結果Lが大きくなるので、長尺の積層薄帯を製造する場合には磁性薄帯巻出し機の位置を制御し、Lを一定に保つための制御機構を具備することが好ましい。
【0020】
なお、本発明において樹脂フィルムを貼付するとは、樹脂フィルムを接着、または熱圧着する事を意味する。
樹脂フィルムとしてはポリエチレンテレフタレート(PET)等のシートが適している。厚さは5〜500μmが望ましく、接着剤あるいはホットメルト剤により磁性薄帯に貼り付けられる。
具体的には、図1に示すように磁性薄帯の両方の面か、または片方の面のみに貼り付ける。また、片面に樹脂フィルム、もう一方の面に両面粘着テープおよび剥離紙を貼付することも出来る。
【0021】
【実施例】
Fe76Cu1Nb2.5Si13.5B7(at%)なる組成で表1に示す幅、及び厚さのアモルファス薄帯を20m巻回してアモルファス薄帯コイルとした。これを熱処理温度550℃で1h保持後冷却し、磁性薄帯コイルとした。熱処理後の磁性薄帯の組織を透過電子顕微鏡にて観察し、平均結晶粒径50nm以下であることを確認した。
上記磁性薄帯と樹脂フィルムとを図3に記載の装置を用い、下記の条件で積層薄帯を製造し、破断頻度を下記方法で評価した。またその際の非拘束磁性薄帯の捩れ、蛇行の程度を目視により確認した。
【0022】
製造条件
樹脂フィルム:ホットメルト剤付きポリエチレンテレフタレートフィルム
接着ロール直径:0.2m
接着ロール周速:80mm/sec
接着ロール表面温度:150℃
非拘束磁性薄帯の長さL:表2に記載
評価方法
破断頻度:各条件で3コイル分の磁性薄帯のすべてを積層薄帯とする間に生じた破断の回数
【0023】
結果を表2に示す。薄帯の幅、厚さに殆ど依存せずLが10mm以下では破断を生じないのに対し、それ以上ではLが大きくなるに従い破断を生じ、特に20mmより大きい場合に破断の頻度が高い。
また製造中の非拘束磁性薄帯の捩れ、蛇行の程度はLが10mm以下では捩れ、蛇行を生じず安定していたのに対し、それ以上では非拘束磁性薄帯の捩れが確認され、特にLが30mmでは蛇行も確認された。
【0024】
【表1】

Figure 0004775679
【0025】
【表2】
Figure 0004775679
【0026】
【発明の効果】
本発明の製造方法、及びそれを適用した製造装置により、熱処理により脆化した磁性薄帯が破断することなく安定して樹脂と複合することが可能で、製造コストの削減に大きな効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例を示す製造装置の概略構成図である。
【図2】磁性薄帯コイルと接着ロールとの近接部の拡大図である。
【図3】複数の磁性薄帯コイルを配した本発明の一実施例の斜視図である。
【図4】従来の積層薄帯の製造装置の概略構成図である。
【図5】従来の装置での応力集中発生部を示す斜視図である。
【図6】従来の積層薄帯の製造装置の概略構成図である。
【符号の説明】
1 樹脂フィルム巻出し機、2 接着ロール、3 磁性薄帯巻出し機、4 非拘束磁性薄帯、5 巻取り機、6 樹脂フィルム、7 磁性薄帯コイル、8 ガイドロール、9 圧着ロール、10 応力集中発生部、11 積層薄帯、12 磁性薄帯の接着ロール外周での接触開始位置、13 樹脂フィルムの接着ロール外周での接触開始位置、14 磁性薄帯の磁性薄帯コイル外周上の巻出し位置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a laminated ribbon with improved handling properties of a magnetic ribbon obtained by heat-treating an amorphous material.
[0002]
[Prior art]
Amorphous materials and nanocrystalline materials are known as magnetic ribbons having excellent magnetic properties. A typical amorphous material can be obtained as a ribbon having a thickness of 50 μm or less by rapidly cooling the molten metal on the roll surface. Although it is often used as it is, it may be subjected to heat treatment to improve magnetic properties.
In addition, the nanocrystalline material is prepared by rapidly cooling a molten metal having an alloy composition that can be adjusted to a nanocrystalline structure, such as Fe-Cu-Nb- (Si, B), in the same manner as the above amorphous alloy. Then, it can be obtained by adjusting the crystal structure by heat treatment. The nanocrystalline material is a material in which at least 50% of the structure is composed of fine crystal grains having an average crystal grain size of 100 nm or less, as shown in, for example, Japanese Patent Publication No. 4-4393.
[0003]
A magnetic ribbon of an amorphous material or a nanocrystalline material subjected to the above-described heat treatment has a tendency to become brittle due to a decrease in toughness as compared with an amorphous material that has been rapidly cooled. In particular, when crystallized by heat treatment and adjusted to a nanocrystalline structure, the tendency to embrittle is remarkable, and there is a problem that the ribbon is easily broken during handling.
Applications of the amorphous material or nanocrystalline material include, for example, a sensor material described in Japanese Patent Publication No. 5-19196 and a shielding material described in Japanese Patent Application Laid-Open No. 1-241200. In such applications, the use of brittle ribbons causes problems such as cracking and chipping during handling during processing and use, so usually a resin is applied to one or both sides of the magnetic ribbon. In many cases, the composite ribbon is used as a laminated ribbon.
[0004]
When a magnetic ribbon and a resin are combined to form the above-described laminated ribbon, the resin generally has a heat resistance of only about 300 ° C., for example, 400 ° C. as in the above-described heat treatment of the nanocrystalline material. In the case of applying a temperature exceeding, the resin cannot be applied in advance or coated before the heat treatment, and therefore, a composite thin film is formed after the heat treatment.
Conventionally, a composite of a magnetic ribbon and a resin after heat treatment is manufactured by bonding the magnetic ribbon and the resin using two adhesive rolls as shown in FIGS. 4 and 5, for example. Japanese Patent Application Laid-Open No. 12-51933 describes a manufacturing method in which a roller or the like is pressed directly on a magnetic ribbon coil to attach a resin as shown in FIG.
[0005]
[Problems to be solved by the invention]
In the conventional method shown in FIGS. 4 and 5, since the unconstrained magnetic ribbon 4 that is unwound from the magnetic ribbon coil 7 and comes into contact with the adhesive roll 2 is long, it is inhomogeneous like an amorphous material or a nanocrystalline material. When handling a brittle material, breakage may occur when the magnetic ribbon is set in the apparatus.
In addition, even after the start of production, the twist as shown in FIG. 5 due to vibration, meandering in a severe case, and in addition, because the weight of the unconstrained magnetic ribbon portion is large, That is, a large stress is likely to be generated locally at the stress middle portion 10 at the contact start portion with the magnetic ribbon coil 10 or the adhesive roll 2. In an inhomogeneous brittle material such as an amorphous ribbon, the magnetic ribbon easily breaks particularly when the embrittled portion becomes the stress concentration portion 10.
[0006]
Torsion and meandering due to the above vibration can be alleviated by unwinding the magnetic ribbon with tension applied to the unconstrained magnetic ribbon, but in this case, constant stress is always applied to the end. In addition, when twisting occurs, the stress is locally concentrated at the end of the unconstrained magnetic ribbon.
As described above, the magnetic ribbon after the heat treatment is very brittle, and thus breaks easily due to the locally concentrated stress.
[0007]
On the other hand, the apparatus described in Japanese Patent Application Laid-Open No. 12-51933 shown in FIG. 6 has no portion corresponding to the unconstrained magnetic ribbon, so that stress concentration due to twisting and meandering as described above is difficult to occur, and breakage caused thereby is not caused. Not likely to occur.
However, since the resin film 6 is affixed by pressing the pressure roll 9 or the like on the magnetic ribbon coil, stress is constantly generated on the magnetic ribbon coil 7. For this reason, if there is a portion where the winding of the magnetic ribbon is not uniform, stress concentration occurs at that portion and local fracture occurs, which is not necessarily a stable method. Also, if the running direction of the resin film and the rotation axis of the magnetic ribbon coil are not exactly perpendicular, the slight angle deviation increases as the lamination continues, and the magnetic ribbon eventually breaks on the coil. Cause problems.
In view of the above-described problems, an object of the present invention is to provide a method and an apparatus for manufacturing a magnetic ribbon that can be stably combined with a resin without breaking the magnetic ribbon embrittled by heat treatment. .
[0008]
[Means for Solving the Problems]
The present inventor does not generate stress concentration due to bending such as twisting and meandering even if the magnetic ribbon is embrittled, and no breakage occurs if the magnetic ribbon is in a uniform weak stress state. The present invention was conceived by focusing on the above. That is, in the present invention, at least 50% or more of the structure obtained by heat-treating the Fe—Cu—Nb— (Si, B) amorphous ribbon is continuous with the magnetic ribbon having a nanocrystalline structure with an average crystal grain size of 100 nm or less. In particular, a laminated ribbon manufacturing apparatus for thermocompression bonding a resin film with a hot melt agent,
A magnetic ribbon unwinding machine that unwinds the magnetic ribbon from the magnetic ribbon coil;
A resin film unwinder for unwinding a resin film with a hot melt agent;
An adhesive roll on which the magnetic ribbon and the resin film with a hot melt agent overlap on the outer periphery;
A thermocompression bonding roll for thermocompression bonding the resin film with the hot melt agent to the magnetic ribbon;
A winder that winds the magnetic ribbon on which the resin film with the hot melt agent is thermocompression bonded;
Comprising
The adhesive roll comprises a heating means for heating the adhesive roll,
A bearing is provided in the bearing portion of the magnetic ribbon unwinding machine, and the unwinding tension of the magnetic ribbon is only the bearing resistance and the tension of the winder,
these,
The magnetic ribbon and the resin film with a hot melt agent have different contact start positions on the outer periphery of the adhesive roll, and the unwinding position on the outer periphery of the magnetic ribbon coil of the magnetic ribbon and the adhesive roll of the magnetic ribbon It is the manufacturing apparatus of the laminated ribbon characterized by arranging so that the distance L with respect to the contact start position may become 0 <L <= 20mm .
[0009]
The production method of the present invention can be preferably carried out by the following production apparatus of the present invention.
That is, a laminated ribbon manufacturing apparatus that continuously applies a resin film to a magnetic ribbon obtained by heat-treating an amorphous ribbon,
A magnetic ribbon unwinding machine that unwinds the magnetic ribbon from the magnetic ribbon coil;
A resin film unwinding machine for unwinding the resin film;
An adhesive roll on which the magnetic ribbon and the resin film overlap on the outer periphery;
these,
The contact start position on the outer periphery of each adhesive roll of the magnetic ribbon and the resin film is different,
And a laminated ribbon disposed such that a distance L between an unwinding position of the magnetic ribbon on the outer periphery of the magnetic ribbon coil and a contact start position of the magnetic ribbon on the outer periphery of the adhesive roll satisfies 0 <L ≦ 20 mm. It is a manufacturing device. The distance L is preferably 0 <L ≦ 10 mm.
[0010]
It is the above-mentioned apparatus, comprising two resin film unwinding machines, and magnetically controlled by an apparatus in which the resin film contact start positions are located at two positions before and after the contact position of the magnetic ribbon on the outer periphery of the adhesive roll in the circumferential direction. Resin films can be attached to both sides of the ribbon.
The adhesive roll is preferably provided with a heating means for heating the adhesive roll, so that the thermoplastic adhesive resin can be efficiently heated. Furthermore, it is preferable to provide a pressure-bonding roll that presses the laminated ribbon in cooperation with the adhesive roll, so that a healthy laminated ribbon with less bubbles can be produced.
In addition, by arranging a plurality of the magnetic ribbon coils in the width direction of the adhesive roll, sheets having a width equal to or greater than the width of the magnetic ribbon can be continuously produced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the important feature in the method for producing the laminated ribbon of the present invention is that the length L of the unconstrained magnetic ribbon until the magnetic ribbon is unwound from the magnetic ribbon coil and contacts the adhesive roll. Is 0 <L ≦ 20 (mm), preferably 0 <L ≦ 10 (mm).
Hereinafter, the present invention will be described based on an embodiment. FIG. 1 shows that a resin film 6 with an adhesive on one side is unwound from a resin film unwinding machine 1, and a magnetic ribbon is unwound from a magnetic ribbon coil 7 installed in a magnetic ribbon unwinding machine 3. It is a schematic block diagram of the manufacturing apparatus of the laminated ribbon which joins on the outer periphery of 2 and makes it the laminated ribbon 11. FIG. 2 is an enlarged schematic view of the magnetic ribbon unwinder 3 and the adhesive roll 2 of FIG.
[0012]
In the present invention, the length L of the unconstrained magnetic ribbon 4 unwound from the magnetic ribbon coil 7 until it contacts the adhesive roll 2 is set to 20 mm or less. This is because it causes a meandering and breakage easily. On the other hand, if the thickness is 20 mm or less, even if the magnetic ribbon is unwound with a weak tension, the magnetic ribbon is stabilized without causing a large twist or meandering. It is particularly stable at 10 mm or less. As a result, stress concentration and breakage at the end of the unconstrained magnetic ribbon can be prevented.
[0013]
In addition, L> 0 mm, that is, making the magnetic ribbon coil and the outer peripheral surface of the adhesive roll non-contact is that the compressive stress generated by pressing the contact roll 2 against the magnetic ribbon coil 7 is broken when contacted. It is a cause.
Furthermore, by making non-contact, the magnetic ribbon unwound from the magnetic ribbon coil has a degree of freedom in the movement in the direction perpendicular to the running direction of the resin film. Even when they are not exactly perpendicular to each other, it is possible to correct spontaneous displacement, and even if the lamination is continued after the occurrence of displacement, breakage hardly occurs.
In the present invention, the degree of torsion and meandering due to vibration of the unconstrained magnetic ribbon is also affected by the width and thickness of the magnetic ribbon. Is preferably applied to a magnetic ribbon having a thickness of 20 to 100 mm and a thickness of 15 to 30 μm.
As described above, the magnetic ribbon can be stably combined with the resin without breaking by the method of the present invention.
[0014]
The method of the present invention is particularly effective in producing a laminated ribbon using a nanocrystalline material in which at least 50% of the structure has a nanocrystalline structure with an average crystal grain size of 100 nm or less. Nanocrystalline materials are significantly more brittle than ordinary amorphous materials after heat treatment of amorphous ribbons. As described above, according to the manufacturing method of the present invention, stress concentration is unlikely to occur in the magnetic ribbon. Therefore, even if a nanocrystalline material that is extremely brittle and breaks easily is used, breakage is unlikely to occur during manufacturing.
[0015]
Next, the manufacturing apparatus of the present invention suitable for carrying out the manufacturing method of the present invention will be described with reference to FIGS.
In the apparatus of the present invention, the contact start position 12 on the outer periphery of the magnetic ribbon adhesive roll is different from the contact start position 13 on the outer periphery of the adhesive roll of the resin film, and unwinding of the outer surface of the magnetic ribbon coil of the magnetic ribbon is different. The distance L between the position 14 and the contact start position 12 on the outer periphery of the adhesive roll of the magnetic ribbon, that is, the length L of the unconstrained magnetic ribbon during the production of the laminated ribbon is 0 <L ≦ 20 mm, preferably 0 < A magnetic ribbon unwinding machine 3, a resin film unwinding machine 1, an adhesive roll 2, and a guide roll 8 are arranged so that L ≦ 10 mm.
By arranging each part so that the respective contact start positions 12 and 13 are different, the unwinding position 14 of the magnetic ribbon coil outer peripheral surface of the magnetic ribbon and the outer periphery of the adhesive roll of the magnetic ribbon without interfering with each other It is possible to make the contact start position 12 close. Thereby, as explained in the method of the present invention, the magnetic ribbon can be stably combined with the resin without breaking.
[0016]
Further, when a thermoplastic resin is used for adhesion between the magnetic ribbon and the resin film, the adhesive roll is preferably provided with a heating means for heating the adhesive roll.
In the conventional apparatus shown in FIG. 4, the magnetic ribbon and the resin film are substantially in contact with the adhesive roll with lines, whereas in the apparatus of the present invention shown in FIG. 1, the magnetic ribbon and the resin film are in contact with the adhesive roll, respectively. After that, a state in which the laminated ribbon is formed and contacted with the outer peripheral surface of the adhesive roll is maintained until it is separated. Therefore, it is possible to sufficiently heat the magnetic ribbon and the resin film on the adhesive roll, and as a result, it is possible to efficiently produce a laminated ribbon having good bonding without requiring a separate heating device. The entire apparatus is not increased in size as in the case where a heating device is provided.
[0017]
In addition, the present invention preferably includes a pressure-bonding roll. After laminating the magnetic ribbon and the resin film as shown in FIG. 1, the adhesion is strengthened by moderately reducing the pressure by the pressure roll 9, and further, the air bubbles wrapped around the adhesive interface of the ribbon can be discharged to the outside. I can do it.
In FIG. 1, the pressure-bonding roll 9 is provided at the position of the guide roll of the resin film so as to also serve as the guide roll, but may be provided separately. Further, in the apparatus of the present invention, as described above, after the magnetic ribbon and the resin film are in contact with the adhesive roll, the state where the magnetic ribbon and the resin film are in contact with the outer peripheral surface of the adhesive roll is maintained until the laminated ribbon is formed and separated. If necessary, a plurality of pressure-bonding rolls can be provided, and the adhesion can be further strengthened without increasing the size of the apparatus.
[0018]
Furthermore, as shown in FIG. 3, a wide laminated ribbon can be manufactured by arranging a plurality of magnetic ribbon coils 7 in the width direction. In the apparatus of the present invention, it is possible to appropriately arrange a magnetic ribbon coil at an arbitrary position on the adhesive roll 2, and a laminated ribbon exceeding the width of the magnetic ribbon without enlarging the apparatus other than the roll width. Can be manufactured. In FIG. 3, two magnetic ribbon coils 7 are arranged. However, if there is a space on the outer periphery of the adhesive roll, it is possible to arrange three or more magnetic ribbon coils.
[0019]
In the apparatus of the present invention described above, the resin film unwinder 1 is provided with a brake for applying tension to the resin film to stabilize the running, and the winder 5 is also provided with a take-up tension applying mechanism so as to be on the laminated ribbon. It is preferable because wrinkles can be suppressed. Further, in order to prevent a large tension from being generated in the unconstrained magnetic ribbon 4, a bearing is provided at the bearing portion of the magnetic ribbon coil unwinder 3, and only by the resistance of this bearing and the winding tension of the winder 5. It is preferable to unwind the magnetic ribbon.
Also, as the magnetic ribbon is unwound from the magnetic ribbon coil, the coil diameter decreases, and as a result, L increases, so when manufacturing a long laminated ribbon, the position of the magnetic ribbon unwinder is controlled. It is preferable to provide a control mechanism for keeping L constant.
[0020]
In the present invention, affixing a resin film means bonding or thermocompression bonding of the resin film.
A sheet of polyethylene terephthalate (PET) or the like is suitable as the resin film. The thickness is preferably 5 to 500 μm, and is attached to the magnetic ribbon with an adhesive or a hot melt agent.
Specifically, as shown in FIG. 1, it is affixed on only one side or both sides of the magnetic ribbon. Also, a resin film can be affixed on one side and a double-sided adhesive tape and release paper can be affixed on the other side.
[0021]
【Example】
An amorphous ribbon coil was formed by winding 20 m of an amorphous ribbon having the composition of Fe 76 Cu 1 Nb 2.5 Si 13.5 B 7 (at%) and the width and thickness shown in Table 1. This was held at a heat treatment temperature of 550 ° C. for 1 hour and then cooled to obtain a magnetic ribbon coil. The structure of the magnetic ribbon after the heat treatment was observed with a transmission electron microscope, and it was confirmed that the average crystal grain size was 50 nm or less.
Using the apparatus shown in FIG. 3, a laminated ribbon was produced under the following conditions using the magnetic ribbon and the resin film, and the fracture frequency was evaluated by the following method. In addition, the degree of twisting and meandering of the unconstrained magnetic ribbon was confirmed visually.
[0022]
Manufacturing conditions Resin film: Polyethylene terephthalate film with hot melt agent Adhesive roll diameter: 0.2 m
Adhesive roll peripheral speed: 80 mm / sec
Adhesive roll surface temperature: 150 ° C
Length L of unconstrained magnetic ribbon: Evaluation method described in Table 2 Fracture frequency: Number of breaks that occurred while all of the magnetic ribbons for 3 coils were laminated ribbons under each condition.
The results are shown in Table 2. While it is almost independent of the width and thickness of the ribbon, fracture does not occur when L is 10 mm or less, but breakage occurs as L increases beyond this, and the frequency of fracture is high particularly when it is greater than 20 mm.
In addition, the torsion and meandering of the unconstrained magnetic ribbon during production was stable without twisting and meandering when L was 10 mm or less, while twisting of the unconstrained magnetic ribbon was confirmed above that. When L was 30 mm, meandering was also confirmed.
[0024]
[Table 1]
Figure 0004775679
[0025]
[Table 2]
Figure 0004775679
[0026]
【The invention's effect】
With the manufacturing method of the present invention and a manufacturing apparatus to which the manufacturing method is applied, the magnetic ribbon embrittled by the heat treatment can be stably combined with the resin without breaking, which has a great effect on the reduction of the manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a manufacturing apparatus showing an embodiment of the present invention.
FIG. 2 is an enlarged view of a proximity portion between a magnetic ribbon coil and an adhesive roll.
FIG. 3 is a perspective view of an embodiment of the present invention in which a plurality of magnetic ribbon coils are arranged.
FIG. 4 is a schematic configuration diagram of a conventional laminated ribbon manufacturing apparatus.
FIG. 5 is a perspective view showing a stress concentration generation unit in a conventional apparatus.
FIG. 6 is a schematic configuration diagram of a conventional laminated ribbon manufacturing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resin film unwinding machine, 2 Adhesive roll, 3 Magnetic ribbon unwinding machine, 4 Unconstrained magnetic ribbon, 5 Winder, 6 Resin film, 7 Magnetic ribbon coil, 8 Guide roll, 9 Crimp roll, 10 Stress concentration generating part, 11 laminated ribbon, 12 contact start position on the outer periphery of the adhesive roll of the magnetic ribbon, 13 contact start position on the outer periphery of the adhesive roll of the resin film, 14 winding on the outer periphery of the magnetic ribbon coil of the magnetic ribbon Out position

Claims (4)

Fe−Cu−Nb−(Si,B)系アモルファス薄帯を熱処理して得られる組織の少なくとも50%以上が平均結晶粒径100nm以下のナノ結晶組織である磁性薄帯に連続的にホットメルト剤付き樹脂フィルムを熱圧着する積層薄帯の製造装置であって、
磁性薄帯コイルから磁性薄帯を巻出す磁性薄帯巻出し機と、
ホットメルト剤付き樹脂フィルムを巻出す樹脂フィルム巻出し機と、
外周上で前記磁性薄帯とホットメルト剤付き樹脂フィルムとが重なり合う接着ロールと
前記磁性薄帯に前記ホットメルト剤付き樹脂フィルムを熱圧着する熱圧着ロールと、
前記ホットメルト剤付き樹脂フィルムが熱圧着された磁性薄帯を巻取る巻取り機と、
を具備し、
前記接着ロールは該接着ロールを加熱するための加熱手段を具備し、
前記磁性薄帯巻出し機の軸受け部にベアリングが設けられ、前記磁性薄帯の巻き出し張力が、前記ベアリング抵抗と巻取り機の張力のみであり
これらを、
前記磁性薄帯とホットメルト剤付き樹脂フィルムのそれぞれの接着ロール外周での接触開始位置が異なり、かつ前記磁性薄帯の磁性薄帯コイル外周上の巻出し位置と、前記磁性薄帯の接着ロールの接触開始位置との距離Lが0<L≦20mmとなるよう配することを特徴とする積層薄帯の製造装置。
A hot-melt agent is continuously applied to a magnetic ribbon in which at least 50% or more of the structure obtained by heat-treating an Fe—Cu—Nb— (Si, B) -based amorphous ribbon is a nanocrystalline structure having an average crystal grain size of 100 nm or less. a resin film an apparatus for producing a laminated ribbon for thermal compression per,
A magnetic ribbon unwinding machine that unwinds the magnetic ribbon from the magnetic ribbon coil;
A resin film unwinder for unwinding a resin film with a hot melt agent ;
And bonding roll the on outer peripheral magnetic ribbon and a resin film with hot-melt agent overlap,
A thermocompression bonding roll for thermocompression bonding the resin film with the hot melt agent to the magnetic ribbon;
A winder that winds the magnetic ribbon on which the resin film with the hot melt agent is thermocompression bonded;
Comprising
The adhesive roll comprises a heating means for heating the adhesive roll,
A bearing is provided in the bearing portion of the magnetic ribbon unwinding machine, and the unwinding tension of the magnetic ribbon is only the bearing resistance and the tension of the winder ,
these,
The magnetic ribbon and the resin film with a hot melt agent have different contact start positions on the outer periphery of the adhesive roll, and the unwinding position on the outer periphery of the magnetic ribbon coil of the magnetic ribbon and the adhesive roll of the magnetic ribbon An apparatus for producing a laminated ribbon, characterized in that the distance L to the contact start position is such that 0 <L ≦ 20 mm.
前記距離Lが0<L≦10mmであることを特徴とする請求項1に記載の積層薄帯の製造装置。2. The laminated ribbon manufacturing apparatus according to claim 1, wherein the distance L is 0 <L ≦ 10 mm. 二つの前記ホットメルト剤付き樹脂フィルム巻出し機を具備し、前記接着ロール外周での磁性薄帯の接触開始位置の円周方向の前後二箇所に前記ホットメルト剤付き樹脂フィルムの接触開始位置が位置することを特徴とする請求項1または2に記載の積層薄帯の製造装置。Two resin film unwinding machines with the hot melt agent, the contact start position of the resin film with the hot melt agent at two positions in the circumferential direction of the contact start position of the magnetic ribbon on the outer periphery of the adhesive roll The apparatus for producing a laminated ribbon according to claim 1 or 2 , wherein the apparatus is located. 前記磁性薄帯コイルを前記接着ロールの幅方向に複数具備することを特徴とする請求項1ないし3のいずれかに記載の磁性薄帯の製造装置。The apparatus for producing a magnetic ribbon according to any one of claims 1 to 3 , comprising a plurality of the magnetic ribbon coils in a width direction of the adhesive roll.
JP2001145136A 2001-05-15 2001-05-15 Method and apparatus for manufacturing laminated ribbon Expired - Lifetime JP4775679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145136A JP4775679B2 (en) 2001-05-15 2001-05-15 Method and apparatus for manufacturing laminated ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145136A JP4775679B2 (en) 2001-05-15 2001-05-15 Method and apparatus for manufacturing laminated ribbon

Publications (2)

Publication Number Publication Date
JP2002337232A JP2002337232A (en) 2002-11-27
JP4775679B2 true JP4775679B2 (en) 2011-09-21

Family

ID=18990997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145136A Expired - Lifetime JP4775679B2 (en) 2001-05-15 2001-05-15 Method and apparatus for manufacturing laminated ribbon

Country Status (1)

Country Link
JP (1) JP4775679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644399C1 (en) * 2016-11-16 2018-02-12 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Composite radar absorbent material and method of its manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043077A (en) * 2005-06-28 2007-02-15 Hitachi Metals Ltd Magnetic shield material and its manufacturing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231412A (en) * 1990-02-07 1991-10-15 Murata Mfg Co Ltd Manufacture of thin-film laminated core
JP2974265B2 (en) * 1990-06-29 1999-11-10 株式会社東芝 Magnetic wedge for slot of rotating electric machine
JPH1126981A (en) * 1997-07-04 1999-01-29 Hitachi Metals Ltd Shield member
JP3329741B2 (en) * 1998-08-07 2002-09-30 日立金属株式会社 Manufacturing method of magnetic ribbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644399C1 (en) * 2016-11-16 2018-02-12 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Composite radar absorbent material and method of its manufacture
RU2644399C9 (en) * 2016-11-16 2018-05-16 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Composite radar absorbent material and method of its manufacture

Also Published As

Publication number Publication date
JP2002337232A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
CN113748473B (en) Method for producing nanocrystalline alloy ribbon with resin film
JP4261590B2 (en) Adhesive-free aramid-polyester laminate, production method and production apparatus thereof
JP6183736B1 (en) Metal strip slitting apparatus and slitting method
JP4775679B2 (en) Method and apparatus for manufacturing laminated ribbon
US12322534B2 (en) Magnetic sheet, wound magnetic sheet, and multilayer magnetic sheet
JP3753320B2 (en) Shield material manufacturing method
JP2009262531A (en) Laminate manufactuiring method
WO2023190770A1 (en) Method for producing magnetic sheet
US20230360837A1 (en) Magnetic sheet, multilayer magnetic sheet, and method for manufacturing magnetic sheet
JP3329741B2 (en) Manufacturing method of magnetic ribbon
JP2024009722A (en) Magnetic sheet manufacturing method and magnetic sheet manufacturing device
US12224093B2 (en) Multilayer magnetic sheet
JP7424549B1 (en) Nanocrystalline alloy ribbon and magnetic sheet
US20230326644A1 (en) Multilayer magnetic sheet
US20230321950A1 (en) Multilayer magnetic sheet
JP2025071429A (en) Sheet-shaped magnetic member
JP2007043077A (en) Magnetic shield material and its manufacturing device
JP2025071428A (en) Sheet-shaped magnetic member and method of manufacturing same
JP4636371B2 (en) Magnetic shield device manufacturing method and magnetic shield sheet
WO2023190963A1 (en) Method for manufacturing nanocrystal alloy ribbon, and method for manufacturing magnetic sheet
JP2023152668A (en) Multi-layer magnetic sheet
JP2023145331A (en) Multi-layer magnetic sheet
CN118974288A (en) Method for manufacturing nanocrystalline alloy thin strip and method for manufacturing magnetic sheet
JPH03133553A (en) Transfer device for quenched thin metallic strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4775679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

EXPY Cancellation because of completion of term