[go: up one dir, main page]

JP4774569B2 - Exhaust gas treatment method and apparatus - Google Patents

Exhaust gas treatment method and apparatus Download PDF

Info

Publication number
JP4774569B2
JP4774569B2 JP2000077373A JP2000077373A JP4774569B2 JP 4774569 B2 JP4774569 B2 JP 4774569B2 JP 2000077373 A JP2000077373 A JP 2000077373A JP 2000077373 A JP2000077373 A JP 2000077373A JP 4774569 B2 JP4774569 B2 JP 4774569B2
Authority
JP
Japan
Prior art keywords
dust
zeolite
gas
catalyst
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000077373A
Other languages
Japanese (ja)
Other versions
JP2001259363A (en
Inventor
祐治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2000077373A priority Critical patent/JP4774569B2/en
Publication of JP2001259363A publication Critical patent/JP2001259363A/en
Application granted granted Critical
Publication of JP4774569B2 publication Critical patent/JP4774569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、煤塵、窒素酸化物(NOx)等を含んだ排ガスの処理方法及びその装置に関するものである。
【0002】
【従来の技術】
ディーゼルエンジン等のエンジンから排出される排気ガスには、大気汚染の原因となる煤煙等含まれるばかりでなく、有害物質の窒素酸化物(NOx)が含まれている。大気汚染を防止するためにも、この煤煙を除去することは急務な課題である。
【0003】
現在、煤煙を処理する方法として、煤煙の主成分である煤塵を処理する幾つかの集塵方法がある。集塵方法には、下記の重力集塵、遠心力集塵、洗浄集塵、濾過集塵及び電気集塵等がある(大気関係の基礎知識(環境庁大気保全局担当官編著)。
【0004】
重力集塵とは、沈降室内に含塵ガスを導入し、粒子速度を低下させ粒子の慣性力を失わせて、粒子自身の重力で自然沈降させる方法である。粒子は沈降室によって粒子速度を小さくすればするほど小粒子まで分離することが可能になる。しかし、粒子速度を小さくするためには沈降室を大きくする必要があり、敷地面積は大きくなり設備の大型化を強いられる。
【0005】
遠心集塵とは、重力の代わりに強力な遠心力の場をつくり、ガス中のダスト粒子を気流から分離補集する方法である。重力の数十倍、ないし数百倍の沈降速度を粒子に与えることができるため、優れた集塵性能を備えている。重力式に比べ高性能であり、また、他の集塵手段比べても比較的低コストであるが、摩耗性のダストに対しては良質の材料を用いる必要がある。
【0006】
洗浄集塵とは、含塵液滴または液膜と衝突または接触させ、粒子を洗浄水中に補足する方法で、一般にスクラバーと呼ばれる。かかる手段は、多量の使用するため、汚水処理設備が必要である。サイクロンスクラバー、洗浄塔及び噴霧塔は親水性ダストや各種ミストに対してはかなり高性能を示すが、乾燥したダストに対しては、能力は低くなる。
【0007】
濾過集塵とは、含塵ガスを濾材に通すことにより煤塵を濾過集塵する方法である。濾布には、各種の化学繊維や天然繊維が用いられ、高温の場合はガラス繊維等の対熱濾布を用いる。1ミクロン以下のダストに対しても高性能を発揮するなど集塵率が高く、広く利用されている。しかし、水分の多い場合、粘着性の粒子には不向きである。
【0008】
電気集塵とは、コロナ放電を利用して含塵ガス中に電荷を与え帯電粒子に電気的に補集する方法である。高性能であるが、設備費が高い。
【0009】
以上の集塵方法のうち、我が国においては、設置数が最も多いのが遠心集塵、総処理能力が最も大きいのは電気集塵である。
【0010】
【発明が解決しようとする課題】
しかし、先に列挙した集塵方法は、物理的に煤煙に含まれる煤塵(すす)を集塵するため、集塵した煤塵は回収除去して別途処理必要があり、窒素酸化物も同様に別途除去しなければならない。そのため、装置は集塵部と集塵・窒素酸化物除去部の設備が強いられ大型化し、結局、設備費、管理費が高価なものとなる。
【0011】
本発明は、かかる事情に鑑み創作されたもので、煤煙除去と脱硝とを同時かつ効率的に行うことが可能であり、また将来的にも小型化が可能で、生産面、維持管理面からも経済的な排ガス処理方法及びその装置を新たに提供することを課題とする。
【0012】
【課題を解決するための手段】
前記の課題を解決するための第1発明は、被処理ガスを、Niを担持させたY型ゼオライト(SiO2/Al23=5.6)と接触させて前記ガス中から煤塵と窒素酸化物とを前記ゼオライトに吸着除去し、さらにこの吸着させた煤塵を前記ガスの温度の下で燃焼除去させることを特徴とする排ガス処理方法である。前記ゼオライトへの金属の担持は、イオン交換法により行なう。
【0013】
かかる手段により、単一反応系の下で、排ガス中に含まれる煤塵と窒素酸化物とを同時除去することが可能になる。しかも、吸着させた煤塵の燃焼は、前記被処理ガスの温度の下で行なうことができることから、エネルギー効率の観点から有効な手段となる。
【0014】
また、Y型ゼオライトの他に脱硝作用のあるゼオライトとして、β型(SiO2/Al23=22)及びZSM−5型(SiO2/Al23=40)などがある。これらのゼオライトに金属(例えば、Pt、Co、Pd、Mn、Ga等)を担持させて、これに被処理ガスを接触させ、それぞれの適性温度の下で燃焼させても、煤塵と窒素酸化物とを同時処理することが可能である。
【0015】
前記Niの他にCo及びMnを担持させてもよい。
【0016】
第2発明は、被処理ガスが供給される反応カラムと、この反応カラムに導入された被処理ガスと接触して前記ガス中から煤塵と窒素酸化物とを吸着除去しさらにこの吸着させた煤塵を前記ガスの温度の下で燃焼除去するNi担持ゼオライト触媒とからなることを特徴とする排ガス処理装置である。
【0018】
前記ゼオライト触媒は、煤煙との接触表面をできるだけ広くした構造、例えば、ゼオライト粉をハニカム状、ペレット状等に成形させること、または金属製若しくはセラミック製のフィルター、ビーズ状、ボール状またはハニカム状を成したボール状担体の全面にゼオライトを担持させることにより構成される。ゼオライト触媒の充填量は、単位触媒表面当りの被処理ガス(窒素酸化物含有煤煙)負荷量によって定められる。
【0019】
また、前記ゼオライト触媒はハニカム状に形成された場合、二つ以上に等分割させると煤塵除去効率及び維持管理の面から有効となる(図6(a))。特に、分割されたハニカム部材の被処理ガス通気路の長さが短い程有効である(図5)。
【0020】
これは、ハニカム部材における煤塵吸着効率が被処理ガス入口近傍において最も高いからである。また、分割された一つのハニカム部材の煤塵除去・脱硝効率が著しく低下した場合、容易に新しい部材と交換が可能であること、さらに、煤塵・窒素酸化物負荷量に合せて適量に触媒の量を調整することが可能であることによる。
【0021】
【発明の実施の形態】
発明者らは、本発明の創作に先立ち、脱硝用触媒に用いているゼオライトにおいて、煤煙の主成分である煤塵の燃焼除去用触媒としての有効性を確認し、さらにこの脱硝触媒用いた除塵、脱硝機能を備えた排ガス処理方法の検討を行なった。
【0022】
ゼオライトは、結晶性アルミノケイ酸の一種であり、粘土鉱物であるが、合成可能なものも多々ある。また、天然には存在しない結晶構造をもつものも合成されている。A型、B型、β型、ZSM−5型及び後述のY型などがよく知られている。その特性としては、細孔を有し、分子ふるい作用、陽イオン交換機能をもち、吸着剤、触媒として利用されている。
【0023】
前記ゼオライトの煤塵燃焼触媒試験の概要は、以下の通りである。
【0024】
各種金属を坦持させたゼオライト触媒をハニカム状に形成させたものに対し、28kW級ディーゼル発電機の排気ガスを通気させて、発電機の初期始動時の煤塵(すす)を吸着させ、排気ガス温度の下で、この吸着した煤塵の燃焼除去効果を観測した。
【0025】
本試験の詳細を以下に述べる。
1.ハニカム状ゼオライト触媒の構造
図1は本試験に係る測定システム概要図であり、図2は本試験に係るハニカム状ゼオライト触媒の外観図(a)と前記ゼオライト触媒単体の外観図(b)である。ハニカム状ゼオライト触媒は、二つ以上のハニカム状ゼオライト触媒単体から成り、図1に示されたように、反応カラム11に充填される。反応カラム11は発電機(28kW)の排気経路に備え付けられ、さらにこの11の一及び二次側には差圧計とNOx計が設置される。
【0026】
ゼオライト触媒単体は、図2(b)に示したように、65mm×65mm×130mmの直方体を成し、このB−B断面における単位通気口一辺の長さは1.9mmであり、その壁厚は0.5mmとなっている(1インチ平方当り100セル、以下100cpiと略す)。また、ハニカム状ゼオライト触媒単体の重さは、約250gである。図2(a)に示されたように、ゼオライト触媒は4段から成り、その1段は前記ゼオライト触媒単体4個で構成される。
【0027】
本試験においては、Na-Y型のゼオライトをハニカム状ゼオライト触媒の主原料とし、これに金属イオンを担持させたものを用いた。尚、前記ゼオライトへの金属の担持は、イオン交換法により行なった。
【0028】
このゼオライトの組成及び種々の金属イオンを担持させたゼオライトを表1及び2に示す。
【0029】
【表1】

Figure 0004774569
【0030】
【表2】
Figure 0004774569
【0031】
2.試験要領
1)切替弁15を触媒層側にして発電機(28kW)12を始動し、そのまま無負荷で10分間運転して煤塵をハニカム状ゼオライト触媒10に吸着させる。
【0032】
2)発電負荷を80%に上げ、そのまま定常で2時間発電機12を動作させ、煤塵を排気ガス温度で燃焼させる。
【0033】
3)2時間後、負荷を0に戻し、切替弁15をバイパス側して発電機12を停止させる。
【0034】
上記の手順において、発電中の反応カラム11入口と出口で排ガス温度、動圧、静圧、NOx濃度を測定する。試験終了後、使用したゼオライト触媒10を縦割りにし、煤塵と燃焼状態について観察する。
3.測定機器
L型ピトー管
NOx-O2分析計(島津DTG−50)
4.試験結果
1)ゼオライト1(Mn-Y)
図3は、始動20分後のゼオライト触媒(Mn-Y)単体への煤塵吸着状況を示している。図3に示されたように、ハニカム部材(一段目、二段目、三段目)において、よく煤塵が吸着されている部分は、被処理ガス入口側から約1/3〜1/2の長さの部分であった。
【0035】
図4は、試験後のゼオライト触媒表面(図1中のC−C断面)に吸着された煤塵の焼失状況を示している。これは、負荷80%、排気ガス温度400℃で2時間運転後のハニカム触媒表面上(C−C断面)の煤塵焼失状況である。図4において、Mn-Yは左から2番目である。尚、運転中の排ガス流量は約110m3/hであり、このときのハニカム状ゼオライト触媒(100cpi、130mm×130mm×390mm)の圧力損失は190mmH2O(1.862kPa)であった。また、反応カラム入口のNOx濃度は987ppm、出口の944ppmであり脱硝率4.3%の脱硝が観測された。
【0036】
2)ゼオライト2(Cu-Y)、ゼオライト3(Co-Y)及びゼオライト4(Ni-Y)
ゼオライト2〜4についても、前記Mn-Yと同様の要領で測定した。ゼオライト2〜4において、始動20分後における煤塵の吸着状況及び運転中の圧力損失、硝化脱硝率はゼオライト1と比べ差異はなかった。
【0037】
しかし、図4に示されたように、2時間運転後におけるハニカム触媒表面(C−C断面)上の煤塵の燃失状況は、ゼオライト2〜4における差異が顕著に表れた。特に、ゼオライト2(Cu-Y)における燃焼活性が高く、その他にゼオライト4(Ni-Y)が比較的良好であった。
【0038】
以上のゼオライト1〜4による煤塵燃焼試験結果から、Mn、Cu、Co及びNiどの金属をイオン担持させた触媒には、吸着した煤塵を排気ガス温度(400℃)のもとで燃焼させる効果があることが確認できた。煤塵の燃失効率を考慮すると、Cu-Yが最も有効で、その次にNi-Yが有効である。Mn-YとCo-Yにおいても、始動20分後と比べると吸着された煤塵は燃失傾向にあることから(図4)、滞留時間(燃焼時間)の調整や外部からの燃焼熱の供給により前記煤塵の除去は可能となる。
【0039】
また、図4において明らかのように、ゼオライト触媒の各段でよく煤塵が吸着されている部分は、被処理ガス供給側近傍(被処理ガス供給側から約1/3〜1/2の長さの部分)であったことから、被処理ガスの通気路の長さを短くすること、例えば図5のように、ハニカム状ゼオライト触媒の長さを短く(45〜60mm)して段数を増やすことによりさらに効率良くに煤塵を除去することができるものと考えられる。
【0040】
以上のことから、脱硝機能を有するゼオライト(Y型)を煤塵の燃焼触媒とし、これに金属を担持させたものを被処理ガスと接触すれば、被処理ガス温度の下で煤塵除去と脱硝とを同時に行うことができる。特に、Cu及びNiを担持させたゼオライトは有効である。
【0041】
次に、本発明に係る排ガス処理方法の実施形態を図面に基づいて説明する。
【0042】
当該排ガス処理方法は、前記Y型ゼオライトを用い、これと被処理ガスとを、被処理ガス温度のもとで接触させて燃焼させることにより前記排ガス中に含まれる煤塵と窒素酸化物とを同時に行なう。
【0043】
本発明に係る排ガス処理装置は、図6(b)に示されたように、被処理ガスが供給される反応カラム11にゼオライト触媒10が充填されることで構成され、発電機の排気経路に設置される。反応カラム11へのゼオライト触媒10の充填量は、単位触媒表面当りの被処理ガス(窒素酸化物含有煤煙)負荷量によって定められる。
【0044】
ゼオライト触媒10は、少なくとも二つ以上のゼオライト触媒単体10aからなる。そして、ゼオライト触媒単体10aは、前記試験と同様に、煤煙との接触表面をできるだけ広くした構造、すなわちゼオライト粉をハニカム状に成形させることにより構成される。
【0045】
前記試験結果によると、ゼオライト触媒単体10aの通気路の長さが短いほど煤塵の吸着効率が良いことから、前記単体10aは立方体に近い構造を成していることが望ましい(例えば、図5のように通気面一辺の長さ65mmである場合、単体の長さLは45〜65mm)。
【0046】
かかる構造は、いずれかの単体10aの煤塵除去・脱硝効率が著しく低下した場合に新しい単体10aと容易に交換が可能であること、また煤塵・窒素酸化物負荷量に合せて任意適量に触媒の量を調整することが可能であることから、維持管理の面からも有効となる。
【0047】
尚、ゼオライト触媒単体10aは、前記ハニカム構造の他に、ペレット状に成形させること、または、金属製若しくはセラミック製のフィルター、ビーズ状、ボール状若しくはハニカム構造のボール状担体にゼオライトを担持させることにより構成してもよい。
【0048】
触媒10に係るゼオライトは、脱硝機能を有したY型ゼオライトに金属(Mn、Cu、Co若しくはNi)を担持させたものが用いられる。前記ゼオライト触媒は、供給される被処理ガス自体の温度で煤塵を焼失させることができるので外部から熱を加える必要がない。
【0049】
かかる構成により、被処理ガスと金属担持させたゼオライトとの接触効率が高まり、被処理ガス温度の下で、同ガス中に含まれる煤塵を効率的に燃焼除去させることができる。さらに、本発明に係るゼオライトは、脱硝機能を有していることから、単一反応系の下で、脱硝と煤塵除去とを同時に行うことができる。これにより、反応系における被処理ガス(煤煙)の処理時間は短縮化され、装置の単純小型化が可能となる。このことから、本発明に係る排ガス処理装置は、既存の煤煙処理装置の付帯設備として容易に設置可能となり、既存排ガス処理設備の機能維持や機能低下対策の一助ともなる。
【0050】
図1に基づいて本発明に係る煤煙処理装置の作用について説明する。
【0051】
発電機12から排出された被処理ガスは、反応カラム11内に移行し、ゼオライト触媒10と接触する。カラム11内に供給された被処理ガスは、排出口17に向かってゼオライト触媒10の通気口(ボール状またはハニカム構造ボール状のゼオライト触媒10が充填されている場合は、その空隙)を通過する。このとき、ゼオライト触媒10はフィルターの役目し、前記ガス中の煤塵及びNOxを触媒10表面に吸着させる。吸着された煤塵は、供給された被処理ガスの温度の下で焼失される。煤塵除去及び脱硝処理されたガスは、排出口17から系外に排気され、必要とあらばさらに高度処理に供される。
【0052】
【発明の効果】
以上詳細に述べたように、本発明に係る排ガス処理方法及びその装置によれば、被処理ガスを、金属担持させたY型ゼオライトに接触させ、さらにこの被処理ガス温度の下で燃焼させれば、当該ガス中に含まれる煤塵を効率的に除去することができる。
【0053】
また、本発明に係るY型ゼオライトは、脱硝機能を有していることから、単一反応系のもとで、脱硝と煤塵除去とを同時に行うことができる。特に、CuまたはNiを担持させたY型ゼオライトは、煤塵の除去効率をさらに向上させることができる。
【0054】
したがって、反応系における煤煙の処理時間は短縮化され、装置の単純化及び小型化が可能となり、これにより、装置としての取扱も容易となることから、生産面及び維持管理面からも経済的に有効な手段となる。
【0055】
以上のことから、本発明に係る排ガス処理方法及びその装置は、既存の煤煙処理装置の付帯設備として容易に設置することも可能となり、既存排ガス処理設備の機能維持や機能低下対策の一助にもなる。
【図面の簡単な説明】
【図1】本試験に係る測定システム概要図。
【図2】(a)は本試験に係るハニカム状ゼオライト触媒の外観図、(b)は前記ゼオライト触媒単体の外観図。
【図3】始動20分後のゼオライト触媒単体(図1(b)、C−C断面)への煤塵吸着状況。
【図4】ゼオライト触媒表面(図1中のC−C断面)に吸着された煤塵の燃失状況。
【図5】本発明に係るゼオライト触媒単体の外観図。
【図6】(a)は本発明に係るゼオライト触媒の外観図、(b)は本発明に係る排ガス処理装置。
【符号の説明】
10…ゼオライト触媒
10a…ゼオライト触媒単体
11…反応カラム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for treating exhaust gas containing dust, nitrogen oxides (NOx), and the like.
[0002]
[Prior art]
Exhaust gas discharged from an engine such as a diesel engine contains not only smoke that causes air pollution but also nitrogen oxide (NOx) which is a harmful substance. In order to prevent air pollution, it is an urgent task to remove this smoke.
[0003]
Currently, there are several dust collection methods for treating soot, which is the main component of soot, as methods for treating soot. Examples of dust collection methods include gravity dust collection, centrifugal dust collection, cleaning dust collection, filtration dust collection, and electric dust collection (basic knowledge on the atmosphere (edited by the Environmental Protection Bureau, Environment Agency)).
[0004]
Gravitational dust collection is a method in which a dust-containing gas is introduced into a sedimentation chamber, the particle velocity is reduced, the inertial force of the particles is lost, and the particles are naturally settled by the gravity of the particles themselves. The particles can be separated into smaller particles as the particle velocity is reduced by the sedimentation chamber. However, in order to reduce the particle velocity, it is necessary to enlarge the sedimentation chamber, which increases the site area and increases the size of the facility.
[0005]
Centrifugal dust collection is a method of separating and collecting dust particles in a gas from an air current by creating a strong centrifugal force field instead of gravity. It can provide particles with a sedimentation speed several tens to several hundred times that of gravity, so it has excellent dust collection performance. Although it has higher performance than the gravity type and relatively low cost compared to other dust collecting means, it is necessary to use a high-quality material for wearable dust.
[0006]
Cleaning dust collection is a method of colliding with or contacting dust-containing droplets or a liquid film to trap particles in cleaning water, and is generally called a scrubber. Since such means are used in large quantities, a sewage treatment facility is required. Cyclons scrubbers, wash towers and spray towers perform fairly well with hydrophilic dust and various mists, but with poorer performance against dry dust.
[0007]
Filtration dust collection is a method of collecting dust by filtering dust by passing dust-containing gas through a filter medium. Various chemical fibers and natural fibers are used for the filter cloth, and when the temperature is high, a heat filter cloth such as glass fiber is used. It has a high dust collection rate and is widely used because it exhibits high performance even with dust of 1 micron or less. However, when there is a lot of moisture, it is not suitable for sticky particles.
[0008]
Electric dust collection is a method in which corona discharge is used to charge the dust-containing gas and electrically collect the charged particles. High performance but high equipment cost.
[0009]
Of these dust collection methods, centrifugal dust collection is the most installed in Japan, and electric dust collection is the largest in total processing capacity.
[0010]
[Problems to be solved by the invention]
However, the dust collection methods listed above physically collect the soot contained in the soot, so it is necessary to collect and remove the collected soot and treat it separately. Must be removed. For this reason, the apparatus is forced to have a dust collection unit and a dust collection / nitrogen oxide removal unit, which increase in size, resulting in high equipment costs and management costs.
[0011]
The present invention was created in view of such circumstances, so that smoke removal and denitration can be performed simultaneously and efficiently, and can be miniaturized in the future from the viewpoint of production and maintenance. Another object of the present invention is to provide an economical exhaust gas treatment method and apparatus therefor.
[0012]
[Means for Solving the Problems]
In a first invention for solving the above-mentioned problem, a gas to be treated is brought into contact with a Y-type zeolite (SiO 2 / Al 2 O 3 = 5.6) supporting Ni, so that dust and nitrogen are contained in the gas. The exhaust gas treatment method is characterized in that oxides are adsorbed and removed from the zeolite, and the adsorbed dust is burned and removed under the temperature of the gas. The metal is supported on the zeolite by an ion exchange method.
[0013]
By such means, it becomes possible to simultaneously remove soot and nitrogen oxides contained in the exhaust gas under a single reaction system. In addition, combustion of the adsorbed soot and dust can be performed at the temperature of the gas to be treated, which is an effective means from the viewpoint of energy efficiency.
[0014]
In addition to the Y-type zeolite, there are β-type (SiO 2 / Al 2 O 3 = 22) and ZSM-5 type (SiO 2 / Al 2 O 3 = 40) as a zeolite having a denitration action. Even if a metal (for example, Pt, Co, Pd, Mn, Ga, etc.) is supported on these zeolites, the gas to be treated is brought into contact therewith, and burned at their proper temperatures, soot dust and nitrogen oxides Can be processed simultaneously.
[0015]
In addition to Ni , Co and Mn may be supported.
[0016]
According to a second aspect of the present invention , there is provided a reaction column to which a gas to be treated is supplied, a gas to be treated introduced into the reaction column, adsorbing and removing dust and nitrogen oxides from the gas, and further adsorbing the dust And an Ni- supported zeolite catalyst that burns and removes at a temperature of the gas.
[0018]
The zeolite catalyst has a structure in which the contact surface with the soot is made as wide as possible, for example, zeolite powder is formed into a honeycomb shape, a pellet shape, or a metal or ceramic filter, a bead shape, a ball shape, or a honeycomb shape. It is configured by supporting zeolite on the entire surface of the formed ball-shaped carrier. The filling amount of the zeolite catalyst is determined by the load of the gas to be treated (nitrogen oxide-containing soot) per unit catalyst surface.
[0019]
Further, when the zeolite catalyst is formed in a honeycomb shape, it is effective from the viewpoint of dust removal efficiency and maintenance management when equally divided into two or more (FIG. 6A). In particular, the shorter the length of the gas passages to be processed of the divided honeycomb members, the more effective (FIG. 5).
[0020]
This is because the dust adsorption efficiency of the honeycomb member is highest in the vicinity of the gas inlet. In addition, when the dust removal and denitration efficiency of one divided honeycomb member is significantly reduced, it can be easily replaced with a new member, and the amount of catalyst can be adjusted to the appropriate amount according to the dust and nitrogen oxide load. It is possible to adjust.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Prior to the creation of the present invention, the inventors confirmed the effectiveness of the zeolite used as a catalyst for denitration as a combustion removal catalyst for soot, which is the main component of soot, and further removed dust using this denitration catalyst, An exhaust gas treatment method with a denitration function was examined.
[0022]
Zeolite is a kind of crystalline aluminosilicate and is a clay mineral, but there are many that can be synthesized. Those having a crystal structure that does not exist in nature have also been synthesized. A type, B type, β type, ZSM-5 type and Y type described later are well known. As its characteristics, it has pores, has a molecular sieving action and a cation exchange function, and is used as an adsorbent and a catalyst.
[0023]
The outline of the dust combustion catalyst test of the zeolite is as follows.
[0024]
Exhaust gas from a 28kW class diesel generator is adsorbed by adsorbing soot at the initial start-up of the generator by aerating the exhaust gas of a 28kW class diesel generator to a zeolite catalyst that supports various metals. Under the temperature, the adsorbed dust removal effect was observed.
[0025]
Details of this test are described below.
1. FIG. 1 is a schematic diagram of a measurement system according to this test, and FIG. 2 is an external view (a) of the honeycomb zeolite catalyst according to this test and an external view (b) of the zeolite catalyst alone. . The honeycomb-like zeolite catalyst is composed of two or more honeycomb-like zeolite catalysts, and is packed in the reaction column 11 as shown in FIG. The reaction column 11 is provided in the exhaust path of the generator (28 kW), and a differential pressure gauge and a NOx gauge are installed on the primary and secondary sides of the 11.
[0026]
As shown in FIG. 2B, the zeolite catalyst alone has a rectangular parallelepiped shape of 65 mm × 65 mm × 130 mm, the length of one side of the unit vent in the BB cross section is 1.9 mm, and the wall thickness is 0.5 mm (100 cells per inch square, hereinafter abbreviated as 100 cpi). The weight of the honeycomb-shaped zeolite catalyst alone is about 250 g. As shown in FIG. 2 (a), the zeolite catalyst is composed of four stages, and the first stage is composed of four single zeolite catalysts.
[0027]
In this test, Na—Y type zeolite was used as the main raw material for the honeycomb-shaped zeolite catalyst, and a metal ion supported thereon was used. The metal was supported on the zeolite by an ion exchange method.
[0028]
Tables 1 and 2 show the composition of this zeolite and the zeolite on which various metal ions are supported.
[0029]
[Table 1]
Figure 0004774569
[0030]
[Table 2]
Figure 0004774569
[0031]
2. Test Procedure 1) Start the generator (28 kW) 12 with the switching valve 15 on the catalyst layer side, operate as it is for 10 minutes without load, and adsorb dust on the honeycomb-shaped zeolite catalyst 10.
[0032]
2) Increase the power generation load to 80%, operate the generator 12 for 2 hours in a steady state, and burn the dust at the exhaust gas temperature.
[0033]
3) After 2 hours, the load is returned to 0, the switching valve 15 is bypassed, and the generator 12 is stopped.
[0034]
In the above procedure, exhaust gas temperature, dynamic pressure, static pressure, and NOx concentration are measured at the inlet and outlet of the reaction column 11 during power generation. After completion of the test, the used zeolite catalyst 10 is divided vertically and observed for dust and combustion state.
3. Measuring instrument L-type Pitot tube NOx-O2 analyzer (Shimadzu DTG-50)
4). Test result 1) Zeolite 1 (Mn-Y)
FIG. 3 shows the state of dust adsorption on the zeolite catalyst (Mn—Y) alone 20 minutes after starting. As shown in FIG. 3, in the honeycomb member (first stage, second stage, third stage), the portion where the dust is often adsorbed is about 1/3 to 1/2 from the gas inlet side to be processed. It was part of the length.
[0035]
FIG. 4 shows the state of burning of soot dust adsorbed on the surface of the zeolite catalyst after the test (C-C cross section in FIG. 1). This is a dust burning situation on the honeycomb catalyst surface (CC cross section) after operating for 2 hours at a load of 80% and an exhaust gas temperature of 400 ° C. In FIG. 4, Mn—Y is the second from the left. The exhaust gas flow rate during operation was about 110 m 3 / h, and the pressure loss of the honeycomb-shaped zeolite catalyst (100 cpi, 130 mm × 130 mm × 390 mm) at this time was 190 mmH 2 O (1.862 kPa). The NOx concentration at the inlet of the reaction column was 987 ppm and the outlet was 944 ppm, and denitration with a denitration rate of 4.3% was observed.
[0036]
2) Zeolite 2 (Cu—Y), Zeolite 3 (Co—Y) and Zeolite 4 (Ni—Y)
Zeolite 2 to 4 were also measured in the same manner as Mn-Y. In the zeolites 2 to 4, the dust adsorption state, the pressure loss during operation, and the nitrification denitration rate after 20 minutes from the start were not different from those of the zeolite 1.
[0037]
However, as shown in FIG. 4, the difference in zeolite 2 to 4 was noticeable in the state of soot burning on the honeycomb catalyst surface (CC cross section) after 2 hours of operation. In particular, the combustion activity in zeolite 2 (Cu—Y) was high, and in addition, zeolite 4 (Ni—Y) was relatively good.
[0038]
From the above dust combustion test results with zeolites 1 to 4, the catalyst in which any metal such as Mn, Cu, Co and Ni is ion-supported has the effect of burning the adsorbed dust under the exhaust gas temperature (400 ° C.). It was confirmed that there was. In view of the soot loss efficiency, Cu-Y is the most effective, and Ni-Y is the next most effective. Also in Mn-Y and Co-Y, the adsorbed soot tends to burn out compared to 20 minutes after starting (Fig. 4), so adjustment of residence time (combustion time) and supply of combustion heat from outside Thus, the dust can be removed.
[0039]
Further, as clearly shown in FIG. 4, the portion where the dust is often adsorbed at each stage of the zeolite catalyst is in the vicinity of the gas supply side to be processed (the length of about 1/3 to 1/2 from the gas supply side to be processed). For example, as shown in FIG. 5, the length of the honeycomb-shaped zeolite catalyst is shortened (45 to 60 mm) to increase the number of stages. Therefore, it is considered that dust can be removed more efficiently.
[0040]
From the above, if a zeolite (Y type) having a denitration function is used as a soot dust combustion catalyst and a metal-supported catalyst is brought into contact with the gas to be treated, soot removal and denitration can be performed under the temperature of the gas to be treated. Can be performed simultaneously. In particular, zeolite supporting Cu and Ni is effective.
[0041]
Next, an embodiment of an exhaust gas treatment method according to the present invention will be described with reference to the drawings.
[0042]
In the exhaust gas treatment method, the Y-type zeolite is used, and the gas to be treated and the gas to be treated are brought into contact with each other under the temperature of the gas to be treated and burned, so that dust and nitrogen oxides contained in the exhaust gas are simultaneously produced. Do.
[0043]
As shown in FIG. 6 (b), the exhaust gas treatment apparatus according to the present invention is configured by filling a reaction column 11 to which a gas to be treated is supplied with a zeolite catalyst 10, and in an exhaust path of a generator. Installed. The filling amount of the zeolite catalyst 10 in the reaction column 11 is determined by the load amount of the gas to be treated (nitrogen oxide-containing smoke) per unit catalyst surface.
[0044]
The zeolite catalyst 10 includes at least two zeolite catalyst simple substances 10a. And the zeolite catalyst simple substance 10a is comprised by shape | molding the structure which made the contact surface with soot and smoke as wide as possible, ie, a zeolite powder, like the said test.
[0045]
According to the test result, the shorter the air passage length of the zeolite catalyst single body 10a, the better the dust adsorption efficiency. Therefore, the single body 10a preferably has a structure close to a cube (for example, FIG. 5). Thus, when the length of one side of the ventilation surface is 65 mm, the single length L is 45 to 65 mm).
[0046]
Such a structure can be easily replaced with a new simple substance 10a when the dust removal / denitration efficiency of any simple substance 10a is remarkably lowered, and the catalyst can be arbitrarily adjusted in accordance with the dust / nitrogen oxide load. Since the amount can be adjusted, it is also effective from the aspect of maintenance.
[0047]
In addition to the honeycomb structure, the zeolite catalyst 10a may be formed into a pellet shape, or the zeolite may be supported on a metal or ceramic filter, a bead-shaped, ball-shaped or honeycomb-shaped ball-shaped carrier. You may comprise by.
[0048]
As the zeolite related to the catalyst 10, Y type zeolite having a denitration function and a metal (Mn, Cu, Co or Ni) supported thereon are used. The zeolite catalyst can burn off soot at the temperature of the gas to be treated itself, so there is no need to apply heat from the outside.
[0049]
With this configuration, the contact efficiency between the gas to be processed and the metal-supported zeolite is increased, and the soot and dust contained in the gas can be efficiently burned and removed at the temperature of the gas to be processed. Furthermore, since the zeolite according to the present invention has a denitration function, denitration and dust removal can be performed simultaneously under a single reaction system. As a result, the processing time of the gas to be processed (smoke) in the reaction system is shortened, and the apparatus can be simply downsized. For this reason, the exhaust gas treatment apparatus according to the present invention can be easily installed as an incidental facility of the existing smoke treatment apparatus, and helps to maintain the functions of the existing exhaust gas treatment equipment and to prevent functional degradation.
[0050]
The operation of the soot processing apparatus according to the present invention will be described with reference to FIG.
[0051]
The gas to be treated discharged from the generator 12 moves into the reaction column 11 and contacts the zeolite catalyst 10. The gas to be treated supplied into the column 11 passes through the vent of the zeolite catalyst 10 toward the discharge port 17 (in the case where the zeolite catalyst 10 having a ball shape or honeycomb structure ball shape is filled). . At this time, the zeolite catalyst 10 serves as a filter, and adsorbs dust and NOx in the gas on the surface of the catalyst 10. The adsorbed dust is burned off under the temperature of the supplied gas to be processed. The dust-removed and denitrated gas is exhausted from the exhaust port 17 to the outside of the system, and further subjected to advanced treatment if necessary.
[0052]
【The invention's effect】
As described above in detail, according to the exhaust gas treatment method and apparatus according to the present invention, the gas to be treated is brought into contact with the Y-zeolite supported on the metal and further combusted at the temperature of the gas to be treated. Thus, the dust contained in the gas can be efficiently removed.
[0053]
Moreover, since the Y-type zeolite according to the present invention has a denitration function, denitration and dust removal can be simultaneously performed under a single reaction system. In particular, Y-type zeolite carrying Cu or Ni can further improve the dust removal efficiency.
[0054]
Therefore, the processing time of soot in the reaction system is shortened, and the apparatus can be simplified and miniaturized. As a result, handling as an apparatus is facilitated, so that it is economical from the production and maintenance aspects. It becomes an effective means.
[0055]
From the above, the exhaust gas treatment method and apparatus according to the present invention can be easily installed as ancillary equipment of an existing soot treatment apparatus, which helps to maintain the functions of existing exhaust gas treatment equipment and to prevent functional degradation. Become.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a measurement system related to this test.
2A is an external view of a honeycomb-shaped zeolite catalyst according to the present test, and FIG. 2B is an external view of the single zeolite catalyst.
Fig. 3 shows the state of dust adsorption on a zeolite catalyst alone (Fig. 1 (b), CC cross section) 20 minutes after starting.
FIG. 4 shows the state of burning of dust adsorbed on the surface of the zeolite catalyst (C-C cross section in FIG. 1).
FIG. 5 is an external view of a single zeolite catalyst according to the present invention.
6A is an external view of a zeolite catalyst according to the present invention, and FIG. 6B is an exhaust gas treatment apparatus according to the present invention.
[Explanation of symbols]
10… Zeolite catalyst
10a… Zeolite catalyst simple substance
11… Reaction column

Claims (2)

被処理ガスを、Niを担持させたY型ゼオライト(SiO2/Al23=5.6)と接触させて前記ガス中から煤塵と窒素酸化物とを前記ゼオライトに吸着除去し、さらにこの吸着させた煤塵を前記ガスの温度の下で燃焼除去させることを特徴とする排ガス処理方法。A gas to be treated is brought into contact with a Y-type zeolite (SiO 2 / Al 2 O 3 = 5.6) supporting Ni, so that dust and nitrogen oxides are adsorbed and removed from the gas to the zeolite. An exhaust gas treatment method, wherein the adsorbed soot and dust are burned and removed under the temperature of the gas. 被処理ガスが供給される反応カラムと、
この反応カラムに導入された被処理ガスと接触して前記ガス中から煤塵と窒素酸化物とを吸着除去しさらにこの吸着させた煤塵を前記ガスの温度の下で燃焼除去するNi担持ゼオライト触媒と
からなることを特徴とする排ガス処理装置。
A reaction column supplied with a gas to be treated;
A Ni- supported zeolite catalyst that comes into contact with the gas to be treated introduced into the reaction column and adsorbs and removes soot and nitrogen oxides from the gas, and further burns and removes the adsorbed soot under the temperature of the gas; An exhaust gas treatment apparatus comprising:
JP2000077373A 2000-03-21 2000-03-21 Exhaust gas treatment method and apparatus Expired - Fee Related JP4774569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077373A JP4774569B2 (en) 2000-03-21 2000-03-21 Exhaust gas treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077373A JP4774569B2 (en) 2000-03-21 2000-03-21 Exhaust gas treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2001259363A JP2001259363A (en) 2001-09-25
JP4774569B2 true JP4774569B2 (en) 2011-09-14

Family

ID=18594952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077373A Expired - Fee Related JP4774569B2 (en) 2000-03-21 2000-03-21 Exhaust gas treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4774569B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018000378A1 (en) * 2018-01-18 2019-07-18 Audi Ag Recycling of pollutants from combustion engines

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162014A (en) * 1986-12-25 1988-07-05 Matsushita Electric Ind Co Ltd Exhaust gas filter
JPH01159029A (en) * 1987-12-16 1989-06-22 Toyota Motor Corp Exhaust gas purification apparatus of diesel engines
JPH02108806A (en) * 1988-10-17 1990-04-20 Toyota Autom Loom Works Ltd Exhaust gas purifying device for diesel engine
JPH03186318A (en) * 1989-12-18 1991-08-14 Mitsubishi Heavy Ind Ltd Cleaning method of polluted air
JPH0671142A (en) * 1992-08-31 1994-03-15 Meidensha Corp Method for denitrification, denitrification agent and its preparation
DE69307822T2 (en) * 1992-10-20 1997-08-21 Corning Inc Process for converting exhaust gases and device with thermally stable zeolites
JP3137497B2 (en) * 1993-04-28 2001-02-19 三菱重工業株式会社 Adsorbent and adsorption removal method for hydrocarbon
JP2825420B2 (en) * 1993-09-02 1998-11-18 株式会社アイシーティー Diesel engine exhaust gas purification catalyst
JPH0796178A (en) * 1993-09-30 1995-04-11 Babcock Hitachi Kk Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JPH07155548A (en) * 1993-12-10 1995-06-20 Meidensha Corp Denitrification method
JP3513934B2 (en) * 1994-09-26 2004-03-31 マツダ株式会社 Exhaust gas purification catalyst and method for producing the same
JPH08150316A (en) * 1994-11-29 1996-06-11 Meidensha Corp Device for removing smoke dust in gas
JP4301348B2 (en) * 1995-02-24 2009-07-22 株式会社アイシーティー Nitrogen oxide decomposition catalyst and diesel engine exhaust gas purification method using the same
JPH1181983A (en) * 1997-06-12 1999-03-26 Toyota Central Res & Dev Lab Inc Particulate filter
JPH11300165A (en) * 1998-04-23 1999-11-02 Sumitomo Electric Ind Ltd Exhaust gas post-treatment device and post-treatment method

Also Published As

Publication number Publication date
JP2001259363A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US7708803B2 (en) Method and apparatus for the enhanced removal of aerosols from a gas stream
RU2392456C2 (en) Method and device for cleaning of exhaust gas
US20050132880A1 (en) Method and apparatus for removing particulate and vapor phase contaminants from a gas stream
RU2012122525A (en) SELECTIVE CATALYTIC NEUTRALIZATION SYSTEM FOR ABSORPTION OF VOLATILE COMPOUNDS
JP2007317667A (en) Air filter assembly for low temperature catalyst process
WO2005007262A2 (en) Method of removing mercury from exhaust gases
CN109844273A (en) Method and apparatus for exhaust gas purification
JP3684471B2 (en) Bag filter material
CN105649715A (en) Electrostatic tail gas purifying and trapping device and method
KR20040090182A (en) Baghouse for simultaneously removing fine particle and nitric oxides to preliminary reduction of dust loading
JP2008188492A (en) Water treatment system
JP4774573B2 (en) Exhaust gas treatment method and apparatus
JP4774569B2 (en) Exhaust gas treatment method and apparatus
JP4349064B2 (en) Method and apparatus for purifying siloxane compound-containing gas, and digestion gas power generation facility
JP2004290882A (en) Filter and apparatus for cleaning air
US20090249952A1 (en) Method and system for sorption of liquid or vapor phase trace contaminants from a fluid stream containing an electrically charged particulate
JP2004057944A (en) Exhaust gas cleaning equipment
JP2849980B2 (en) Exhaust gas purification catalyst
KR20170034691A (en) Apparatus for exhaust gas purification and exhaust gas purification method
JP2002177373A (en) Air cleaner
CN211864494U (en) Gas purification device
US20070183944A1 (en) Non-thermal plasma reactor
JP2003062055A (en) Air cleaner
JP2018202377A (en) Vehicle air purification device and hybrid vehicle
KR20210122943A (en) Concentrated Oxidation Rotor For VOCs Treatment Executing Combination Process of Adsorption Process and Catalytic Oxidation Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4774569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees