[go: up one dir, main page]

JP4767501B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4767501B2
JP4767501B2 JP2004125558A JP2004125558A JP4767501B2 JP 4767501 B2 JP4767501 B2 JP 4767501B2 JP 2004125558 A JP2004125558 A JP 2004125558A JP 2004125558 A JP2004125558 A JP 2004125558A JP 4767501 B2 JP4767501 B2 JP 4767501B2
Authority
JP
Japan
Prior art keywords
carbon
aqueous electrolyte
carbonate
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004125558A
Other languages
Japanese (ja)
Other versions
JP2005310546A (en
Inventor
正樹 出口
徹 松井
浩司 芳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004125558A priority Critical patent/JP4767501B2/en
Publication of JP2005310546A publication Critical patent/JP2005310546A/en
Application granted granted Critical
Publication of JP4767501B2 publication Critical patent/JP4767501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水電解液二次電池、特にその非水電解液の改良に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to an improvement of the non-aqueous electrolyte.

現在、非水電解液二次電池においては、高電圧、高エネルギー密度を有するリチウムイオン二次電池の研究が盛んに行われている。リチウム二次電池を構成する正極活物質としてはLiCoO2などのリチウム含有遷移金属酸化物が、また、負極活物質としては炭素材料がそれぞれ一般的である。非水電解液二次電池に用いられる電解液には、非水溶媒に溶質を溶解させたものが一般的であり、非水溶媒としては環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられ、溶質としては六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などが用いられている。 Currently, in non-aqueous electrolyte secondary batteries, lithium ion secondary batteries having high voltage and high energy density are actively studied. A lithium-containing transition metal oxide such as LiCoO 2 is generally used as the positive electrode active material constituting the lithium secondary battery, and a carbon material is generally used as the negative electrode active material. Electrolytic solutions used in non-aqueous electrolyte secondary batteries are generally those in which a solute is dissolved in a non-aqueous solvent. Examples of non-aqueous solvents include cyclic carbonates, chain carbonates, and cyclic carboxylates. As the solute, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like is used.

さらに、電池特性を向上させる目的で、正極活物質、負極活物質、および電解液に種々の添加剤を混合することが試みられている。例えば、特許文献1および2では、ビニレンカーボネートやビニルエチレンカーボネートを電解液に添加する方法が提案されている。これらの目的は、充放電サイクル特性の向上であり、ビニレンカーボネートやビニルエチレンカーボネートが負極上で分解して保護被膜を形成することにより、電解液と負極活物質との副反応を抑制することである。
特開2003−151621号公報 特開2003−031259号公報
Furthermore, for the purpose of improving battery characteristics, attempts have been made to mix various additives into the positive electrode active material, the negative electrode active material, and the electrolytic solution. For example, Patent Documents 1 and 2 propose a method of adding vinylene carbonate or vinyl ethylene carbonate to the electrolytic solution. The purpose of these is to improve the charge / discharge cycle characteristics, and by inhibiting the side reaction between the electrolyte and the negative electrode active material, vinylene carbonate or vinyl ethylene carbonate decomposes on the negative electrode to form a protective film. is there.
JP 2003-151621 A JP 2003-031259 A

しかし、提案されているようなビニレンカーボネートやビニルエチレンカーボネートを電解質に含有させた場合、高温下では負極上に形成した被膜が剥がれ、電解質と負極活物質との副反応が激しく起こり、高温サイクル特性が極めて低下するという問題があった。   However, when vinylene carbonate or vinyl ethylene carbonate as proposed is included in the electrolyte, the coating formed on the negative electrode is peeled off at high temperatures, causing side reactions between the electrolyte and the negative electrode active material, resulting in high temperature cycle characteristics. There has been a problem that is extremely lowered.

本発明は、このような課題を解決し、特に高温下においても良好な充放電サイクル特性を示す非水電解液二次電池を提供することを目的とする。   An object of the present invention is to solve such problems and to provide a non-aqueous electrolyte secondary battery exhibiting good charge / discharge cycle characteristics even at high temperatures.

本発明は、非水電解液が、主溶媒と、環内と環外の両方に少なくとも1つの炭素−炭素不飽和結合を有する環状炭酸エステルと、溶質とを含み、前記環状炭酸エステルの含量が前記主溶媒100重量部当たり0.1〜10重量部であることを特徴とする。
非水電解液に、環内と環外の両方に炭素−炭素不飽和結合を有する環状炭酸エステルを含有させると、当該環状炭酸エステルは、負極上で分解して非常に強固な保護被膜を形成する。この保護被膜は、高温下でも負極表面から剥がれにくく、電解質と負極活物質との副反応を抑制することができる。この理由は以下のように考えられる。
The present invention is a nonaqueous electrolytic solution, a main solvent, at least one carbon to both the and exocyclic ring - and a cyclic carbonate having a carbon-carbon unsaturated bond, viewed contains a solute content of the cyclic carbonate Is 0.1 to 10 parts by weight per 100 parts by weight of the main solvent .
When a non-aqueous electrolyte contains a cyclic carbonate having a carbon-carbon unsaturated bond both inside and outside the ring, the cyclic carbonate decomposes on the negative electrode to form a very strong protective coating. To do. This protective film is unlikely to peel off from the negative electrode surface even at high temperatures, and can prevent side reactions between the electrolyte and the negative electrode active material. The reason is considered as follows.

一般に炭素−炭素不飽和結合を有する環状炭酸エステルは、そのモノマー分子が還元されて重合反応を起こし、高分子重合体となって保護被膜を形成する。環内と環外の両方に少なくとも1つの炭素−炭素不飽和結合を有する環状炭酸エステルは、還元重合を受けるサイトが1分子中に少なくとも2つ存在する。ゆえに、これら少なくとも2つのサイトから重合反応を起こすことができる。したがって、保護被膜として生成する高分子重合体は、分子量及び重合度が非常に大きいものになり、負極表面上に緻密で、強固な保護被膜を形成する。この強固な被膜により、電解質と負極活物質との副反応が抑制され、高温環境下の耐性が向上すると考えられる。   In general, a cyclic carbonate having a carbon-carbon unsaturated bond undergoes a polymerization reaction by reducing its monomer molecules, and becomes a high molecular polymer to form a protective film. The cyclic ester carbonate having at least one carbon-carbon unsaturated bond both inside and outside the ring has at least two sites that undergo reductive polymerization in one molecule. Therefore, a polymerization reaction can occur from these at least two sites. Therefore, the high molecular polymer produced as the protective film has a very large molecular weight and degree of polymerization, and forms a dense and strong protective film on the negative electrode surface. It is considered that this strong coating suppresses the side reaction between the electrolyte and the negative electrode active material and improves the resistance under a high temperature environment.

本発明によれば、従来の環状炭酸エステルを添加した場合の課題、すなわち高温環境下での被膜の破壊が回避でき、良好な充放電サイクル特性を有する非水電解液二次電池を実現できる。     According to the present invention, it is possible to avoid a problem when a conventional cyclic carbonate is added, that is, breakage of a coating film under a high temperature environment, and to realize a nonaqueous electrolyte secondary battery having good charge / discharge cycle characteristics.

本発明は、前記のように、リチウムの吸蔵・放出が可能な正極、リチウムの吸蔵・放出が可能な負極、前記正極と負極との間に介在するセパレータ、および非水電解液を具備し、前記非水電解液が、環内と環外にそれぞれ少なくとも1つの炭素−炭素不飽和結合を有する環状炭酸エステルを含んでいる非水電解液二次電池を提供する。   As described above, the present invention comprises a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, Provided is a non-aqueous electrolyte secondary battery in which the non-aqueous electrolyte includes a cyclic carbonate having at least one carbon-carbon unsaturated bond inside and outside the ring.

前記環状炭酸エステルは式:   The cyclic carbonate ester has the formula:

Figure 0004767501
Figure 0004767501

(式中、R1およびR2の少なくとも一方は、少なくとも1つの炭素−炭素不飽和結合を有し、炭素数2〜20のアルケニル基、アルキニル基、またはポリエニル基であり、他方が炭素−炭素不飽和結合を有しない基であるときは、水素原子または炭素数2〜20のアルキル基である。)
で示される化合物であることが好ましい。本発明で用いる環状炭酸エステルは、前記の式に示されるような5員環の場合に特に重合反応が進みやすく、より高分子量の保護被膜を形成する。
(In the formula, at least one of R 1 and R 2 has at least one carbon-carbon unsaturated bond and is an alkenyl group, alkynyl group, or polyenyl group having 2 to 20 carbon atoms, and the other is carbon-carbon. When the group does not have an unsaturated bond, it is a hydrogen atom or an alkyl group having 2 to 20 carbon atoms.)
It is preferable that it is a compound shown by these. The cyclic carbonate used in the present invention is particularly easy to proceed in the case of a 5-membered ring as shown in the above formula, and forms a higher molecular weight protective film.

前記環状炭酸エステルの好ましい例は、ビニルビニレンカーボネートである。ビニルビニレンカーボネートは、特に耐熱性の高い被膜を形成する。
前記非水電解液が、ビニレンカーボネートおよびビニルエチレンカーボネートよりなる群から選ばれる少なくとも1つをさらに含むのが好ましい。ビニレンカーボネートおよびビニルエチレンカーボネートも負極上で分解して被膜を形成する。前記環内と環外の両方に炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステル由来の被膜が、これらビニレンカーボネートおよび/またはビニルエチレンカーボネートを含んで形成される混成被膜は、非常に緻密で耐熱性が高く、電解質と負極活物質との副反応をより抑制することができる。
A preferred example of the cyclic ester carbonate is vinyl vinylene carbonate. Vinyl vinylene carbonate forms a film with particularly high heat resistance.
It is preferable that the non-aqueous electrolyte further includes at least one selected from the group consisting of vinylene carbonate and vinyl ethylene carbonate. Vinylene carbonate and vinyl ethylene carbonate also decompose on the negative electrode to form a film. The film derived from the cyclic carbonate having at least one carbon-carbon unsaturated bond in both the ring and the ring is composed of these vinylene carbonate and / or vinyl ethylene carbonate. The heat resistance is high, and the side reaction between the electrolyte and the negative electrode active material can be further suppressed.

本発明の非水電解液の主体には、非水溶媒およびこれに溶解させた溶質からなるものが用いられる。非水溶媒には、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。ここで、環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネートなどが挙げられ、鎖状炭酸エステルとしては、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネートなどが挙げられる。また、環状カルボン酸エステルとしては、γ−ブチロラクトン、γ−バレロラクトンなどが挙げられる。   As the main body of the nonaqueous electrolytic solution of the present invention, a nonaqueous solvent and a solute dissolved in the nonaqueous solvent are used. As the non-aqueous solvent, for example, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester or the like is used. Here, examples of the cyclic carbonate include propylene carbonate and ethylene carbonate, and examples of the chain carbonate include diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate. Examples of the cyclic carboxylic acid ester include γ-butyrolactone and γ-valerolactone.

非水溶媒には、さらに過充電時に分解して電極上に被膜を形成し、電池を不活性化する、従来からよく知られているベンゼン誘導体を含有することができる。前記ベンゼン誘導体は、フェニル基およびフェニル基に隣接する環状化合物基からなることが好ましい。環状化合物基としては、フェニル基、環状エーテル基、環状エステル基、シクロアルキル基、フェノキシ基などが好ましい。ベンゼン誘導体の具体例としては、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ただし、ベンゼン誘導体の含有率は、非水溶媒全体の10体積%以下であることが好ましい。   The non-aqueous solvent can further contain a conventionally well-known benzene derivative that decomposes upon overcharge to form a film on the electrode and inactivate the battery. The benzene derivative is preferably composed of a phenyl group and a cyclic compound group adjacent to the phenyl group. As the cyclic compound group, a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group and the like are preferable. Specific examples of the benzene derivative include cyclohexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. However, it is preferable that the content rate of a benzene derivative is 10 volume% or less of the whole non-aqueous solvent.

本発明の非水電解液は、上記のような主溶媒、前記環内と環外にそれぞれ少なくとも1つの炭素−炭素不飽和結合を有する環状炭酸エステル、および以下に述べる溶質から構成される。環内と環外にそれぞれ少なくとも1つの炭素−炭素不飽和結合を有する環状炭酸エステルの添加割合は、主溶媒100重量部当たり0.1〜10重量部が好ましい。0.1重量部未満であると、形成される保護被膜の高温環境下での耐性が十分でない。また、10重量部を超えると重合度が大きくなりすぎ、負極上に過剰な保護被膜が形成され、充放電反応を阻害してしまうので好ましくない。ビニレンカーボネートおよび/またはビニルエチレンカーボネートを添加する場合、その添加割合は、環内と環外にそれぞれ少なくとも1つの炭素−炭素不飽和結合を有する環状炭酸エステル由来の被膜と、緻密で耐熱性の高い混成被膜を形成し、かつ充放電反応を阻害しないという観点から、主溶媒100重量部当たり0.1〜10重量部が好ましい。   The nonaqueous electrolytic solution of the present invention is composed of the main solvent as described above, a cyclic carbonate having at least one carbon-carbon unsaturated bond inside and outside the ring, and a solute described below. The addition ratio of the cyclic carbonate having at least one carbon-carbon unsaturated bond inside and outside the ring is preferably 0.1 to 10 parts by weight per 100 parts by weight of the main solvent. When the amount is less than 0.1 part by weight, the protective film to be formed is not sufficiently resistant in a high temperature environment. On the other hand, when the amount exceeds 10 parts by weight, the degree of polymerization becomes too large, an excessive protective film is formed on the negative electrode, and the charge / discharge reaction is hindered. When vinylene carbonate and / or vinyl ethylene carbonate is added, the addition ratio is a film derived from a cyclic carbonate having at least one carbon-carbon unsaturated bond inside and outside the ring, and a dense and high heat resistance. From the viewpoint of forming a hybrid film and not inhibiting the charge / discharge reaction, 0.1 to 10 parts by weight per 100 parts by weight of the main solvent is preferable.

上記の非水溶媒に溶解するリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ほう酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ほう酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ほう酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ほう酸リチウム等のほう酸塩類、ビステトラフルオロメタンスルホン酸イミドリチウム((CF3SO22NLi)、テトラフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CF3SO2)(C49SO2))、ビスペンタフルオロエタンスルホン酸イミドリチウム((C25SO22NLi)等のイミド塩類等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いることもできる。 Examples of the lithium salt dissolved in the non-aqueous solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , and Li (CF 3 SO 2 ) 2. , LiAsF 6, LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, chloroborane lithium, bis (1,2-benzene diolate (2 -) - O, O ') lithium borate, bis ( 2,3-naphthalenedioleate (2-)-O, O ′) lithium borate, bis (2,2′-biphenyldiolate (2-)-O, O ′) lithium borate, bis (5-fluoro-2) -Borate salts such as oleate-1-benzenesulfonic acid-O, O ') lithium borate, lithium bistetrafluoromethanesulfonate imide ((CF 3 SO 2) 2 NLi), tetrafluoromethane acid nonafluorobutanesulfonic acid imide lithium (LiN (CF 3 SO 2) (C 4 F 9 SO 2)), bispentafluoroethanesulfonyl imide lithium ((C 2 F 5 Examples thereof include imide salts such as SO 2 ) 2 NLi). These may be used alone or in combination of two or more.

本発明の非水電解液二次電池の正極活物質には、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4(Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、およびBからなる群より選ばれる少なくとも1種であり、0≦x≦1.2、0≦y≦0.9、2.0≦z≦2.3)で示される酸化物が用いられる。上記x値は、充放電開始前の値であり、充放電により増減する。 Examples of the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M. 1-y O z, Li x Ni 1-y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (M is, Na, Mg, Sc, Y , Mn, Fe, It is at least one selected from the group consisting of Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, and 0 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.9, 2.0 ≦ An oxide represented by z ≦ 2.3) is used. The x value is a value before the start of charge / discharge, and increases or decreases due to charge / discharge.

負極材料としては、特に限定されないが、例えば、リチウム金属や、リチウムイオンのホスト材として、非晶質炭素材、2000℃以上の温度で焼成した人造黒鉛、天然黒鉛などの炭素材料やアルカリ金属と合金化するアルミニウム(Al)、鉛(Pb)、錫(Sn)、ビスマス(Bi)、シリコン(Si)などの金属やアルカリ金属格子間挿入型の立方晶系の金属間化合物(AlSb、Mg2Si、NiSi2)やリチウム窒素化合物(Li3-xxN(M:遷移金属))等が挙げられる。特にリチウムの吸蔵・放出が可能な格子面(002)面の面間隔(d002)が3.37Å以下であり、かつc軸方向の結晶子の大きさ(Lc)が200Å以上の炭素が好ましい。 The negative electrode material is not particularly limited. For example, as a lithium metal, a lithium ion host material, an amorphous carbon material, artificial carbon fired at a temperature of 2000 ° C. or higher, carbon material such as natural graphite, and alkali metal Alloying aluminum (Al), lead (Pb), tin (Sn), bismuth (Bi), silicon (Si) and other metals and alkali metal interstitial intermetallic cubic intermetallic compounds (AlSb, Mg 2 Si, NiSi 2 ), lithium nitrogen compounds (Li 3−x M x N (M: transition metal)), and the like. In particular, carbon having an interval (d 002 ) of a lattice plane (002) plane capable of inserting and extracting lithium of 3.37 mm or less and a crystallite size (Lc) in the c-axis direction of 200 mm or more is preferable. .

正極または負極の結着剤には、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などが用いられる。また、電極に含ませる導電剤には、例えば、黒鉛類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などが用いられる。   Examples of the positive electrode or negative electrode binder include polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, and vinylidene fluoride-hexafluoropropylene copolymer. . Examples of the conductive agent included in the electrode include graphites, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and other carbon blacks, carbon fibers, and metal fibers.

正極用集電体には、例えば、ステンレス鋼、アルミニウム、チタンなどからなるシートまたは箔が用いられる。また、負極用集電体には、例えば、ステンレス鋼、ニッケル、銅などからなるシートまたは箔が用いられる。これらの厚さは、特に限定されないが、1〜500μmである。   For the positive electrode current collector, for example, a sheet or foil made of stainless steel, aluminum, titanium, or the like is used. For the negative electrode current collector, for example, a sheet or foil made of stainless steel, nickel, copper, or the like is used. These thicknesses are not particularly limited, but are 1 to 500 μm.

セパレータには、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性を有する微多孔性薄膜が用いられる。例えば、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマーあるいはガラス繊維などからなるシート、不織布、織布などが用いられる。セパレータの厚さは、一般的には、10〜300μmである。
以上の構成要素を組み合わせることにより、本発明の非水電解液二次電池が構成される。
As the separator, a microporous thin film having a large ion permeability, a predetermined mechanical strength, and an insulating property is used. For example, a sheet made of an olefin polymer such as polypropylene or polyethylene, a glass fiber, a nonwoven fabric, a woven fabric, or the like is used. The thickness of the separator is generally 10 to 300 μm.
The non-aqueous electrolyte secondary battery of the present invention is configured by combining the above components.

以下本発明の実施例を説明する。
《実施例1》
(i)非水電解液の調製
エチレンカーボネート(以下ECで表す)とエチルメチルカーボネート(以下EMCで表す)との混合溶媒(体積比1:3)に、1.0mol/Lの濃度でLiPF6を溶解した。得られた溶液に、表1に記載した種々の環内と環外の両方に炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルを、添加剤として前記混合溶媒100重量部に対してそれぞれ2重量部添加して非水電解液を調製した。
Examples of the present invention will be described below.
Example 1
(I) Preparation of non-aqueous electrolyte LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent (volume ratio 1: 3) of ethylene carbonate (hereinafter represented by EC) and ethyl methyl carbonate (hereinafter represented by EMC) Was dissolved. In the obtained solution, various carbonic acid esters having at least one carbon-carbon unsaturated bond in both the ring and the ring described in Table 1 were added as additives to 100 parts by weight of the mixed solvent, respectively. A non-aqueous electrolyte was prepared by adding 2 parts by weight.

(ii)正極板の作製
コバルト酸リチウム粉末85重量部に、導電剤のアセチレンブラック10重量部と、結着剤のポリフッ化ビニリデン樹脂5重量部とを混合し、これらを脱水N−メチル−2−ピロリドンに分散させてスラリー状の正極合剤を調製した。この正極合剤をアルミニウム箔からなる正極集電体上に塗布し、乾燥後、圧延して、正極板を得た。
(Ii) Preparation of positive electrode plate 85 parts by weight of lithium cobaltate powder was mixed with 10 parts by weight of acetylene black as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder, and these were dehydrated N-methyl-2 -A slurry-like positive electrode mixture was prepared by dispersing in pyrrolidone. This positive electrode mixture was applied onto a positive electrode current collector made of an aluminum foil, dried and rolled to obtain a positive electrode plate.

(iii)負極板の作製
人造黒鉛粉末75重量部に、導電剤であるアセチレンブラック20重量部と、結着剤のポリフッ化ビニリデン樹脂5重量部とを混合し、これらを脱水N−メチル−2−ピロリドンに分散させてスラリー状の負極合剤を調製した。この負極合剤を銅箔からなる負極集電体上に塗布し、乾燥後、圧延して、負極板を得た。
(Iii) Production of Negative Electrode Plate 75 parts by weight of artificial graphite powder was mixed with 20 parts by weight of acetylene black as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder, and these were dehydrated N-methyl-2 -A slurry-like negative electrode mixture was prepared by dispersing in pyrrolidone. This negative electrode mixture was applied onto a negative electrode current collector made of copper foil, dried and rolled to obtain a negative electrode plate.

(iv)円筒型電池の製造
円筒型電池を作製した。その縦断面図を図1に示す。
正極板11及び負極板12を、セパレータ13を介して渦巻状に捲回して、極板群を作製した。極板群はニッケルメッキした鉄製電池ケース18内に収納した。正極板11からはアルミニウム製正極リード14を引き出して、正極端子20に導通した封口板19の裏面に接続した。また、負極板12からはニッケル製負極リード15を引き出して、電池ケース18の底部に接続した。極板群の上部には絶縁板16を、下部には絶縁板17をそれぞれ設けた。そして、所定の非水電解液を電池ケース18内に注液し、封口板19を用いて電池ケース18の開口部を密封した。
(Iv) Production of cylindrical battery A cylindrical battery was produced. A longitudinal sectional view thereof is shown in FIG.
The positive electrode plate 11 and the negative electrode plate 12 were wound in a spiral shape with the separator 13 interposed therebetween to produce an electrode plate group. The electrode plate group was housed in a nickel-plated iron battery case 18. The positive electrode lead 14 made of aluminum was pulled out from the positive electrode plate 11 and connected to the back surface of the sealing plate 19 that was conducted to the positive electrode terminal 20. Further, a nickel negative electrode lead 15 was pulled out from the negative electrode plate 12 and connected to the bottom of the battery case 18. An insulating plate 16 is provided above the electrode plate group, and an insulating plate 17 is provided below the electrode plate group. A predetermined nonaqueous electrolytic solution was poured into the battery case 18, and the opening of the battery case 18 was sealed using the sealing plate 19.

(v)電池の評価
以上のようにして製造した電池について45℃において充放電サイクルを繰り返した。充放電の条件は、最大電流1050mA、上限電圧4.2Vとして2時間30分の定電流・定電圧充電と、放電電流1500mA、放電終止電圧3.0Vとしての定電流放電である。3サイクル目の放電容量を100%として、500サイクルを経過した電池の容量維持率を算出し、サイクル維持率とした。結果を表1に示す。
(V) Evaluation of Battery The battery manufactured as described above was repeatedly charged and discharged at 45 ° C. The charging / discharging conditions are constant current / constant voltage charging for 2 hours and 30 minutes with a maximum current of 1050 mA and an upper limit voltage of 4.2 V, and constant current discharging with a discharge current of 1500 mA and a discharge end voltage of 3.0 V. The discharge capacity at the third cycle was assumed to be 100%, and the capacity maintenance rate of the battery that had passed 500 cycles was calculated as the cycle maintenance rate. The results are shown in Table 1.

《比較例1》
非水電解液として、ECとEMCとの混合溶媒(体積比1:3)に、1.0mol/Lの濃度でLiPF6を溶解させた溶液を用いた以外は、実施例1と同様の電池を作製し、45℃で充放電サイクルを行った。結果を表1に示す。
<< Comparative Example 1 >>
A battery similar to that of Example 1 except that a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent of EC and EMC (volume ratio 1: 3) was used as the nonaqueous electrolytic solution. And a charge / discharge cycle was performed at 45 ° C. The results are shown in Table 1.

Figure 0004767501
Figure 0004767501

表1より、非水電解液に、環内と環外の両方に炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルを含ませることで、いずれも高温サイクル特性に優れた電池を得ることができることがわかる。これは、環内と環外の両方に炭素−炭素不飽和結合を有する環状炭酸エステルが負極上で分解して、安定な保護被膜が形成されたためと推察される。   From Table 1, by including in the nonaqueous electrolyte a cyclic carbonate having at least one carbon-carbon unsaturated bond both inside and outside the ring, a battery having excellent high-temperature cycle characteristics can be obtained. You can see that This is presumably because a cyclic protective ester having a carbon-carbon unsaturated bond both inside and outside the ring was decomposed on the negative electrode to form a stable protective film.

環内と環外の両方に炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルの中では、5員環の環状炭酸エステルがより高温サイクル特性に優れていた。これは、環状炭酸エステルが5員環の場合に特に重合反応が進みやすく、より高分子量の保護被膜が形成されるためであると考えられる。   Among the cyclic carbonates having at least one carbon-carbon unsaturated bond both inside and outside the ring, the 5-membered cyclic carbonates were more excellent in high-temperature cycle characteristics. This is considered to be because the polymerization reaction is particularly likely to proceed particularly when the cyclic carbonate is a 5-membered ring, and a higher molecular weight protective film is formed.

また、表1より、環内と環外の両方に炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルの中では、ビニルビニレンカーボネート(以下VVCで表す)が特に高温サイクル特性に優れていることがわかる。これは、VVCが負極活物質表面上に、特に耐熱性の高い強固な保護被膜を形成するためであると考えられる。   Also, from Table 1, among the cyclic carbonates having at least one carbon-carbon unsaturated bond both inside and outside the ring, vinyl vinylene carbonate (hereinafter referred to as VVC) is particularly excellent in high temperature cycle characteristics. I understand that. This is considered because VVC forms a strong protective film having particularly high heat resistance on the surface of the negative electrode active material.

《実施例2、参考例1および2
非水電解液として、ECとEMCの混合溶媒(体積比1:3)100重量部に、表2に
記載した量のVVCを混合した液に、LiPF6を1.0mol/Lの濃度で溶解したも
のを用いた。非水電解液以外は、実施例1と同様にして電池を組み立て、45℃で充放電
サイクルを行った。結果を表2に示す。
<< Example 2 , Reference Examples 1 and 2 >>
As a non-aqueous electrolyte, LiPF 6 was dissolved at a concentration of 1.0 mol / L in a solution obtained by mixing VVC in the amount shown in Table 2 in 100 parts by weight of a mixed solvent of EC and EMC (volume ratio 1: 3). What was done was used. A battery was assembled in the same manner as in Example 1 except for the nonaqueous electrolytic solution, and a charge / discharge cycle was performed at 45 ° C. The results are shown in Table 2.

Figure 0004767501
Figure 0004767501

表2より、VVCの混合量を増加するにしたがって、高温サイクル特性が向上していることが分かる。VVCの好ましい混合範囲は、溶媒100重量部に対して、0.1〜10重量部である。   From Table 2, it can be seen that the high-temperature cycle characteristics are improved as the mixing amount of VVC is increased. A preferable mixing range of VVC is 0.1 to 10 parts by weight with respect to 100 parts by weight of the solvent.

《実施例3》
非水電解液として、ECとEMCとジエチルカーボネート(以下DECで表す)の混合溶媒(体積比3:5:2)100重量部に対し、ビニレンカーボネート(以下VCで表す)およびビニルエチレンカーボネート(以下VECで表す)とを混合(混合量は表3に記載)し、更にVVCを2重量部混合した液に、LiPF6を1.0mol/Lの濃度で溶解したものを用いた。非水電解液以外は、実施例1と同様にして電池を組み立て、45℃で充放電サイクルを行った。結果を表3に示す。
Example 3
As a non-aqueous electrolyte, vinylene carbonate (hereinafter referred to as VC) and vinyl ethylene carbonate (hereinafter referred to as VC) and 100 parts by weight of a mixed solvent (volume ratio 3: 5: 2) of EC, EMC and diethyl carbonate (hereinafter referred to as DEC). (Represented by VEC) was mixed (mixing amount is described in Table 3), and a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a solution obtained by mixing 2 parts by weight of VVC was used. A battery was assembled in the same manner as in Example 1 except for the nonaqueous electrolytic solution, and a charge / discharge cycle was performed at 45 ° C. The results are shown in Table 3.

Figure 0004767501
Figure 0004767501

《比較例2》
非水電解液として、VVCを含ませずに、VCおよびVECを混合(混合量は表3に記載)した以外は、実施例3と同様の電池を作製し、45℃で充放電サイクルを行った。比較例2の結果も表3に示す。
<< Comparative Example 2 >>
As a non-aqueous electrolyte, a battery similar to Example 3 was prepared except that VC and VEC were mixed without mixing VVC (the mixing amount is described in Table 3), and a charge / discharge cycle was performed at 45 ° C. It was. The results of Comparative Example 2 are also shown in Table 3.

表3より、電解液にVVCを含有し、あるいはVVCとVCおよびVECを含有している本発明の電池では、いずれも高温サイクル特性に優れていることがわかる。   From Table 3, it can be seen that the batteries of the present invention containing VVC in the electrolytic solution or containing VVC, VC and VEC are all excellent in high-temperature cycle characteristics.

本発明の非水電解液二次電池は、高温下においてもサイクル特性に優れている。したがってこの非水電解液二次電池は、ノートパソコン、携帯電話、デジタルスチルカメラなどの電子機器の駆動源として有用である。   The nonaqueous electrolyte secondary battery of the present invention is excellent in cycle characteristics even at high temperatures. Therefore, this non-aqueous electrolyte secondary battery is useful as a drive source for electronic devices such as notebook computers, mobile phones, and digital still cameras.

本発明の実施例にかかる円筒型の非水電解液二次電池の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical nonaqueous electrolyte secondary battery concerning the Example of this invention.

符号の説明Explanation of symbols

11 正極板
12 負極板
13 セパレータ
14 正極リード
15 負極リード
16 上部絶縁板
17 下部絶縁板
18 電池ケース
19 封口板
20 正極端子
DESCRIPTION OF SYMBOLS 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal

Claims (4)

リチウムの吸蔵・放出が可能な正極、リチウムの吸蔵・放出が可能な負極、前記正極と負極との間に介在するセパレータ、および非水電解液を具備する非水電解液二次電池であって、前記非水電解液が、主溶媒と、環内と環外にそれぞれ少なくとも1つの炭素−炭素不飽和結合を有する環状炭酸エステルと、溶質とを含み、前記環状炭酸エステルの含量が前記主溶媒100重量部当たり0.1〜10重量部であることを特徴とする非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte the non-aqueous electrolyte is a main solvent, at least one carbon respectively in the exocyclic ring - and cyclic carbonate having a carbon-carbon unsaturated bond, and a solute viewed including the content of the cyclic carbonate is the main A non-aqueous electrolyte secondary battery , wherein the content is 0.1 to 10 parts by weight per 100 parts by weight of the solvent . 前記環状炭酸エステルが式:
Figure 0004767501
(式中、R1およびR2の少なくとも一方は、少なくとも1つの炭素−炭素不飽和結合を有し、炭素数2〜20のアルケニル基、アルキニル基、またはポリエニル基であり、他方は炭素−炭素不飽和結合を有しない基であるときは、水素原子または炭素数2〜20のアルキル基である。)
で示される化合物である請求項1記載の非水電解液二次電池。
The cyclic carbonate is represented by the formula:
Figure 0004767501
(In the formula, at least one of R 1 and R 2 has at least one carbon-carbon unsaturated bond and is an alkenyl group, alkynyl group, or polyenyl group having 2 to 20 carbon atoms, and the other is carbon-carbon. When the group does not have an unsaturated bond, it is a hydrogen atom or an alkyl group having 2 to 20 carbon atoms.)
The nonaqueous electrolyte secondary battery according to claim 1, which is a compound represented by the formula:
前記環状炭酸エステルが、ビニルビニレンカーボネートである請求項1記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the cyclic carbonate is vinyl vinylene carbonate. 前記非水電解液が、さらに、ビニレンカーボネートおよびビニルエチレンカーボネートよりなる群から選ばれる少なくとも1つを、前記主溶媒100重量部当たり0.1〜10重量部含む請求項1〜3のいずれかに記載の非水電解液二次電池。 The non-aqueous electrolyte solution further includes 0.1 to 10 parts by weight per 100 parts by weight of the main solvent, at least one selected from the group consisting of vinylene carbonate and vinyl ethylene carbonate. The nonaqueous electrolyte secondary battery as described.
JP2004125558A 2004-04-21 2004-04-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4767501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125558A JP4767501B2 (en) 2004-04-21 2004-04-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125558A JP4767501B2 (en) 2004-04-21 2004-04-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005310546A JP2005310546A (en) 2005-11-04
JP4767501B2 true JP4767501B2 (en) 2011-09-07

Family

ID=35439073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125558A Expired - Fee Related JP4767501B2 (en) 2004-04-21 2004-04-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4767501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240102388A (en) * 2022-12-26 2024-07-03 솔브레인 주식회사 Electrolyte Solution Additive, Electrolyte Solution For Battery And Secondary Battery Comprising The Same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797197B2 (en) * 2001-11-01 2006-07-12 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
JP4092618B2 (en) * 2001-12-26 2008-05-28 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
US7608364B2 (en) * 2003-01-10 2009-10-27 Nec Corporation Lithium ion secondary battery
JP4898095B2 (en) * 2004-02-19 2012-03-14 三井化学株式会社 Lithium secondary battery
JP4586388B2 (en) * 2004-03-19 2010-11-24 三菱化学株式会社 Nonaqueous electrolyte, lithium ion secondary battery, and fluorine-containing ester compound
JP4218615B2 (en) * 2004-08-27 2009-02-04 宇部興産株式会社 Non-aqueous electrolyte for lithium secondary battery and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005310546A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US8808918B2 (en) Rechargeable lithium battery
US20080280205A1 (en) Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same
CN1196218C (en) Nonaqueous electrochemical device and its electrolyte
US8802300B2 (en) Rechargeable lithium battery
JP5085940B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery including the same
US11430987B2 (en) Electrode and a rechargeable lithium battery including the electrode
JP4949223B2 (en) Nonaqueous electrolyte and secondary battery including the same
JP2008198524A (en) Nonaqueous electrolyte secondary battery
CN113678297A (en) Lithium secondary battery
US9153842B2 (en) Rechargeable lithium battery including positive electrode including activated carbon and electrolyte containing propylene carbonate
JP2004303437A (en) Nonaqueous electrolyte secondary battery
US10784499B2 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR101002652B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP4417649B2 (en) Nonaqueous electrolyte secondary battery
JP5160088B2 (en) Nonaqueous electrolyte secondary battery
US9005823B2 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR102449845B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR102512120B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
KR101002651B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2012146399A (en) Lithium-ion battery
JP4795019B2 (en) Nonaqueous electrolyte secondary battery
JP2006179210A (en) Non-aqueous electrolytic solution secondary battery and its non-aqueous electrolytic solution
JP4767501B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees