[go: up one dir, main page]

JP4764609B2 - Nitrogen oxide removal catalyst - Google Patents

Nitrogen oxide removal catalyst Download PDF

Info

Publication number
JP4764609B2
JP4764609B2 JP2004073599A JP2004073599A JP4764609B2 JP 4764609 B2 JP4764609 B2 JP 4764609B2 JP 2004073599 A JP2004073599 A JP 2004073599A JP 2004073599 A JP2004073599 A JP 2004073599A JP 4764609 B2 JP4764609 B2 JP 4764609B2
Authority
JP
Japan
Prior art keywords
oxide
catalyst
nitrogen oxides
catalyst material
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004073599A
Other languages
Japanese (ja)
Other versions
JP2005254217A (en
Inventor
正信 淡野
芳伸 藤代
孝一 濱本
真吾 片山
拓也 平松
修 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Nippon Steel Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NGK Insulators Ltd
Nippon Steel Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Nippon Steel Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical NGK Insulators Ltd
Priority to JP2004073599A priority Critical patent/JP4764609B2/en
Publication of JP2005254217A publication Critical patent/JP2005254217A/en
Application granted granted Critical
Publication of JP4764609B2 publication Critical patent/JP4764609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、排気ガス中の窒素酸化物を除去する触媒材料に関するものであり、更に詳しくは、自動車エンジン、ガスエンジン等の燃焼器から排出される酸素を含む燃焼排気ガスから窒素酸化物を効率的に除去する触媒材料に関するものである。本発明は、例えば、自動車エンジンやガスエンジン等の燃焼器から排出される酸素を過剰に含む燃焼排気ガスから窒素酸化物を除去する酸化物触媒の技術分野において、従来、窒素酸化物の浄化率が最大を示す300℃付近の低温で、高い耐久性を示す触媒を開発することが強く望まれていたことを踏まえ、酸素共存下で、窒素酸化物還元反応の触媒活性が最大を示す300℃付近の低温で、高耐久性の新規窒素酸化物除去用触媒材料とその応用製品を提供することを可能とするものであり、例えば、リーンバーンエンジンやディーゼルエンジンの排気ガス中の窒素酸化物を効率的に除去できる新規窒素酸化物除去用触媒材料とその応用製品を提供するものとして有用である。   The present invention relates to a catalyst material that removes nitrogen oxides in exhaust gas, and more specifically, efficiently converts nitrogen oxides from combustion exhaust gas containing oxygen discharged from a combustor such as an automobile engine or a gas engine. The catalyst material to be removed. In the technical field of an oxide catalyst that removes nitrogen oxides from combustion exhaust gas containing excessive oxygen exhausted from a combustor such as an automobile engine or a gas engine, the present invention has been conventionally used for the purification rate of nitrogen oxides. In view of the strong desire to develop a catalyst having high durability at a low temperature around 300 ° C. where the maximum is 300 ° C., the maximum catalytic activity of the nitrogen oxide reduction reaction is 300 ° C. in the presence of oxygen. This makes it possible to provide new nitrogen oxide removal catalyst materials with high durability at low temperatures in the vicinity and their applied products. For example, nitrogen oxides in exhaust gas from lean burn engines and diesel engines The present invention is useful for providing a novel nitrogen oxide removing catalyst material that can be efficiently removed and its application products.

一般に、ガソリンエンジンから発生する窒素酸化物の浄化は、一酸化炭素及び炭化水素の酸化を同時に行う三元触媒が主流となっている。そのような排気ガス浄化に用いられる三元触媒としては、例えば、パラジウム、白金、及びロジウム等の貴金属をγ−アルミナ等の酸化物担体に担持したものが使用されてきた(例えば、非特許文献1〜2参照)。しかしながら、三元触媒は、低酸素濃度においては排気ガスの浄化を効率よく行うことができるものの、排気ガス中の酸素濃度が高くなると有効に働かないという欠点があった。したがって、燃費向上を可能とするリーンバーンエンジンやディーゼルエンジンにおいては、燃焼排ガス中に酸素が過剰に存在するため、三元触媒表面への酸素の吸着による触媒活性の激減が問題となり、窒素酸化物を効率良く浄化することができないという問題があった。   In general, a three-way catalyst that simultaneously oxidizes carbon monoxide and hydrocarbons is mainly used to purify nitrogen oxides generated from gasoline engines. As such a three-way catalyst used for exhaust gas purification, for example, a catalyst in which a noble metal such as palladium, platinum and rhodium is supported on an oxide carrier such as γ-alumina has been used (for example, non-patent document). 1-2). However, although the three-way catalyst can efficiently purify the exhaust gas at a low oxygen concentration, it has a drawback that it does not work effectively when the oxygen concentration in the exhaust gas increases. Therefore, in lean burn engines and diesel engines that can improve fuel consumption, since excessive oxygen is present in the combustion exhaust gas, a drastic decrease in catalytic activity due to adsorption of oxygen to the three-way catalyst surface becomes a problem, and nitrogen oxides There was a problem that it could not be purified efficiently.

酸素共存下でも窒素酸化物を浄化できる触媒として、例えば、Cu−ZSN5に代表されるゼオライト系がある(例えば、非特許文献3参照)。しかし、該触媒は、300〜400℃の温度域で優れた浄化性能を示すが、熱耐久性や耐水性が低いという問題があり、実用化には至っていない。酸化物系においても、例えば、酸素共存下で、窒素酸化物を浄化できる触媒がある(例えば、非特許文献4参照)。酸化物系触媒は、熱耐久性に優れ、比較的高い浄化特性を示すものがあるが、その活性温度が500℃の高温域である。   As a catalyst capable of purifying nitrogen oxides even in the presence of oxygen, for example, there is a zeolite system typified by Cu-ZSN5 (see, for example, Non-Patent Document 3). However, the catalyst exhibits excellent purification performance in the temperature range of 300 to 400 ° C., but has a problem of low heat durability and water resistance, and has not been put into practical use. Even in the oxide system, for example, there is a catalyst that can purify nitrogen oxides in the presence of oxygen (see, for example, Non-Patent Document 4). Some oxide-based catalysts have excellent heat durability and relatively high purification characteristics, but their activation temperature is in a high temperature range of 500 ° C.

実際の自動車排気ガス、特に、ディーゼルエンジンの排気ガスの温度が200〜400℃の低温であることから、当技術分野では、窒素酸化物の浄化率が最大を示す300℃付近で、耐久性の高い触媒の開発が望まれていた(特許文献1〜2、非特許文献5〜6参照)。   Since the temperature of actual automobile exhaust gas, particularly diesel engine exhaust gas, is a low temperature of 200 to 400 ° C., in this technical field, the durability is near 300 ° C. where the purification rate of nitrogen oxides is maximum. Development of a high catalyst has been desired (see Patent Documents 1 and 2 and Non-Patent Documents 5 to 6).

特開平9−141102号公報JP-A-9-141102 特開平9−141103号公報JP-A-9-141103 藤谷義保、電気化学、Vol.57(10)、957−960(1989)Yoshiya Fujitani, Electrochemistry, Vol. 57 (10), 957-960 (1989) 村木秀昭、触媒、Vol.34(4)、225−231(1992)Muraki Hideaki, Catalyst, Vol. 34 (4), 225-231 (1992) H. Yahiro, M. Iwamoto, AppliedCatalysis A, 222, 163-181 (2001)H. Yahiro, M. Iwamoto, AppliedCatalysis A, 222, 163-181 (2001) M. Haneda, Y. Kintaichi, T.Mizushima, N. Kakuta, H. Hanada, Applied Catalysis B, 31, 81-92 (2001)M. Haneda, Y. Kintaichi, T. Mizushima, N. Kakuta, H. Hanada, Applied Catalysis B, 31, 81-92 (2001) 赤間弘、金坂浩行、山本伸司、松下健次郎、自動車技術、Vol.54(1),77−82(2000)Hiroshi Akama, Hiroyuki Kanesaka, Shinji Yamamoto, Kenjiro Matsushita, Automotive Technology, Vol. 54 (1), 77-82 (2000) 青柳友三、自動車技術、Vol.55(9),10−16(2001)Yuzo Aoyagi, Automotive Technology, Vol. 55 (9), 10-16 (2001)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、窒素酸化物の浄化率が最大を示す300℃付近で、高い耐久性を有する触媒を開発することを目標として鋭意研究を積み重ねた結果、特定の混合伝導酸化物に、パラジウム(Pd)等の金属粒子を混合することによって所期の目的を達成し得ることを見出し、本発明を完成するに至った。
本発明は、酸素共存下で、窒素酸化物還元反応の触媒活性が最大を示す300℃付近の低温で、高い耐久性を有する触媒材料を提供することを目的とするものである。
Under such circumstances, the present inventors have eagerly aimed at developing a catalyst having high durability around 300 ° C. at which the purification rate of nitrogen oxides is maximum, in view of the above-described prior art. As a result of repeated research, it has been found that the intended purpose can be achieved by mixing metal particles such as palladium (Pd) with a specific mixed conductive oxide, and the present invention has been completed.
An object of the present invention is to provide a catalyst material having high durability at a low temperature around 300 ° C. at which the catalytic activity of the nitrogen oxide reduction reaction is maximum in the presence of oxygen.

前記課題を解決するための本発明の第1の態様は、炭化水素を還元剤とし、リーンバーンエンジン又はディーゼルエンジンの排気ガス中の窒素酸化物を除去する窒素酸化物除去用触媒材料であって、La−Sr−Mn−Fe−Oペロブスカイト酸化物、Gd−Fe−Oガーネット酸化物、(Gd,Pr)−Fe−Oガーネット酸化物、及び(Gd,Ga)−Fe−Oガーネット酸化物の中から選ばれる1種もしくは2種以上である、酸素イオン伝導と電子伝導の混合伝導酸化物に、パラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の中から選ばれる1種もしくは2種以上を混合した窒素酸化物除去用触媒材料、である。本発明は、前記混合伝導酸化物と、パラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の中から選ばれる1種もしくは2種以上を、前記混合伝導酸化物100重量部に対して0.1〜15重量部混合すること、前記パラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の粒径が、前記混合伝導酸化物の粒径以下、50nm以上であること、を好ましい態様としている。また、本発明の第の態様は、前記窒素酸化物除去用触媒材料を、セリア、ジルコニア、アルミナ、シリカ、及びチタニアの中から選ばれる1種もしくは2種以上を含む担体に担持したことを特徴とする触媒部材、である。また、本発明の第の態様は、前記窒素酸化物除去触媒材料を、セラミックスハニカムあるいは金属ハニカムにコーティングしたことを特徴とする複合材料、である。更に、本発明の第4の態様は、前記窒素酸化物除去用触媒材料、前記触媒部材、又は、前記複合材料と、還元剤として炭化水素を使用して、リーンバーンエンジン又はディーゼルエンジンの排気ガスである、酸素を含有する排気ガス中の窒素酸化物を除去する窒素酸化物除去方法、である。 A first aspect of the present invention for solving the above problem is a catalyst material for removing nitrogen oxides, which uses hydrocarbons as a reducing agent and removes nitrogen oxides in the exhaust gas of a lean burn engine or diesel engine. La-Sr-Mn-Fe-O perovskite oxide, Gd-Fe-O garnet oxide, (Gd, Pr) -Fe-O garnet oxide, and (Gd, Ga) -Fe-O garnet oxide. 1 type or 2 types selected from the group consisting of palladium (Pd), platinum (Pt), and rhodium (Rh), or a mixed conductive oxide of oxygen ion conduction and electron conduction , which is one or more selected from among A catalyst material for removing nitrogen oxides, which is a mixture of at least seeds. The present invention provides the mixed conductive oxide and one or more selected from palladium (Pd), platinum (Pt), and rhodium (Rh) with respect to 100 parts by weight of the mixed conductive oxide. 0.1-15 mixing parts by weight, the palladium (Pd), particle size of the platinum (Pt), and rhodium (Rh) is the particle diameter or less under the mixed conducting oxide, it is 50nm or more, preferably a It is an aspect . Also, a second aspect of the present invention, that the nitrogen oxide removing catalyst material, supported on a support comprising ceria, zirconia, alumina, silica, and one or more selected from among titania A catalyst member characterized by The third aspect of the present invention, the nitrogen oxide removing catalyst material, a composite material, characterized in that coated on the ceramic honeycomb or metal honeycomb. Furthermore, the fourth aspect of the present invention is an exhaust gas for a lean burn engine or a diesel engine using the nitrogen oxide removing catalyst material, the catalyst member, or the composite material and a hydrocarbon as a reducing agent. A nitrogen oxide removing method for removing nitrogen oxide in exhaust gas containing oxygen.

次に、本発明について更に詳細に説明する。
本発明は、La−Sr−Mn−Fe−Oペロブスカイト酸化物、Gd−Fe−Oガーネット酸化物、(Gd,Pr)−Fe−Oガーネット酸化物、及び(Gd,Ga)−Fe−Oガーネット酸化物の中から選ばれる1種もしくは2種以上である、酸素イオン伝導と電子伝導の混合伝導酸化物に、パラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の中から選ばれる1種もしくは2種以上を混合することによって、炭化水素を還元剤とする、酸素共存下における窒素酸化物還元反応の触媒活性を高くして、その活性最大温度を300℃付近にすることを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention relates to La-Sr-Mn-Fe-O perovskite oxide, Gd-Fe-O garnet oxide, (Gd, Pr) -Fe-O garnet oxide, and (Gd, Ga) -Fe-O garnet. One selected from oxides or two or more mixed conductive oxides of oxygen ion conduction and electron conduction, selected from palladium (Pd), platinum (Pt), and rhodium (Rh) By mixing two or more species, the catalytic activity of the nitrogen oxide reduction reaction using hydrocarbon as a reducing agent in the presence of oxygen is increased, and the maximum activity temperature is around 300 ° C. To do.

図1に、本発明の窒素酸化物除去触媒の構成の模式図及びその窒素酸化物還元反応メカニズムを示す。酸素イオン伝導と電子伝導の混合伝導酸化物1上にあるパラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の中から選ばれる1種もしくは2種以上の金属粒子2の表面に、窒素酸化物(NOx)が吸着される。吸着されたNOxは、混合伝導酸化物1と金属粒子2の界面で解離して、N原子はN2 分子となって系外に拡散し、O原子はO2-となって混合伝導酸化物1中に拡散する。 In FIG. 1, the schematic diagram of a structure of the nitrogen oxide removal catalyst of this invention and its nitrogen oxide reduction reaction mechanism are shown. Nitrogen is deposited on the surface of one or more metal particles 2 selected from palladium (Pd), platinum (Pt), and rhodium (Rh) on the mixed conductive oxide 1 of oxygen ion conduction and electron conduction. Oxide (NOx) is adsorbed. The adsorbed NOx is dissociated at the interface between the mixed conductive oxide 1 and the metal particles 2, N atoms become N2 molecules and diffuse out of the system, and O atoms become O 2− and mixed conductive oxide 1 Spreads in.

一方、別の金属粒子2上では、還元剤である炭化水素(HC)が混合伝導酸化物1と金属粒子2の界面で酸化され、CO2 とH2 Oとなって系外に出ていく。このときの酸化反応は、混合伝導酸化物1中を拡散してきたO2-によって促進される。酸化還元反応に伴う電子(e- )は混合伝導酸化物1中を伝導することによって授受される。このように、混合伝導酸化物1と金属粒子2を混合することにより、高酸素空孔濃度領域3によるNOxの還元反応場と、低酸素空孔濃度領域4によるHCの酸化反応場を別々にできるために、窒素酸化物還元反応が、低温でも効率よく選択的に生起する。 On the other hand, on another metal particle 2, hydrocarbon (HC) as a reducing agent is oxidized at the interface between the mixed conductive oxide 1 and the metal particle 2, and goes out of the system as CO 2 and H 2 O. . The oxidation reaction at this time is promoted by O 2− diffused in the mixed conductive oxide 1. Electrons (e ) accompanying the oxidation-reduction reaction are transferred by conducting in the mixed conductive oxide 1. In this way, by mixing the mixed conductive oxide 1 and the metal particles 2, the NOx reduction reaction field in the high oxygen vacancy concentration region 3 and the HC oxidation reaction field in the low oxygen vacancy concentration region 4 are separately provided. Therefore, the nitrogen oxide reduction reaction occurs efficiently and selectively even at low temperatures.

本発明では、混合伝導酸化物と、パラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の中から選ばれる1種もしくは2種以上を、前記混合伝導体酸化物100重量部に対して0.1〜15重量部の範囲で混合することが好ましい。この値が0.1重量部未満では、図1に示した活性点が少なくなり、十分な窒素酸化物還元反応の活性が得られない。また、この値が15重量部を越えると、混合伝導酸化物上を前記金属占める割合が多くなりすぎて、図1に示しているような混合伝導酸化物1と金属粒子2の界面が少なくなり、活性が低くなる。   In the present invention, a mixed conductive oxide and one or more selected from palladium (Pd), platinum (Pt), and rhodium (Rh) are added to 100 parts by weight of the mixed conductive oxide. It is preferable to mix in the range of 0.1 to 15 parts by weight. When this value is less than 0.1 parts by weight, the active sites shown in FIG. 1 are reduced, and sufficient activity of the nitrogen oxide reduction reaction cannot be obtained. On the other hand, if this value exceeds 15 parts by weight, the proportion of the metal on the mixed conductive oxide increases so much that the interface between the mixed conductive oxide 1 and the metal particles 2 as shown in FIG. 1 decreases. , Activity becomes low.

本発明で使用されるパラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の粒径は、前記混合伝導酸化物の粒径以下、50nm以上が好ましい。これらの粒径が、混合伝導酸化物の粒径を越えると、図1に示している構造配置が作りにくく、混合伝導酸化物1と金属粒子2の界面からなる活性点が少なくなる。また、これらの粒径が50nm未満であると、金属の凝集やシンタリングが起こり、触媒活性が低下する。   The particle diameters of palladium (Pd), platinum (Pt), and rhodium (Rh) used in the present invention are preferably equal to or less than the particle diameter of the mixed conductive oxide, and 50 nm or more. If these particle diameters exceed the particle diameter of the mixed conductive oxide, it is difficult to make the structural arrangement shown in FIG. 1, and the active points formed by the interface between the mixed conductive oxide 1 and the metal particles 2 are reduced. Moreover, when these particle sizes are less than 50 nm, metal aggregation and sintering occur, and the catalytic activity decreases.

混合伝導酸化物は、酸素イオン伝導と電子伝導の混合伝導性を有する酸化物であればよく、それらの成分、組成、及び結晶構造等は特に限定されない。但し、本発明では、この混合伝導酸化物としては、特に、酸素イオン伝導性の高い、La−Sr−Mn−Fe−Oペロブスカイト酸化物、Gd−Fe−Oガーネット酸化物、(Gd,Pr)−Fe−Oガーネット酸化物、(Gd,Ga)−Fe−Oガーネット酸化物が用いられ、また、これらの2種以上の混合伝導酸化物を混合して使用してもよい。 The mixed conductive oxide is not particularly limited as long as it is an oxide having mixed conductivity of oxygen ion conduction and electron conduction, and their components, composition, crystal structure, and the like. However, in the present invention, the mixed conductor oxide of this, in particular, high oxygen ion conductivity, L a-Sr-Mn- Fe-O perovskite oxide, G d-Fe-O garnet oxide, (Gd , Pr) -Fe-O garnet oxide, (Gd, Ga) -Fe- O garnet oxide is used, also, but it may also be used as a mixture of two or more of these mixed conducting oxides.

本発明の窒素酸化物除去用触媒材料は、例えば、パラジウム(Pd)、白金(Pt)、及び/又はロジウム(Rh)の硝酸塩あるいは塩化物を、水溶液あるいは有機溶媒に溶解し、その溶液に混合伝導酸化物を分散し、溶媒を蒸発除去した後、600℃以上で加熱処理して作製される。本発明で使用する有機溶媒としては、特に限定されないが、好適には、例えば、アルコール、トルエン、及びアセトン等が例示できる。溶媒の蒸発除去法としては、好適には、例えば、常圧乾燥、及び減圧乾燥等が使用される。熱処理雰囲気は、空気中、不活性ガス中、あるいは還元ガス中のいずれでもよい。   The catalyst material for removing nitrogen oxides of the present invention is prepared by, for example, dissolving nitrate or chloride of palladium (Pd), platinum (Pt), and / or rhodium (Rh) in an aqueous solution or an organic solvent, and mixing the solution. The conductive oxide is dispersed and the solvent is removed by evaporation, followed by heat treatment at 600 ° C. or higher. Although it does not specifically limit as an organic solvent used by this invention, For example, alcohol, toluene, acetone, etc. can be illustrated suitably. As the method for removing the solvent by evaporation, for example, normal pressure drying and reduced pressure drying are preferably used. The heat treatment atmosphere may be any of air, inert gas, or reducing gas.

本発明の窒素酸化物除去用触媒は、好適には、例えば、セリア、ジルコニア、アルミナ、シリカ、及びチタニアの中から選ばれる1種もしくは2種以上を含む担体に担持した窒素酸化物除去触媒部材として使用できる。本発明の窒素酸化物除去用触媒材料を前記担体に担持して使用することにより、排気ガスが有効に触媒表面に接触して、効率よく窒素酸化物を除去することができる。前記担体は、排気ガス雰囲気、温度の環境下で、本発明の窒素酸化物除去用触媒材料と反応しない酸化物であり、高比表面積化が容易にできるものである。   The nitrogen oxide removal catalyst of the present invention is preferably a nitrogen oxide removal catalyst member supported on a carrier containing one or more selected from, for example, ceria, zirconia, alumina, silica, and titania. Can be used as When the catalyst material for removing nitrogen oxides of the present invention is supported on the carrier and used, the exhaust gas effectively contacts the catalyst surface, and nitrogen oxides can be efficiently removed. The carrier is an oxide that does not react with the nitrogen oxide removing catalyst material of the present invention in an exhaust gas atmosphere and temperature environment, and can easily increase the specific surface area.

本発明の窒素酸化物除去用触媒材料は、窒素酸化物還元反応の触媒活性を高くでき、その活性最大温度を300℃付近の温度域にすることができる。本発明の窒素酸化物除去用触媒材料は、好適には、例えば、セリア、ジルコニア、アルミナ、シリカ、又はチタニア等の担体に担持して触媒部材として使用することができる。また、本発明の窒素酸化物除去用触媒材料を、セラミックスハニカムあるいは金属ハニカムにコーティングして複合材料として使用することにより、排気ガスの圧損を低くし、かつ効率よく窒素酸化物を除去することができる。   The catalyst material for removing nitrogen oxides of the present invention can increase the catalytic activity of the nitrogen oxide reduction reaction, and the maximum activity temperature can be set to a temperature range around 300 ° C. The catalyst material for removing nitrogen oxides of the present invention can be suitably used as a catalyst member by being supported on a carrier such as ceria, zirconia, alumina, silica, or titania. Further, by using the catalyst material for removing nitrogen oxides of the present invention on a ceramic honeycomb or metal honeycomb as a composite material, the pressure loss of exhaust gas can be reduced and nitrogen oxides can be efficiently removed. it can.

本発明により、(1)窒素酸化物の浄化率が最大を示す300℃付近の低温で、高い触媒活性と耐久性を有する新規触媒を提供することができる、(2)この触媒は、例えば、リーンバーンエンジンやディーゼルエンジンの排気ガス中の窒素酸化物を効率的に除去できるので、それらに好適に使用できる触媒として有用である、(3)上記触媒材料を酸化物担体に担持させた触媒部材を提供することができる、(4)上記触媒材料をハニカム構造体に担持させた複合材料を提供することができる、という格別の効果が奏される。   According to the present invention, (1) a novel catalyst having high catalytic activity and durability can be provided at a low temperature around 300 ° C. at which the purification rate of nitrogen oxides is maximum. (2) This catalyst is, for example, Since nitrogen oxides in the exhaust gas of lean burn engines and diesel engines can be efficiently removed, it is useful as a catalyst that can be suitably used for them. (3) Catalyst member in which the above catalyst material is supported on an oxide carrier (4) It is possible to provide a composite material in which the above catalyst material is supported on the honeycomb structure.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited only to these Examples.

参考例1
(1)触媒材料の作製
硝酸パラジウムを純水に溶解させ、前記溶液にLa−Sr−Fe−Co−Oペロブスカイト酸化物(LSFC)粉末を超音波分散させた後、ロータリーエバポレーターで溶媒の水を蒸発除去した。得られた粉末を、空気中、110℃で12時間乾燥させた後、900℃で1時間熱処理した。
Reference example 1
(1) Preparation of catalyst material Palladium nitrate is dissolved in pure water, La-Sr-Fe-Co-O perovskite oxide (LSFC) powder is ultrasonically dispersed in the solution, and then the solvent water is removed by a rotary evaporator. Removed by evaporation. The obtained powder was dried in air at 110 ° C. for 12 hours and then heat-treated at 900 ° C. for 1 hour.

(2)分解特性の評価
得られた粉末をカラムに充填し、窒素酸化物に対する分解特性の評価を行った。被処理ガスとして、一酸化窒素1000ppm、エチレン2000ppm、酸素3%を含むヘリウムベースのモデル排気ガスを調製し、このガスを使用して、各温度での触媒性能を調べた。空間速度は、50,000h-1とした。
(2) Evaluation of decomposition characteristics The obtained powder was packed in a column, and the decomposition characteristics for nitrogen oxides were evaluated. A model exhaust gas based on helium containing 1000 ppm of nitrogen monoxide, 2000 ppm of ethylene, and 3% oxygen was prepared as a gas to be treated, and the catalytic performance at each temperature was examined using this gas. The space velocity was 50,000 h −1 .

図2に、その結果を示す。1wt%及び10wt%のパラジウムを含むLSFC触媒は、300℃をピークとして高い触媒活性(NOx転換率)を示した。比較として、混合伝導体ではないアルミナに同様にパラジウムを含む粉末を以下の比較例1に従って作製した。この粉体では、300℃でNOx転換率のピークを示すものの、その触媒活性は低かった。また、LSFC粉末のみにおいては、殆ど活性を示さなかった。尚、触媒性能評価は、参考例1と同様の方法で行った。 FIG. 2 shows the result. The LSFC catalyst containing 1 wt% and 10 wt% palladium showed high catalytic activity (NOx conversion rate) with a peak at 300 ° C. For comparison, a powder containing palladium similarly to alumina which is not a mixed conductor was prepared according to Comparative Example 1 below. Although this powder showed a peak of NOx conversion at 300 ° C., its catalytic activity was low. In addition, the LSFC powder alone showed almost no activity. The catalyst performance was evaluated in the same manner as in Reference Example 1.

比較例1
硝酸パラジウムを純水に溶解させ、前記溶液にアルミナ(Al23 )粉末を超音波分散させた後、ロータリーエバポレーターで溶媒の水を蒸発除去した。得られた粉末を空気中、110℃で12時間乾燥させた後、900℃で1時間熱処理した。
Comparative Example 1
Palladium nitrate was dissolved in pure water, and alumina (Al 2 O 3 ) powder was ultrasonically dispersed in the solution, and then the solvent water was removed by evaporation using a rotary evaporator. The obtained powder was dried in air at 110 ° C. for 12 hours and then heat-treated at 900 ° C. for 1 hour.

実施例1
硝酸パラジウムと硝酸白金を8:2のモル比で水溶液に溶解し、La−Sr−Mn−Fe−Oペロブスカイト酸化物、Gd−Fe−Oガーネット酸化物の粉末をそれぞれ超音波分散させた後、ロータリーエバポレーターで溶媒の水を蒸発除去した。得られた粉末を、空気中、110℃で12時間乾燥させた後、900℃で1時間熱処理した。得られた各粉末の300℃における触媒活性を実施例1と同条件で測定した。La−Sr−Mn−Fe−Oペロブスカイト酸化物+(Pd+Pt)は、75%、Gd−Fe−Oガーネット酸化物+(Pd+Pt)は、70%のNOx転換率をそれぞれ示した。
Example 1
After dissolving palladium nitrate and platinum nitrate in an aqueous solution at a molar ratio of 8: 2, and ultrasonically dispersing powders of La-Sr-Mn-Fe-O perovskite oxide and Gd-Fe-O garnet oxide, respectively. The solvent water was removed by evaporation using a rotary evaporator. The obtained powder was dried in air at 110 ° C. for 12 hours and then heat-treated at 900 ° C. for 1 hour. The catalytic activity of each obtained powder at 300 ° C. was measured under the same conditions as in Example 1. La-Sr-Mn-Fe-O perovskite oxide + (Pd + Pt) showed a NOx conversion rate of 75% , and Gd-Fe-O garnet oxide + (Pd + Pt) showed a NOx conversion rate of 70%.

実施例2
実施例1で作製した触媒粉末を、セリア、ジルコニア、アルミナ、シリカの粉末担体に担持して、カラムに充填し、窒素酸化物に対する分解特性の評価を行った。被処理ガスとして、一酸化窒素1000ppm、エチレン2000ppm、酸素3%を含むヘリウムベースのモデル排気ガスを調製し、このガスを使用して、各温度での触媒性能を調べた。空間速度は、50,000h−1とした。その結果、いずれのサンプルでも、窒素酸化物除去率は、10〜15%向上した。
Example 2
The catalyst powder prepared in Example 1 was supported on a powder carrier of ceria, zirconia, alumina, and silica, packed in a column, and evaluated for decomposition characteristics with respect to nitrogen oxides. A model exhaust gas based on helium containing 1000 ppm of nitrogen monoxide, 2000 ppm of ethylene, and 3% oxygen was prepared as a gas to be treated, and the catalytic performance at each temperature was examined using this gas. The space velocity was 50,000 h- 1 . As a result, in any sample, the nitrogen oxide removal rate was improved by 10 to 15%.

実施例3
実施例1で作製した触媒粉末を、メタルハニカム及びコーディェライトハニカムにウォッシュコートして、窒素酸化物に対する分解特性の評価を行った。被処理ガスとして、一酸化窒素1000ppm、エチレン2000ppm、酸素3%を含むヘリウムベースのモデル排気ガスを調製し、このガスを使用して、各温度での触媒性能を調べた。空間速度は、50,000h−1とした。その結果、いずれのサンプルでも、低圧損で窒素酸化物除去率が約35%向上した。更に、100時間の連続試験においても、触媒活性の低下は2%以下であった。
Example 3
The catalyst powder produced in Example 1 was wash-coated on a metal honeycomb and a cordierite honeycomb, and the decomposition characteristics with respect to nitrogen oxides were evaluated. A model exhaust gas based on helium containing 1000 ppm of nitrogen monoxide, 2000 ppm of ethylene, and 3% oxygen was prepared as a gas to be treated, and the catalytic performance at each temperature was examined using this gas. The space velocity was 50,000 h- 1 . As a result, in any sample, the nitrogen oxide removal rate was improved by about 35% with low pressure loss. Furthermore, the decrease in catalyst activity was 2% or less even in a continuous test for 100 hours.

以上詳述したように、本発明は、窒素酸化物除去用触媒材料に係るものであり、本発明の窒素酸化物除去用触媒材料は、300℃付近の低温で高い触媒活性を示すので、リーンバーンエンジンやディーゼルエンジンの排気ガス中の窒素酸化物を効率的に除去することができる。本発明は、酸素共存下で、窒素酸化物還元反応の触媒活性が最大を示す300℃付近で、高い耐久性を有する触媒材料を提供するものとして有用である。   As described above in detail, the present invention relates to a catalyst material for removing nitrogen oxides, and the catalyst material for removing nitrogen oxides of the present invention exhibits high catalytic activity at a low temperature around 300 ° C. Nitrogen oxides in exhaust gas from burn engines and diesel engines can be removed efficiently. The present invention is useful as a catalyst material having high durability near 300 ° C. at which the catalytic activity of nitrogen oxide reduction reaction is maximum in the presence of oxygen.

本発明の窒素酸化物除去用触媒材料の構成模式図及びその窒素酸化物還元反応のメカニズムを示す図である。It is a figure which shows the structure schematic diagram of the catalyst material for nitrogen oxide removal of this invention, and the mechanism of the nitrogen oxide reduction reaction. 本発明の窒素酸化物除去用触媒材料及び比較例の窒素酸化物分解活性の温度依存性を示す。The temperature dependence of the nitrogen oxide removal catalyst material of this invention and the nitrogen oxide decomposition | disassembly activity of a comparative example is shown.

1 酸素イオン伝導と電子伝導の混合伝導酸化物
2 金属粒子
3 高酸素空孔濃度領域(NOxの還元反応場)
4 低酸素空孔濃度領域(HCの酸化反応場)
1 Mixed conduction oxide of oxygen ion conduction and electron conduction 2 Metal particle 3 High oxygen vacancy concentration region (NOx reduction reaction field)
4 Low oxygen vacancy concentration region (HC oxidation reaction field)

Claims (6)

炭化水素を還元剤とし、リーンバーンエンジン又はディーゼルエンジンの排気ガス中の窒素酸化物を除去する窒素酸化物除去用触媒材料であって、La−Sr−Mn−Fe−Oペロブスカイト酸化物、Gd−Fe−Oガーネット酸化物、(Gd,Pr)−Fe−Oガーネット酸化物、及び(Gd,Ga)−Fe−Oガーネット酸化物の中から選ばれる1種もしくは2種以上である、酸素イオン伝導と電子伝導の混合伝導酸化物に、パラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の中から選ばれる1種もしくは2種以上を混合したことを特徴とする、窒素酸化物除去用触媒材料。 A catalyst material for removing nitrogen oxides, which uses hydrocarbon as a reducing agent and removes nitrogen oxides in the exhaust gas of a lean burn engine or diesel engine, comprising La-Sr-Mn-Fe-O perovskite oxide, Gd- Oxygen ion conduction which is one or more selected from Fe-O garnet oxide, (Gd, Pr) -Fe-O garnet oxide, and (Gd, Ga) -Fe-O garnet oxide. Nitrogen oxide removal, characterized in that one or more selected from palladium (Pd), platinum (Pt), and rhodium (Rh) are mixed with a mixed conductive oxide of metal and electron conduction Catalyst material. 上記混合伝導酸化物と、パラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の中から選ばれる1種もしくは2種以上を、前記混合伝導酸化物100重量部に対して0.1〜15重量部混合したことを特徴とする、請求項1に記載の窒素酸化物除去用触媒材料。   The mixed conductive oxide and one or more selected from palladium (Pd), platinum (Pt), and rhodium (Rh) are added in an amount of 0.1 to 100 parts by weight of the mixed conductive oxide. The catalyst material for removing nitrogen oxides according to claim 1, wherein 15 parts by weight is mixed. 上記パラジウム(Pd)、白金(Pt)、及びロジウム(Rh)の粒径が、上記混合伝導酸化物の粒径以下、50nm以上であることを特徴とする、請求項1又は2に記載の窒素酸化物除去用触媒材料。   3. The nitrogen according to claim 1, wherein particle diameters of the palladium (Pd), platinum (Pt), and rhodium (Rh) are equal to or less than a particle diameter of the mixed conductive oxide and are 50 nm or more. Catalyst material for oxide removal. 請求項1からのいずれかに記載の窒素酸化物除去用触媒材料を、セリア、ジルコニア、アルミナ、シリカ、及びチタニアの中から選ばれる1種もしくは2種以上を含む担体に担持したことを特徴とする触媒部材。 The catalyst material for removing nitrogen oxides according to any one of claims 1 to 3 is supported on a support containing one or more selected from ceria, zirconia, alumina, silica, and titania. Catalyst member. 請求項1からのいずれかに記載の窒素酸化物除去用触媒材料を、セラミックスハニカムあるいは金属ハニカムにコーティングしたことを特徴とする複合材料。 A composite material comprising a ceramic honeycomb or a metal honeycomb coated with the nitrogen oxide removing catalyst material according to any one of claims 1 to 3 . 請求項1から3のいずれかに記載の窒素酸化物除去用触媒、請求項4に記載の触媒部材、又は、請求項5に記載の複合材料と、還元剤として炭化水素を使用して、リーンバーンエンジン又はディーゼルエンジンの排気ガスである、酸素を含有する排気ガス中の窒素酸化物を除去することを特徴とする窒素酸化物除去方法。A catalyst for removing nitrogen oxide according to any one of claims 1 to 3, a catalyst member according to claim 4, or a composite material according to claim 5 and a hydrocarbon as a reducing agent, and lean A method for removing nitrogen oxides, comprising removing nitrogen oxides in exhaust gas containing oxygen, which is exhaust gas of a burn engine or diesel engine.
JP2004073599A 2004-03-15 2004-03-15 Nitrogen oxide removal catalyst Expired - Lifetime JP4764609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073599A JP4764609B2 (en) 2004-03-15 2004-03-15 Nitrogen oxide removal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073599A JP4764609B2 (en) 2004-03-15 2004-03-15 Nitrogen oxide removal catalyst

Publications (2)

Publication Number Publication Date
JP2005254217A JP2005254217A (en) 2005-09-22
JP4764609B2 true JP4764609B2 (en) 2011-09-07

Family

ID=35080474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073599A Expired - Lifetime JP4764609B2 (en) 2004-03-15 2004-03-15 Nitrogen oxide removal catalyst

Country Status (1)

Country Link
JP (1) JP4764609B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160166A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Room temperature NOx adsorbent
JP4720592B2 (en) * 2006-04-17 2011-07-13 株式会社日本自動車部品総合研究所 Electrochemical catalyst for exhaust gas purification
JP4971918B2 (en) * 2007-01-25 2012-07-11 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
FR2961411B1 (en) * 2010-06-16 2013-08-09 Saint Gobain Ct Recherches ELECTROCHEMICAL CATALYSIS SYSTEM
CN106457226B (en) * 2014-05-13 2021-05-11 日产自动车株式会社 Catalyst for exhaust gas purification
WO2018089964A2 (en) * 2016-11-14 2018-05-17 Research Triangle Institute Perovskite catalysts and uses thereof
CN111266117A (en) * 2020-02-28 2020-06-12 天津大学 High-dispersion Pt-based catalyst for reducing perovskite precursor, preparation method and application of catalyst to CO oxidation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535861B2 (en) * 1987-02-02 1996-09-18 トヨタ自動車株式会社 Oxygen coexisting exhaust gas purification device
JPH08150324A (en) * 1991-02-14 1996-06-11 Sekiyu Sangyo Kasseika Center Method for catalytically reducing nitrogen oxide
JP2002119857A (en) * 2000-10-18 2002-04-23 Mitsubishi Electric Corp CATALYST FOR PURIFYING NOx AND MANUFACTURING METHOD THEREOF
JP2004057947A (en) * 2002-07-29 2004-02-26 Toyota Motor Corp Exhaust gas purification catalyst
JP2004066173A (en) * 2002-08-08 2004-03-04 Toyota Motor Corp Exhaust gas purification catalyst and exhaust gas purification reactor

Also Published As

Publication number Publication date
JP2005254217A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US6066587A (en) Catalyst for purifying exhaust gas
JP3050566B2 (en) Palladium-containing ceria-supported platinum catalyst and catalyst assembly containing the same
JP3227074B2 (en) Exhaust gas purification catalyst and exhaust gas purification method for lean burn and stoichiometric internal combustion engines
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
KR20140117361A (en) Alumina Material Containing Barium Sulfate and Exhaust Gas Purifying Catalyst Using Same
JP2773428B2 (en) Exhaust gas purification method
KR100904029B1 (en) Exhaust gas purifying catalyst
JP4764609B2 (en) Nitrogen oxide removal catalyst
JPH0810573A (en) Exhaust gas purifying device
JPH04122447A (en) Catalyst for cleaning exhaust gas
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JPH07166854A (en) Exhaust emission controlling catalytic structure
KR100892520B1 (en) NOX occlusion-reduction catalyst containing ruthenium and potassium
JP2004209386A (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JPH1066867A (en) Catalyst for cleaning exhaust gas and method for cleaning exhaust gas by the catalyst
JPH11319566A (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
JP3567998B2 (en) Denitration catalyst and denitration method using the same
JPH06205975A (en) Catalyst for purifying exhaust gas
JP3391569B2 (en) Exhaust gas purification method
JP3309024B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH08229401A (en) Oxide catalyst material for removing nitrogen oxide and method for removing nitrogen oxide
JP3199561B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP2005279371A (en) Denitrification catalyst and denitrification method using the same
JPH09141102A (en) Oxide catalyst material for removing nitrogen oxide and method for removing nitrogen oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4764609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term