JP4760702B2 - Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas - Google Patents
Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas Download PDFInfo
- Publication number
- JP4760702B2 JP4760702B2 JP2006351529A JP2006351529A JP4760702B2 JP 4760702 B2 JP4760702 B2 JP 4760702B2 JP 2006351529 A JP2006351529 A JP 2006351529A JP 2006351529 A JP2006351529 A JP 2006351529A JP 4760702 B2 JP4760702 B2 JP 4760702B2
- Authority
- JP
- Japan
- Prior art keywords
- denitration
- exhaust gas
- ammonia
- zone
- catalytic denitration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treating Waste Gases (AREA)
Description
本発明は、空気を作動ガスに用いるノントランスファ式プラズマトーチを加熱源に用いた灰溶融炉から排出されるガス中の高濃度窒素酸化物(NOx)を、還元剤としてアンモニアを用いて無触媒で選択的に還元し、無触媒脱硝ゾーンの後流側において未反応のアンモニアを分解除去する方法に関する。 The present invention is a non-catalyst using high concentration nitrogen oxide (NOx) in a gas discharged from an ash melting furnace using a non-transfer type plasma torch using air as a working gas as a heating source, and ammonia as a reducing agent. In which the unreacted ammonia is decomposed and removed on the downstream side of the non-catalytic denitration zone.
ノントランスファ式灰溶融炉を備えたユーロプラズマ式灰溶融システムを図5に示す。ノントランスファ方式のプラズマトーチの作動ガスには一般に空気が用いられる。プラズマトーチ内では、作動ガスである空気が3000℃を超える高温まで昇温されるため、空気中の窒素が酸素により酸化され、30000ppmを越える高濃度のNOxが生成される。この高濃度NOxを分解するには高度な排ガス処理技術が要求すれる。そのため、湿式の排ガス処理や、高濃度硝酸系窒素を処理できる排水処理装置や、多量の脱硝触媒を用いなくてはならなかった(特許文献1、2および3参照)。
上記のような問題を解決するために、排ガス処理装置へ排ガスを導入される前に無触媒選択脱硝法でNOx濃度を高効率に低減させようとすると、アンモニア吹込み量が多くなり、アンモニアのリーク量が増す。このリークアンモニアは乾式の排ガス処理では低減し切れないので、湿式の排ガス処理などが必要になる。 In order to solve the above problems, if the NOx concentration is to be reduced with high efficiency by the non-catalytic selective denitration method before the exhaust gas is introduced into the exhaust gas treatment device, the amount of ammonia blowing increases, Leakage increases. Since this leaked ammonia cannot be reduced by dry exhaust gas treatment, wet exhaust gas treatment is required.
本発明は、上記実状に鑑み、ノントランスファ式プラズマ灰溶融炉から排出されるNOx含有排ガスを無触媒脱硝処理に付すに当たり、無触媒脱硝ゾーンの後流側に可燃性ガスを供給して燃焼させ、脱硝後の排ガスを昇温させて未反応のアンモニアを分解除去することを特徴とする、ノントランスファ式灰溶融炉排ガスの無触媒脱硝におけるリークアンモニア低減方法を提供する。 In view of the above situation, the present invention supplies a combustible gas to the downstream side of the non-catalytic denitration zone and combusts it when subjecting the NOx-containing exhaust gas discharged from the non-transfer type plasma ash melting furnace to the non-catalytic denitration treatment. The present invention provides a method for reducing leakage ammonia in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas, characterized in that exhaust gas after denitration is heated to decompose and remove unreacted ammonia.
無触媒脱硝とは、NH3や、尿素などのNH3供与体を用いて排ガス中のNOxを選択的に還元除去する方法である。 The non-catalytic denitration, NH 3 and a method of selectively reducing and removing NOx in the exhaust gas with NH 3 donor such as urea.
本発明において、可燃性ガスとしてはプロパンや天然ガス等が用いられる。 In the present invention, propane, natural gas, or the like is used as the combustible gas.
無触媒脱硝ゾーンにおける排ガス滞留時間は1〜2秒であることが好ましい。この範囲未満では脱硝効率が悪く、この範囲を越えるとリークアンモニアが急増する。 The exhaust gas residence time in the non-catalytic denitration zone is preferably 1 to 2 seconds. Below this range, the denitration efficiency is poor, and beyond this range, leaked ammonia increases rapidly.
無触媒脱硝ゾーンにおける反応温度は800〜870℃であることが好ましい。この範囲未満では脱硝効率が悪く、この範囲を越えるとリークアンモニア濃度は非検出まで下がるが、アンモニア分解によってNOxが生成するため脱硝性能が低下する嫌いがある。 The reaction temperature in the non-catalytic denitration zone is preferably 800 to 870 ° C. If it is less than this range, the denitration efficiency is poor, and if it exceeds this range, the leaked ammonia concentration decreases to non-detection, but NOx is generated due to ammonia decomposition, so there is a disagreement that the denitration performance deteriorates.
アンモニア分解ゾーンにおける排ガスの滞留時間は0.83〜2秒であることが好ましい。この範囲未満ではアンモニア分解効率が悪く、この範囲を越えてもアンモニア分解効率に差違はない。
The residence time of the exhaust gas in the ammonia decomposition zone is preferably 0.83 to 2 seconds. Below this range, the ammonia decomposition efficiency is poor, and even above this range, there is no difference in ammonia decomposition efficiency.
アンモニア分解ゾーンにおける反応温度は900〜1000℃であることが好ましい。この範囲未満ではアンモニア分解効率が悪く、この範囲を越えた場合もリークアンモニア濃度は非検出まで下がるが、アンモニア分解によってNOxが生成するため脱硝性能が低下する嫌いがある。 The reaction temperature in the ammonia decomposition zone is preferably 900 to 1000 ° C. If it is less than this range, the ammonia decomposition efficiency is poor, and if it exceeds this range, the leaked ammonia concentration decreases to non-detection.
請求項1に係る発明によれば、無触媒選択脱硝で大気排出可能な濃度までNOxを高効率に低減することができると共に、リークアンモニアを白煙が出ない濃度まで低減し、これにより処理ガスの湿式洗煙が不要になり、より排ガス処理が簡素化される。 According to the first aspect of the present invention, NOx can be reduced with high efficiency up to a concentration capable of being discharged into the atmosphere by non-catalytic selective denitration, and the leaked ammonia is reduced to a concentration at which white smoke does not occur. Therefore, the exhaust gas treatment is further simplified.
また、後流に設置する排ガス処理システムヘの浄化負荷を低減することもできる。 In addition, the purification load on the exhaust gas treatment system installed downstream can be reduced.
請求項2に係る発明によれば、無触媒脱硝ゾーンとその後流のアンモニア分解ゾーンでは、排ガスは800〜1000℃で2〜4秒滞留するので、ダイオキシンの低減効果も奏することができる。 According to the second aspect of the present invention, since the exhaust gas stays at 800 to 1000 ° C. for 2 to 4 seconds in the non-catalytic denitration zone and the downstream ammonia decomposition zone, the effect of reducing dioxins can also be achieved.
つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。 Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.
比較例1
空気を作動ガスに用いるノントランスファ式ブラズマトーチからは、30,000ppmを超えるNOxを含む高温の排ガスが排出される。図6に示す無触媒脱硝ゾーン(1) とアンモニア分解ゾーン(2) を備えた試験装置(3) において、この排ガスを無触媒脱硝ゾーン(1) へ流入する前に空気で希釈してその温度を750〜900℃の範囲内で調整した。この排ガスに、空気で約10倍に希釈したアンモニアを注入し、無触媒脱硝を行った。この試験結果を図1〜図4に示す。図1は滞留時間2秒でのNH3/NOxモル比と脱硝率、リークアンモニアの関係を示したものである。同図から分かるように、好条件では99%を超える脱硝効果を得た。図2〜図4は同じ試験における結果を、各温度毎に滞留時間と脱硝率、リークアンモニアの関係で示したものである。
Comparative Example 1
A high temperature exhaust gas containing NOx exceeding 30,000 ppm is discharged from a non-transfer type plasma torch that uses air as a working gas. In the test device (3) equipped with the non-catalytic denitration zone (1) and ammonia decomposition zone (2) shown in Fig. 6, the exhaust gas is diluted with air before flowing into the non-catalytic denitration zone (1) Was adjusted within the range of 750 to 900 ° C. Ammonia diluted about 10 times with air was injected into the exhaust gas to perform non-catalytic denitration. The test results are shown in FIGS. FIG. 1 shows the relationship between NH 3 / NOx molar ratio, denitration rate, and leaked ammonia at a residence time of 2 seconds. As can be seen from the figure, a denitration effect exceeding 99% was obtained under favorable conditions. 2 to 4 show the results of the same test in relation to residence time, denitration rate, and leaked ammonia for each temperature.
これらの試験結果より、下記のことが判明した。 From these test results, the following was found.
○無触媒脱硝を高効率に進めるためには、供給アンモニアをその可燃濃度範囲を下回る濃度に希釈する必要があった。 ○ In order to promote non-catalytic denitration with high efficiency, it was necessary to dilute the supplied ammonia to a concentration below its flammable concentration range.
○上記の反応条件では、850℃での脱硝効率が最も良く、モル比(NH3/NOx)2で99%程度のNOxを分解できた。 ○ Under the above reaction conditions, denitration efficiency at 850 ° C. was the best, and about 99% of NOx could be decomposed at a molar ratio (NH 3 / NOx) 2.
しかし、このときのリークアンモニア濃度は200ppmを超えており、このままでは湿式洗煙等でリークアンモニアを低減しないと煙突出口で白煙を排出することになる。 However, the leak ammonia concentration at this time exceeds 200 ppm, and if the leak ammonia is not reduced by wet smoke washing or the like as it is, white smoke will be discharged from the smoke outlet.
○無触媒脱硝ゾーンにおける反応温度を800℃、850℃および900℃として、無触媒脱硝ゾーンにおける排ガスの滞留時間に対する脱硝率およびリークアンモニア濃度を求めた。この結果を図2、図3および図4に示す。これらの図から、脱硝反応は滞留時間1秒程度でほぼ完結していることが分かる。 ○ The reaction temperature in the non-catalytic denitration zone was set to 800 ° C., 850 ° C., and 900 ° C., and the denitration rate and the leaked ammonia concentration with respect to the residence time of the exhaust gas in the non-catalytic denitration zone were determined. The results are shown in FIG. 2, FIG. 3 and FIG. From these figures, it can be seen that the denitration reaction is almost completed with a residence time of about 1 second.
○反応温度900℃になるとアンモニアの酸化分解反応が早くなり、脱硝効率は低下するが、リークアンモニア濃度は数ppm程度まで低下した。 ○ When the reaction temperature reached 900 ° C., the oxidative decomposition reaction of ammonia was accelerated and the denitration efficiency was reduced, but the leaked ammonia concentration was reduced to about several ppm.
実施例1
図6に示す無触媒脱硝ゾーン(1) とアンモニア分解ゾーン(2) を備えた試験装置(3) において、脱硝反応温度850℃で、排ガスの滞留時間を約2秒とした点を除いて比較例1と同様に操作して無触媒脱硝を行った。次いで無触媒脱硝での接触時間が約1.2秒になった時に後流側で脱硝反応器内方向にノズル(6) を経てアンモニア分解ゾーン(2) へプロパンガスを注入し、燃焼させた。プロパンの燃焼によりアンモニア分解ゾーン(2) における反応温度が900℃になるように、プロパン注入量を調節した。なお、図6において、(4) は試験装置入口サンプリング口、(5) は試験装置出口サンプリング口である。
Example 1
Compared with the test equipment (3) with non-catalytic denitration zone (1) and ammonia decomposition zone (2) shown in Fig. 6 except that the denitration reaction temperature is 850 ° C and the residence time of the exhaust gas is about 2 seconds. Non-catalytic denitration was carried out in the same manner as in Example 1. Next, when the contact time in non-catalytic denitration reached about 1.2 seconds, propane gas was injected into the ammonia decomposition zone (2) through the nozzle (6) in the denitration reactor on the downstream side and burned. . The amount of propane injection was adjusted so that the reaction temperature in the ammonia decomposition zone (2) was 900 ° C. due to the combustion of propane. In FIG. 6, (4) is a test apparatus inlet sampling port, and (5) is a test apparatus outlet sampling port.
また、プロパンの注入前後および撹拌用空気の注入前後にリークアンモニア濃度の増減をチェックした。 In addition, the increase and decrease of the leak ammonia concentration were checked before and after the propane injection and before and after the stirring air injection.
比較例1と同様の操作で脱硝率およびリークアンモニア濃度を求める試験を行った。実験結果を表1に示す。 A test for determining the denitration rate and the leaked ammonia concentration was performed in the same manner as in Comparative Example 1. The experimental results are shown in Table 1.
比較例2
実施例1と同様の方法で無触媒脱硝を行った。無触媒脱硝での接触時間が約1.2秒になった時に後流側で脱硝反応器内方向にノズルを経て空気を噴射注入した。撹拌効果によるリークアンモニアの低減効果を計測した。
Comparative Example 2
Non-catalytic denitration was performed in the same manner as in Example 1. When the contact time in the non-catalytic denitration was about 1.2 seconds, air was injected and injected through the nozzle in the denitration reactor in the downstream side. The reduction effect of leaked ammonia due to the stirring effect was measured.
比較例1と同様の操作で脱硝率およびリークアンモニア濃度を求める試験を行った。実験結果を表1に示す。 A test for determining the denitration rate and the leaked ammonia concentration was performed in the same manner as in Comparative Example 1. The experimental results are shown in Table 1.
実施例2〜4、比較例2〜4
無触媒脱硝ゾーンにおける反応温度を750〜900℃の範囲で変動させ、アンモニア分解ゾーンにおける反応温度が900〜1100℃になるようにプロパン供給量を調節した以外は、実施例1と同様に操作を行った。
Examples 2-4, Comparative Examples 2-4
The operation was performed in the same manner as in Example 1 except that the reaction temperature in the non-catalytic denitration zone was varied in the range of 750 to 900 ° C. and the propane supply amount was adjusted so that the reaction temperature in the ammonia decomposition zone was 900 to 1100 ° C. went.
比較例1と同様の操作で脱硝率およびリークアンモニア濃度を求める試験を行った。実験結果を表1に示す。
表中、ゾーン(1) は無触媒脱硝ゾーン、ゾーン(2) はアンモニア分解ゾーン、SNCRは無触媒脱硝ゾーン(1) とアンモニア分解ゾーン(2) を備えた試験装置、DXNはダイオキシン、後燃焼はアンモニア分解ゾーンにおける可燃性ガスの燃焼をそれぞれ意味する。 In the table, zone (1) is a non-catalytic denitration zone, zone (2) is an ammonia decomposition zone, SNCR is a test device equipped with a non-catalytic denitration zone (1) and an ammonia decomposition zone (2), DXN is dioxin, post-combustion Means combustion of combustible gas in the ammonia decomposition zone, respectively.
表1から明らかなように、実施例ではいずれも、高い脱硝率が得られると共に、リークアンモニア濃度を格段に低減することができ、加えてダイオキシンも低減することができた。 As is clear from Table 1, in each of the Examples, a high denitration rate was obtained, and the leak ammonia concentration could be remarkably reduced, and in addition, dioxin could be reduced.
(1) 無触媒脱硝ゾーン
(2) アンモニア分解ゾーン
(3) 試験装置
(4) 試験装置入口サンプリング口
(5) 試験装置出口サンプリング口
(6) ノズル
(1) Non-catalytic denitration zone
(2) Ammonia decomposition zone
(3) Test equipment
(4) Test equipment inlet sampling port
(5) Test equipment outlet sampling port
(6) Nozzle
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006351529A JP4760702B2 (en) | 2006-12-27 | 2006-12-27 | Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006351529A JP4760702B2 (en) | 2006-12-27 | 2006-12-27 | Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008161759A JP2008161759A (en) | 2008-07-17 |
JP4760702B2 true JP4760702B2 (en) | 2011-08-31 |
Family
ID=39691939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006351529A Expired - Fee Related JP4760702B2 (en) | 2006-12-27 | 2006-12-27 | Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4760702B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6134094B2 (en) * | 2011-11-04 | 2017-05-24 | 株式会社神戸製鋼所 | Nitrogen oxide removal method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5499773A (en) * | 1978-01-25 | 1979-08-06 | Mitsubishi Heavy Ind Ltd | Removing method for ammonia in combustion exhaust gas |
JPS6014926A (en) * | 1983-07-07 | 1985-01-25 | Hitachi Zosen Corp | Apparatus for decreasing nh3 leakage in denitration by injecting nh3 |
JP3032400B2 (en) * | 1993-03-08 | 2000-04-17 | 関西電力株式会社 | NOx reduction method in plasma furnace |
JPH0751536A (en) * | 1993-08-12 | 1995-02-28 | Mitsubishi Heavy Ind Ltd | Denitration of combustion exhaust gas |
-
2006
- 2006-12-27 JP JP2006351529A patent/JP4760702B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008161759A (en) | 2008-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101126840B1 (en) | Process and equipment for the treatment of exhaust gas | |
JP3924150B2 (en) | Gas combustion treatment method and apparatus | |
US9308496B2 (en) | System and method for controlling and reducing NOx emissions | |
JP2011230121A (en) | SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION | |
KR20160060116A (en) | Methods for treating waste gas streams from incineration processes by addition of ozone | |
PL2144690T3 (en) | Method for purifying flue gases from incinerators and then producing urea | |
DK0988885T3 (en) | Exhaust gas denitration process | |
JP4760702B2 (en) | Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas | |
JP2004036983A (en) | Method and device for treating ammonia containing gas | |
JP2013072571A (en) | Exhaust gas treating system | |
JP2005508727A (en) | Method for treating ammonia-containing combustion exhaust gas | |
EP3875167A1 (en) | Improved nox removal method | |
TWI744524B (en) | Method and system for the removal of particulate matter and noxious compounds from flue-gas | |
JP4446269B2 (en) | Dry simultaneous desulfurization denitration equipment | |
KR101172125B1 (en) | Method for removing of nitrogen oxides | |
JP2005254093A (en) | Method and apparatus for denitrification | |
JP5016240B2 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
TWI744525B (en) | Method and system for the removal of noxious compounds from flue-gas | |
JP4806991B2 (en) | NOx reduction method for exhaust gas from plasma ash melting furnace | |
JP4020708B2 (en) | Exhaust gas treatment method, exhaust gas treatment equipment and stoker-type incinerator | |
KR200314641Y1 (en) | Reaction Nox exclusion device of slip deoxidizer 2 of SNCR | |
KR20210120195A (en) | Duct structure | |
EP4467229A1 (en) | Improved nox removal method | |
CN118103127A (en) | Method for reducing the nitrogen oxide content in a flue gas stream of a thermal waste treatment plant | |
CN105579116A (en) | Methods for treating waste gas streams from incineration processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110304 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110523 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |