[go: up one dir, main page]

JP4752791B2 - Liquid property detection method - Google Patents

Liquid property detection method Download PDF

Info

Publication number
JP4752791B2
JP4752791B2 JP2007048591A JP2007048591A JP4752791B2 JP 4752791 B2 JP4752791 B2 JP 4752791B2 JP 2007048591 A JP2007048591 A JP 2007048591A JP 2007048591 A JP2007048591 A JP 2007048591A JP 4752791 B2 JP4752791 B2 JP 4752791B2
Authority
JP
Japan
Prior art keywords
transmittance
liquid
light
amount
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007048591A
Other languages
Japanese (ja)
Other versions
JP2008209353A (en
Inventor
一幸 堀江
暁和 内田
政雄 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007048591A priority Critical patent/JP4752791B2/en
Publication of JP2008209353A publication Critical patent/JP2008209353A/en
Application granted granted Critical
Publication of JP4752791B2 publication Critical patent/JP4752791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、液体の透過光量に基づいて同液体の性状を検出する液体性状検出方法に関するものである。   The present invention relates to a liquid property detection method for detecting the property of the liquid based on the transmitted light quantity of the liquid.

従来の液体性状検出方法としては、たとえば、エンジンの潤滑油に混入した煤等の液体中の粒子濃度をその液体の光透過特性、具体的には同液体を透過可能な透過光の光量に基づいて検出するようにしたものであって、液体中の光路長さが異なる光について透過光量を測定し、この測定される透過光量の差違に基づいて液体の粒子濃度を検出することをその要旨としているものが知られている(特許文献1参照)。この粒子濃度検出方法によれば、粒子濃度検出に際して発光部や受光部の特性変化、あるいは発光部の発光面や受光部の受光面に付着した汚れによる悪影響を抑制して粒子濃度を精度良く検出することができる。
特開2004−340806号公報
As a conventional liquid property detection method, for example, the particle concentration in a liquid such as soot mixed in engine lubricating oil is determined based on the light transmission characteristics of the liquid, specifically, the amount of transmitted light that can be transmitted through the liquid. The gist is to measure the amount of transmitted light for light with different optical path lengths in the liquid and detect the particle concentration of the liquid based on the difference in the measured amount of transmitted light. Is known (see Patent Document 1). According to this particle concentration detection method, the particle concentration can be accurately detected by suppressing adverse effects due to changes in the characteristics of the light emitting unit and the light receiving unit or contamination attached to the light emitting surface of the light emitting unit and the light receiving surface of the light receiving unit. can do.
JP 2004-340806 A

従来の粒子濃度検出方法によれば、発光部から受光部へ到る光の経路途中、特に被測定液体の通路の壁面への異物や汚れの付着量が比較的少量であるときには、精度良く粒子濃度を検出することができる。しかし、異物や汚れ付着量が或る限度以上になると、異物や汚れを透過する際に異物や汚れに吸収される光量が増大し、液体中を透過する光量、つまり粒子濃度測定に供される光量が減少して、良好な精度で粒子濃度を検出することが困難となる。   According to the conventional particle concentration detection method, when the amount of foreign matter or dirt attached to the wall of the passage of the liquid to be measured is relatively small in the light path from the light emitting portion to the light receiving portion, the particles are accurately obtained. The concentration can be detected. However, when the amount of foreign matter or dirt adhered exceeds a certain limit, the amount of light absorbed by the foreign matter or dirt when passing through the foreign matter or dirt increases, and is used for measuring the amount of light that passes through the liquid, that is, particle concentration. The amount of light decreases, making it difficult to detect the particle concentration with good accuracy.

さらに、従来の粒子濃度検出方法では、被測定液体の通路の壁面への異物や汚れの付着量を検出する手立てがないため、被測定液体の通路の壁面への異物や汚れの付着量をも加味して粒子濃度を判定することになる。したがって、精度の良い粒子濃度検出を継続実行することができなくなる。   Furthermore, in the conventional particle concentration detection method, there is no way to detect the amount of foreign matter or dirt adhering to the wall surface of the liquid to be measured. In consideration of this, the particle concentration is determined. Therefore, accurate particle concentration detection cannot be continuously executed.

本発明は、上記の問題点に鑑みなされたもので、その目的は、検出方法に工夫を凝らして、被測定液体の通路の壁面への異物や汚れの付着量が増大した場合でも、良好な精度で液体性状を検出することができる液体性状検出装置を提供することである。   The present invention has been made in view of the above problems, and its purpose is to improve the detection method even when the amount of foreign matter or dirt attached to the wall surface of the passage of the liquid to be measured increases. It is an object to provide a liquid property detection device capable of detecting a liquid property with high accuracy.

上記目的を達成するための手段およびその作用効果について以下に説明する。   Means for achieving the above object and its operation and effects will be described below.

本発明の請求項1に記載の液体性状検出方法は、発光部から液体に光を照射するとともに該液体を透過する透過光の光量を受光部で検出し、この検出された透過光量に基づいて液体の性状を検出する液体性状検出方法において、液体を透過し且つ液体中における光路長が異なる第1光路および第2光路を経由する光の受光量である第1受光量および第2受光量を測定するとともに、液体を透過せずに発光部から直接受光部に到る第3光路を経由する光の受光量である第3受光量を測定し、第1受光量および第2受光量の比および第1光路における液体部分の長さおよび第2光路における液体部分の長さの比に基づいて液体の透過率である第1透過率を算出し、第3受光量および算出された第1透過率に基づいて発光部の発光面および受光部の受光面に付着する異物層の透過率である第2透過率を算出し、第1透過率および第2透過率に基づいて液体の性状を判定することを特徴としている。   In the liquid property detection method according to the first aspect of the present invention, the light is emitted from the light emitting unit to the liquid, and the amount of transmitted light transmitted through the liquid is detected by the light receiving unit, and based on the detected transmitted light amount. In a liquid property detection method for detecting a property of a liquid, a first received light amount and a second received light amount, which are received light amounts of light passing through the liquid and passing through the first optical path and the second optical path having different optical path lengths, are obtained. And measuring a third received light amount that is the amount of light received through the third optical path from the light emitting unit directly to the light receiving unit without passing through the liquid, and the ratio of the first received light amount and the second received light amount Based on the ratio of the length of the liquid portion in the first optical path and the length of the liquid portion in the second optical path, the first transmittance, which is the transmittance of the liquid, is calculated, and the third received light amount and the calculated first transmission are calculated. Of the light emitting surface and the light receiving unit Calculating a second the transmittance of foreign material layer adhering to the optical surface, it is characterized by determining the nature of the liquid based on the first transmission and the second transmission.

上記構成の検出方法による、液体性状判定の考え方について説明する。   The concept of liquid property determination by the detection method having the above configuration will be described.

上記構成によれば、第1光路と第2光路とでは、その光路中における液体部分の長さが異なっており、したがって、第1受光量と第2受光量は、液体部分の長さが異なる光路を経て受光部に到達した光についてその受光量をそれぞれ測定するようにしている。ここで、液体性状、たとえば粒子濃度が高くなるほど測定された各受光量は減少するが、一方の液体部分光路長と比較して長い液体部分光路長で測定された受光量は、その距離差に含まれる粒子量に相当する分だけ、該一方の液体部分光路長(短い液体部分光路長)で測定された受光量よりも多く減衰される。そのため、粒子濃度が高くなるほど、短い液体部分光路長で測定された受光量の低下率と比較して、長い液体部分光路長で測定された受光量の低下率は大きくなる。このように、異なる液体部分光路長でそれぞれ測定された受光量の比は粒子濃度と相関関係にあるため、これらの液体部分光路長の比、およびこれら受光量の比に基づいて液体性状、たとえば粒子濃度を検出することができる。具体的には、これらの液体部分光路長の比、およびこれら受光量の比に基づいて、先ず液体の透過率である第1透過率を検出し、続いて第1透過率と相関関係にある液体性状、たとえば粒子濃度が検出される。   According to the above configuration, the length of the liquid portion in the optical path is different between the first optical path and the second optical path. Therefore, the length of the liquid portion is different between the first received light amount and the second received light amount. The amount of light received by the light reaching the light receiving unit via the optical path is measured. Here, the amount of received light that is measured decreases as the liquid property, for example, the particle concentration increases, but the amount of received light that is measured with a liquid partial optical path length that is longer than one liquid partial optical path length is the difference in distance. The amount corresponding to the amount of particles contained is attenuated more than the amount of light received measured with the one liquid partial optical path length (short liquid partial optical path length). Therefore, as the particle concentration increases, the rate of decrease in the amount of received light measured with a long liquid partial optical path length increases as compared to the rate of decrease in the amount of received light measured with a short liquid partial optical path length. Thus, since the ratio of the received light amount measured at different liquid partial optical path lengths is correlated with the particle concentration, the liquid property based on the ratio of these liquid partial optical path lengths and the ratio of these received light quantities, for example, The particle concentration can be detected. Specifically, based on the ratio of the liquid partial optical path lengths and the ratio of the amounts of received light, first the first transmittance, which is the transmittance of the liquid, is detected, and subsequently correlated with the first transmittance. Liquid properties, such as particle concentration, are detected.

ここで、発光部の発光量が変化するとその変化分は各受光量に同様に反映されるため、受光量の比を求めることにより同変化分は容易に除去することができる。換言すれば、受光量の比に基づいて液体性状、たとえば粒子濃度を検出することにより、発光部の発光量を知ることなく液体性状、たとえば粒子濃度の検出を行うことができるようになる。そのため、上記構成によれば、液体性状の検出に際して発光部の特性変化による悪影響を抑えて液体性状を精度よく検出することができる。   Here, when the light emission amount of the light emitting unit changes, the change amount is similarly reflected in each light reception amount. Therefore, the change amount can be easily removed by obtaining the ratio of the light reception amounts. In other words, by detecting the liquid property, for example, the particle concentration based on the ratio of the amount of received light, the liquid property, for example, the particle concentration can be detected without knowing the light emission amount of the light emitting unit. Therefore, according to the above configuration, it is possible to accurately detect the liquid property while suppressing the adverse effect due to the characteristic change of the light emitting unit when detecting the liquid property.

また、受光部の環境温度によってその出力特性等が変化する場合でも、その変化分は各受光量の検出値に同様に反映されるため、受光量の比を求めることにより同変化分は容易に除去することができる。そのため、上記構成によれば粒子濃度の検出に際して受光部の特性変化による悪影響を抑えて粒子濃度を精度よく検出することもできるようになる。   Even if the output characteristics change depending on the ambient temperature of the light receiving unit, the change is reflected in the detection value of each received light amount in the same way. Can be removed. Therefore, according to the above configuration, the particle concentration can be accurately detected while suppressing the adverse effect due to the change in the characteristics of the light receiving unit when detecting the particle concentration.

ところで、上述の液体性状検出方法が実施される具体的な装置は、たとえば、透光性材質から形成され内部を液体が流れるハウジングの外側に、発光部および受光部を液体を挟んで対向配置するとともに、ハウジング内に第1光路および第2光路を形成する液体通路および第3光路を形成するハウジングのみからなる部位を備えて構成されたものである。発光部からの光は、ハウジングの外表面から入射し、液体通路を経て反対側のハウジング外表面から出射して受光部に入射する。このような液体性状検出装置においては、液体中に含まれる異物が液体通路壁面に付着する。この液体通路壁面に付着した異物は、発光部から受光部に到る光路途中、すなわち第1光路および第2光路上にほぼ均一に存在するため、受光部へ向かう光が異物により吸収される等して、受光部における各受光量が減少する。   By the way, a specific apparatus in which the above-described liquid property detection method is implemented is, for example, a light-emitting part and a light-receiving part that are opposed to each other with a liquid interposed outside a housing that is made of a light-transmitting material and in which the liquid flows. At the same time, the housing includes a liquid passage that forms the first optical path and the second optical path, and a portion that includes only the housing that forms the third optical path. Light from the light emitting portion enters from the outer surface of the housing, exits from the housing outer surface on the opposite side through the liquid passage, and enters the light receiving portion. In such a liquid property detection device, foreign substances contained in the liquid adhere to the liquid passage wall surface. The foreign matter adhering to the wall surface of the liquid passage is present almost uniformly in the optical path from the light emitting portion to the light receiving portion, that is, on the first optical path and the second optical path, so that the light traveling toward the light receiving portion is absorbed by the foreign matter. Thus, each received light amount in the light receiving unit is reduced.

上述した異物の付着量が少ないとき、すなわち異物層の光透過率が高い時は、上述したように、第1受光量および第2受光量の比に基づいて第1透過率を検出し、それにより液体性状、たとえば粒子濃度を精度良く検出することができる。   When the amount of foreign matter attached is small, that is, when the light transmittance of the foreign matter layer is high, as described above, the first transmittance is detected based on the ratio of the first received light amount and the second received light amount. This makes it possible to accurately detect liquid properties such as particle concentration.

しかし、液体通路壁面における異物付着量が増加し異物層の光透過率が低下すると、第1受光量および第2受光量の比に基づいて液体性状、たとえば粒子濃度を精度良く検出することが困難となる。   However, when the foreign matter adhesion amount on the liquid passage wall surface increases and the light transmittance of the foreign matter layer decreases, it is difficult to accurately detect the liquid property, for example, the particle concentration, based on the ratio of the first received light amount and the second received light amount. It becomes.

そこで、本発明の請求項1に記載の液体性状検出方法においては、液体を透過せずに発光部から直接受光部に到る第3光路を経由する光の受光量である第3受光量を測定し、第3受光量および算出された第1透過率に基づいて液体通路壁面に付着した異物層の透過率である第2透過率を算出し、第1透過率および第2透過率に基づいて液体性状を判定するようにしている。   Therefore, in the liquid property detection method according to claim 1 of the present invention, the third light reception amount that is the amount of light received through the third optical path from the light emitting portion directly to the light receiving portion without passing through the liquid is determined. Based on the first transmittance and the second transmittance, a measurement is performed to calculate a second transmittance that is a transmittance of the foreign substance layer attached to the liquid passage wall surface based on the third received light amount and the calculated first transmittance. The liquid property is judged.

以下に、本発明の請求項1に記載の液体性状検出方法による、具体的な液体性状検出手順について説明する。   Below, the specific liquid property detection procedure by the liquid property detection method of Claim 1 of this invention is demonstrated.

第1光路および第2光路における液体中の光路長の比が1:nであるとき、「1」に該当する第1光路を経由する光の受光量である第1受光量は、その光路長における光の透過率、つまり第1透過率である透過率α、発光面および受光面である液体通路内壁面に付着した異物の光の透過率、つまり第2透過率である透過率β、ハウジング液体通路外壁に付着した異物の光の透過率を透過率γ、とした場合に次式(1)で表すことができる。ここで、各透過率はパーセント表示ではなく、0<α<1、0<β<1である。   When the ratio of the optical path lengths in the liquid in the first optical path and the second optical path is 1: n, the first received light quantity that is the received light quantity of light passing through the first optical path corresponding to “1” is the optical path length. Light transmittance, that is, transmittance α which is the first transmittance, light transmittance of foreign matter attached to the inner wall surface of the liquid passage which is the light emitting surface and the light receiving surface, that is, transmittance β which is the second transmittance, housing When the light transmittance of the foreign matter adhering to the outer wall of the liquid passage is defined as transmittance γ, it can be expressed by the following equation (1). Here, each transmittance is not expressed as a percentage, but 0 <α <1, 0 <β <1.

第1受光量=発光部の発光量×透過率α×透過率β×透過率γ・・・(1)
また、「n」に該当する第2光路を経由する光の受光量である第2受光量は、次式(2)で表すことができる。
First received light amount = light emission amount of light emitting part × transmittance α × transmittance β 2 × transmittance γ 2 (1)
Further, the second received light amount that is the received light amount of light passing through the second optical path corresponding to “n” can be expressed by the following equation (2).

第2受光量=発光部の発光量×透過率α×透過率β×透過率γ・・・(2)
また、第3光路を経由する光の受光量である第3受光量は、次式(3)で表すことができる。
Second received light amount = light emission amount of light emitting part × transmittance α n × transmittance β 2 × transmittance γ 2 (2)
Moreover, the 3rd light reception amount which is the light reception amount of the light which passes through a 3rd optical path can be represented by following Formula (3).

第3受光量=発光部の発光量×透過率γ・・・(3)
そして、第1受光量と第2受光量の比を求めると、上記式(1)および式(2)から次式(4)が得られる。
Third received light amount = light emission amount of light emitting part × transmittance γ 2 (3)
Then, when the ratio between the first received light amount and the second received light amount is obtained, the following equation (4) is obtained from the above equations (1) and (2).

第2受光量/第1受光量=(透過率α)n−1・・・(4)
そして、式(4)から次式(5)が得られる。
Second received light amount / first received light amount = (transmittance α) n−1 (4)
Then, the following equation (5) is obtained from the equation (4).

透過率α=(第2受光量/第1受光量)1/n−1・・・(5)
この式(5)から分かるように、異なる光路長の比が1:nである場合、この各光路長の比、及び各光路長で測定される各受光量の比を用いて透過率αを求めることができる。そして、周知のように液体における光の透過率とその性状、たとえば液体中に含まれる粒子濃度とは相関関係にあるため、透過率を求めることで粒子濃度を求めることができる。
Transmittance α = (second received light amount / first received light amount) 1 / n−1 (5)
As can be seen from this equation (5), when the ratio of the different optical path lengths is 1: n, the transmittance α is calculated using the ratio of the respective optical path lengths and the ratio of the respective received light amounts measured by the respective optical path lengths. Can be sought. As is well known, the transmittance of light in a liquid and its properties, for example, the concentration of particles contained in the liquid are correlated, so the particle concentration can be determined by determining the transmittance.

このように透過光量の差違に基づいて粒子濃度と相関関係にある値(透過率)を求めると、上述したように発光部や受光部の特性変化が粒子濃度の検出に与える悪影響を抑えることができるようになる。   Thus, when the value (transmittance) correlated with the particle concentration is obtained based on the difference in transmitted light amount, as described above, it is possible to suppress the adverse effect on the detection of the particle concentration due to the characteristic change of the light emitting unit or the light receiving unit. become able to.

また、第1受光量と第2受光量の差を求めると、上記式(1)および式(2)から次式(6)が得られる。   Further, when the difference between the first received light amount and the second received light amount is obtained, the following equation (6) is obtained from the above equations (1) and (2).

第2受光量−第1受光量=発光部の発光量×(α−α)×β×γ・・・(6)
そして、式(6)および式(3)から次式(7)が得られる。
Second received light amount−first received light amount = light emitting amount of light emitting portion × (α n −α) × β 2 × γ 2 (6)
Then, the following equation (7) is obtained from the equations (6) and (3).

β=〔(第2受光量−第1受光量)/{第3受光量×(α−α)}〕1/2・・・(7)
式(7)により、液体通路壁面に付着した異物層の透過率である第2透過率を検出することができる。
β = [(second received light amount−first received light amount) / {third received light amount × (α n −α)}] 1/2 (7)
By Expression (7), it is possible to detect the second transmittance that is the transmittance of the foreign material layer attached to the liquid passage wall surface.

本発明の請求項1に記載の液体性状検出方法によれば、被測定物である液体の透過率である第1透過率を検出できるのに加えて、液体通路壁面に付着した異物層の透過率である第2透過率も検出できる。したがって、第1透過率に基づいて液体性状、たとえば粒子濃度を精度良く判定できるとともに、第2透過率に基づいて液体通路壁面への異物付着状況をモニターし、付着量が多い場合には、検出した第2透過率に基づいてそれを補正して、液体性状の判定精度を良好に維持することができる。   According to the liquid property detection method of the first aspect of the present invention, in addition to being able to detect the first transmittance, which is the transmittance of the liquid as the object to be measured, the permeation of the foreign substance layer attached to the liquid passage wall surface The second transmittance, which is the rate, can also be detected. Therefore, the liquid property, for example, the particle concentration can be accurately determined based on the first transmittance, and the foreign matter adhesion state on the liquid passage wall surface is monitored based on the second transmittance. It can correct | amend based on the made 2nd transmittance | permeability, and can maintain the determination accuracy of a liquid property favorably.

本発明の請求項2に記載の液体性状検出方法は、第2透過率が所定値未満の場合には、第1透過率に基づいて液体の性状を判定し、第2透過率が所定値より大きい場合には、第1透過率および第2透過率に基づいて液体の性状を判定することを特徴としている。   In the liquid property detection method according to claim 2 of the present invention, when the second transmittance is less than a predetermined value, the property of the liquid is determined based on the first transmittance, and the second transmittance is less than the predetermined value. When it is large, the liquid property is determined based on the first transmittance and the second transmittance.

第1透過率、つまり被測定物である液体の透過率のみに基づいて液体性状を判定する場合、その判定精度は、液体通路壁面への異物付着量の影響を受ける。液体通路壁面への異物付着量が或る量に達するまでは、第1透過率のみに基づいて精度良く液体性状を判定することができる。そして、液体通路壁面への異物付着量が或る量を超えると、第1透過率のみに基づく液体性状判定の判定精度は低下する。そこで、上述した、第1透過率のみに基づいて精度良く液体性状を判定可能であるような液体通路壁面への異物付着量範囲の最大値における第2透過率の値を所定値に設定すれば、第2透過率が所定値を超えた場合においても、第2透過率に基づいて補正する、たとえば、予め用意された第2透過率の大きさと補正係数との関係を示すマップ等に基づいて補正することにより液体性状の判定精度を良好に維持することができる。   When determining the liquid property based only on the first transmittance, that is, the transmittance of the liquid to be measured, the determination accuracy is affected by the amount of foreign matter adhering to the liquid passage wall surface. Until the amount of foreign matter adhering to the wall surface of the liquid passage reaches a certain amount, the liquid property can be accurately determined based only on the first transmittance. When the amount of foreign matter attached to the liquid passage wall surface exceeds a certain amount, the determination accuracy of the liquid property determination based only on the first transmittance is lowered. Therefore, if the value of the second transmittance at the maximum value of the foreign matter adhesion amount range on the liquid passage wall surface where the liquid property can be accurately determined based on only the first transmittance described above is set to a predetermined value. Even when the second transmittance exceeds a predetermined value, correction is performed based on the second transmittance, for example, based on a map or the like indicating the relationship between the magnitude of the second transmittance and the correction coefficient prepared in advance. By correcting, the determination accuracy of the liquid property can be maintained satisfactorily.

本発明の請求項3に記載の液体性状検出方法は、第2透過率が所定値よりも大きい限界値を超えた場合には、液体性状判定を停止するとともに、そのことを知らせる警告信号を発信することを特徴としている。   In the liquid property detection method according to the third aspect of the present invention, when the second transmittance exceeds a limit value larger than a predetermined value, the liquid property determination is stopped and a warning signal is sent to notify the fact. It is characterized by doing.

液体通路壁面への異物付着量がさらに増加すると、第2透過率に基づいて補正することが困難となる。   When the amount of foreign matter attached to the liquid passage wall surface further increases, it becomes difficult to correct based on the second transmittance.

上述の構成によれば、このような場合、速やかに液体性状判定を停止することにより、誤った判定結果に基づいて何らかの処置をすることを防止できる。また、液体性状検出方法の実施者に対して、液体性状判定精度低下を知らせて、直ちに必要な処置を行わせることができる。   According to the above configuration, in such a case, it is possible to prevent any action based on an erroneous determination result by quickly stopping the liquid property determination. In addition, it is possible to notify the practitioner of the liquid property detection method of a decrease in the accuracy of liquid property determination and immediately perform necessary treatment.

本発明の請求項4に記載の液体性状検出方法は、駆動機構により発光部および受光部の少なくとも一方を他方に対して発光部の光軸と直交する方向に動かして第1受光量、第2受光量、第3受光量の測定を実行することを特徴としている。   In the liquid property detection method according to claim 4 of the present invention, at least one of the light emitting unit and the light receiving unit is moved in the direction perpendicular to the optical axis of the light emitting unit with respect to the other by the drive mechanism, and the first received light amount and the second It is characterized by measuring the amount of received light and the third amount of received light.

上述の構成によれば、発光部および受光部の少なくとも一方を他方に対して発光部の光軸と直交する方向に動かすことにより、測定光の光路が切替えられる。そのため、同一の発光部および受光部を用いて各光路を透過した光量を測定することができるので、発光部や受光部の個体差が液体性状の検出精度に与える影響を排除することができる。   According to the configuration described above, the optical path of the measurement light is switched by moving at least one of the light emitting unit and the light receiving unit in a direction perpendicular to the optical axis of the light emitting unit with respect to the other. Therefore, the amount of light transmitted through each optical path can be measured using the same light emitting unit and light receiving unit, so that the influence of individual differences between the light emitting unit and the light receiving unit on the detection accuracy of the liquid property can be eliminated.

以下、この発明に係る液体性状検出方法を具体化した第1実施形態について、各図に基づき説明する。   Hereinafter, a first embodiment embodying a liquid property detection method according to the present invention will be described with reference to the drawings.

(第1実施形態)
第1実施形態は、この発明に係る液体性状検出方法を、自動車のエンジンに取り付けられたオイル劣化検出装置におけるオイル中の粒子濃度検出に適用したものである。オイル劣化検出装置は、エンジンの潤滑油中に含まれる粒子、たとえば燃焼生成物である煤、エンジンの各運動部分で生じた磨耗粉等の濃度、つまりオイル劣化度合いを検出し、その検出結果に基づいてたとえば潤滑油の交換時期等を判定し、運転者が認知可能に表示するものである。
(First embodiment)
In the first embodiment, the liquid property detection method according to the present invention is applied to particle concentration detection in oil in an oil deterioration detection device attached to an automobile engine. The oil deterioration detection device detects the concentration of particles contained in the engine lubricating oil, such as soot that is a combustion product, wear powder generated in each moving part of the engine, that is, the degree of oil deterioration, and the detection result Based on this, for example, the replacement time of the lubricating oil is determined and displayed so that the driver can recognize it.

図1は、自動車のエンジンに取り付けられた本実施形態におけるオイル劣化検出装置1の構成を示す概略図である。   FIG. 1 is a schematic diagram showing a configuration of an oil deterioration detection device 1 according to this embodiment attached to an engine of an automobile.

エンジン50は、周知のように、吸気通路から吸入される空気及び燃料噴射弁から噴射される燃料からなる混合気をシリンダ及びピストンによって区画形成される燃焼室に吸入する。そして、この混合気は燃焼室に備えられる点火プラグにより点火されて燃焼され、燃焼後は排気ガスとして前記燃焼室から排気通路へ排出される。また、エンジン50には潤滑油が貯留されており、この潤滑油は潤滑通路51を介して同機関の可動部等に供給される。   As is well known, the engine 50 sucks an air-fuel mixture composed of air sucked from an intake passage and fuel injected from a fuel injection valve into a combustion chamber defined by a cylinder and a piston. The air-fuel mixture is ignited and burned by a spark plug provided in the combustion chamber, and after combustion, the exhaust gas is discharged from the combustion chamber to the exhaust passage. Further, lubricating oil is stored in the engine 50, and this lubricating oil is supplied to a movable part of the engine through a lubricating passage 51.

さて、本実施形態におけるオイル劣化検出装置1はエンジン50の潤滑油を検査対象液とし、その透過光量を用いて同潤滑油に混入した粒子(例えば煤等)の濃度を検出するようにしている。   Now, the oil deterioration detection apparatus 1 in this embodiment uses the lubricating oil of the engine 50 as a liquid to be inspected, and detects the concentration of particles (for example, soot) mixed in the lubricating oil using the amount of transmitted light. .

上記オイル劣化検出装置1は、検出機構10、制御装置20、表示部30、及び警報機構40等から構成されている。   The oil deterioration detection device 1 includes a detection mechanism 10, a control device 20, a display unit 30, an alarm mechanism 40, and the like.

検出機構10は検査対象液の透過光量を検出する機構であり、上記潤滑通路51の途中に配設されている。図2は、この検出機構10について、検査対象液の流れ方向に直交する方向の断面を模式的に示している。図2に示すように、検出機構10は大きく分けてボディー11、発光部としての発光ダイオード12、受光部としてのフォトダイオード13a、13b、13cおよび駆動機構14等から構成されている。   The detection mechanism 10 is a mechanism that detects the amount of light transmitted through the inspection target liquid, and is disposed in the middle of the lubrication passage 51. FIG. 2 schematically shows a cross section of the detection mechanism 10 in a direction orthogonal to the flow direction of the liquid to be inspected. As shown in FIG. 2, the detection mechanism 10 is roughly composed of a body 11, a light emitting diode 12 as a light emitting part, photodiodes 13a, 13b, 13c as a light receiving part, a driving mechanism 14, and the like.

ボディー11はその内部に検査対象液である潤滑油が流通する流路15が形成されており、流路15の両端には潤滑通路51が接続されている。ボディー11は、透光性材質、たとえば無色透明のガラス、樹脂材料等から形成されている。そして、発光ダイオード12およびフォトダイオード13a、13b、13cは、図2に示すように、ボディー11の外側に、流路15を挟んで互いに対向するように配設されている。ボディー11は、その流路15内を高温の潤滑油が流れる。また、発光ダイオード12が発する光がボディー11を透過して各フォトダイオード13a、13b、13cに入射する。そのため、ボディー11の材質には、耐熱性及び耐潤滑油性に優れること、透過光の減衰を極力抑えるために透過率の高いこと、が要求される。そこで、本実施形態ではボディー11の材質として石英ガラスを選定している。   The body 11 has a flow path 15 through which lubricating oil that is a liquid to be inspected flows, and lubrication paths 51 are connected to both ends of the flow path 15. The body 11 is made of a translucent material such as colorless and transparent glass, a resin material, or the like. As shown in FIG. 2, the light emitting diode 12 and the photodiodes 13 a, 13 b, and 13 c are disposed outside the body 11 so as to face each other with the flow path 15 interposed therebetween. In the body 11, high-temperature lubricating oil flows through the flow path 15. Further, light emitted from the light emitting diode 12 passes through the body 11 and enters each photodiode 13a, 13b, 13c. Therefore, the material of the body 11 is required to be excellent in heat resistance and lubricating oil resistance and to have a high transmittance in order to suppress attenuation of transmitted light as much as possible. Therefore, in this embodiment, quartz glass is selected as the material of the body 11.

発光ダイオード12は、上記制御装置20から駆動回路を介して所定の電圧が印加されることにより、一定光量の光を発する。発光ダイオード12の出射面には、発光ダイオード12から発せられた光を平行光にするためのレンズ(図示せず)が設けられている。このレンズ(図示せず)によって発光素子3cから発せられる光のほとんどが発散されることなく検査光として利用される。   The light emitting diode 12 emits a constant amount of light when a predetermined voltage is applied from the control device 20 through a drive circuit. A lens (not shown) for making the light emitted from the light emitting diode 12 into parallel light is provided on the emission surface of the light emitting diode 12. By this lens (not shown), most of the light emitted from the light emitting element 3c is used as inspection light without being diverged.

フォトダイオード13a、13b、13cは、発光ダイオード12から発せられた光が検査対象液である潤滑油を透過した後の光量、およびボディー11を透過した後の光量を検出するものである。本実施形態で用いられている各フォトダイオード13a、13b、13cは、受光量が増大するほど出力は大きくなる特性を有しているため、透過光量に応じた大きさの出力を得ることができる。そして各フォトダイオード13a、13b、13cの出力は上記制御装置20の増幅回路に入力される。各フォトダイオード13a、13b、13cの流路15側には、ボディー11から出射して各フォトダイオード13a、13b、13cに向かう光を各フォトダイオード13a、13b、13cに向けて集束させるための図示しないレンズが設けられている。   The photodiodes 13a, 13b, and 13c are for detecting the light quantity after the light emitted from the light emitting diode 12 has passed through the lubricating oil that is the liquid to be inspected and the light quantity after having passed through the body 11. Since each photodiode 13a, 13b, 13c used in the present embodiment has a characteristic that the output increases as the amount of received light increases, an output having a magnitude corresponding to the amount of transmitted light can be obtained. . The outputs of the photodiodes 13a, 13b, and 13c are input to the amplifier circuit of the control device 20. Illustrated for focusing light emitted from the body 11 toward the photodiodes 13a, 13b, and 13c toward the photodiodes 13a, 13b, and 13c on the flow path 15 side of the photodiodes 13a, 13b, and 13c. No lens is provided.

上記発光ダイオード12は、図2に示すように、駆動機構14に保持されている。この駆動機構14は、発光ダイオード12をフォトダイオード13a、13b、13cのいずれかに対向するように移動させるためのものである。駆動機構14は、ステッピングモータ(図示せず)、あるいはリニアソレノイド(図示せず)等のアクチュエータと、このアクチュエータの発生する駆動力を発光ダイオード12に伝達して発光ダイオード12を移動させる伝達機構(図示せず)とを備えている。   The light emitting diode 12 is held by a drive mechanism 14 as shown in FIG. The drive mechanism 14 is for moving the light emitting diode 12 so as to face any one of the photodiodes 13a, 13b, and 13c. The drive mechanism 14 is an actuator such as a stepping motor (not shown) or a linear solenoid (not shown), and a transmission mechanism (moving the light emitting diode 12 by transmitting the driving force generated by the actuator to the light emitting diode 12. (Not shown).

発光ダイオード12が図2中の実線で示す位置にあるとき、および破線12bで示す位置にあるときは、発光ダイオード12が発する光は流路15を通過し、すなわち液体である潤滑油を透過して、フォトダイオード13aあるいはフォトダイオード13bに入射する。発光ダイオード12が図2中の破線12cで示す位置にあるときは、発光ダイオード12が発する光は流路15を通過せず、石英ガラス製のボディー11のみを通過してフォトダイオード13cに入射する。すなわち、発光ダイオード12からフォトダイオード13aに到る光路が第1光路A、発光ダイオード12からフォトダイオード13bに到る光路が第2光路B、発光ダイオード12からフォトダイオード13cに到る光路が第3光路Cである。したがって、フォトダイオード13aの受光量が第1受光量P、フォトダイオード13bの受光量が第2受光量Q、フォトダイオード13cの受光量が第3受光量Rである。また、第1光路A中において流路15を透過する部分、つまり潤滑油を透過する部分の長さL1は、図2に示すように、第2光路B中において潤滑油を透過する部分の長さL2よりも長くなっている。駆動機構14により発光ダイオード12の位置を順次切替えることにより、発光ダイオード12が発する光が進行する光路が、第1光路A、第2光路B、第3光路Cに切替えられ、それに対応して、フォトダイオード13aから第1受光量Pに基づく出力信号が、フォトダイオード13bから第2受光量Qに基づく出力信号が、フォトダイオード13cから第3受光量Rに基づく出力信号が、それぞれ出力される。このように、駆動機構14を用いることにより、発光部として1個の発光ダイオード12共用して各受光量P、Q、Rの検出精度を高めることができる。   When the light emitting diode 12 is at the position indicated by the solid line in FIG. 2 and at the position indicated by the broken line 12b, the light emitted from the light emitting diode 12 passes through the flow path 15, that is, passes through the lubricating oil that is a liquid. Then, the light enters the photodiode 13a or the photodiode 13b. When the light emitting diode 12 is at the position indicated by the broken line 12c in FIG. 2, the light emitted from the light emitting diode 12 does not pass through the flow path 15, but passes only through the quartz glass body 11 and enters the photodiode 13c. . That is, the optical path from the light emitting diode 12 to the photodiode 13a is the first optical path A, the optical path from the light emitting diode 12 to the photodiode 13b is the second optical path B, and the optical path from the light emitting diode 12 to the photodiode 13c is the third. This is the optical path C. Therefore, the received light amount of the photodiode 13a is the first received light amount P, the received light amount of the photodiode 13b is the second received light amount Q, and the received light amount of the photodiode 13c is the third received light amount R. Further, the length L1 of the portion that transmits through the flow path 15 in the first optical path A, that is, the portion that transmits lubricating oil, is the length of the portion that transmits the lubricating oil in the second optical path B as shown in FIG. It is longer than L2. By sequentially switching the position of the light emitting diode 12 by the drive mechanism 14, the optical path in which the light emitted from the light emitting diode 12 travels is switched to the first optical path A, the second optical path B, and the third optical path C. An output signal based on the first received light amount P is output from the photodiode 13a, an output signal based on the second received light amount Q is output from the photodiode 13b, and an output signal based on the third received light amount R is output from the photodiode 13c. Thus, by using the drive mechanism 14, it is possible to increase the detection accuracy of each received light amount P, Q, R by sharing one light emitting diode 12 as a light emitting unit.

駆動機構14は上記制御装置20からの信号によって制御される。制御装置20は、駆動機構14における発光ダイオード12の各位置の高い精度、すなわち毎回の各位置の高い再現性が得られるように制御している。   The drive mechanism 14 is controlled by a signal from the control device 20. The control device 20 performs control so that high accuracy of each position of the light emitting diode 12 in the drive mechanism 14, that is, high reproducibility of each position every time is obtained.

上記制御装置20は、中央処理制御装置(CPU)、各種プログラムやマップ等を予め記憶した読出専用メモリ(ROM)、CPUの演算結果等を一時記憶するランダムアクセスメモリ(RAM)、入力インターフェース、出力インターフェース等を備えたマイクロコンピュータを中心として構成されている。この制御装置20は、検出機構10の検出結果等を演算処理して検査対象液である潤滑油の粒子濃度を算出するとともに、算出した粒子濃度、すなわちオイル劣化度合いを表示部30に表示する。また、制御装置20は、検出された粒子濃度、すなわちオイル劣化度合いと所定値とを比較し、オイル劣化度合いが所定値を超えた場合、たとえばオイル劣化度合いが大きくオイル交換を要する場合には、その旨を促すために警報機構40から警報を発する。   The control device 20 includes a central processing control device (CPU), a read-only memory (ROM) that stores various programs and maps in advance, a random access memory (RAM) that temporarily stores CPU calculation results, an input interface, and an output. It is mainly composed of a microcomputer equipped with an interface. The control device 20 computes the detection result of the detection mechanism 10 and the like to calculate the particle concentration of the lubricating oil that is the inspection target liquid, and displays the calculated particle concentration, that is, the degree of oil deterioration on the display unit 30. Further, the control device 20 compares the detected particle concentration, that is, the degree of oil deterioration with a predetermined value. When the degree of oil deterioration exceeds a predetermined value, for example, when the degree of oil deterioration is large and oil replacement is required, An alarm is issued from the alarm mechanism 40 to urge that effect.

次に、本実施形態におけるオイル劣化検出装置1によって行われる液体性状検出方法について説明する。   Next, a liquid property detection method performed by the oil deterioration detection device 1 in the present embodiment will be described.

本実施形態では、潤滑油透過長さが異なる第1光路Aおよび第2光路Bの光について測定された各受光量P、Qの比、第1光路Aにおける潤滑油透過部の長さL1および第2光路Bにおける潤滑油透過部の長さL2の比から潤滑油の透過率αを求めるとともに、上記の各受光量P、Qおよび潤滑油を経由しない第3光路Cの光について測定された受光量Rとから、流路15の壁面に付着した異物層の透過率βを求めている。   In the present embodiment, the ratio of the received light amounts P and Q measured for the light in the first optical path A and the second optical path B having different lubricating oil transmission lengths, the length L1 of the lubricating oil transmission part in the first optical path A, and Lubricant transmittance α was determined from the ratio of the length L2 of the lubricating oil transmission part in the second optical path B, and measured for each of the received light amounts P and Q and the light in the third optical path C not passing through the lubricating oil. From the amount of received light R, the transmittance β of the foreign substance layer adhering to the wall surface of the flow path 15 is obtained.

流路15内を流れる潤滑油の透過率は透過率αである。検出機構10のボディー11の流路15の壁面には、図2に示すように、異物が付着して異物層Xが形成され、その透過率は透過率βである。また、検出機構10のボディー11の外表面には、図2に示すように、空気中の埃、あるいは水蒸気が結露した水滴等の異物が付着して汚れ層Yが形成され、その透過率は透過率γである。第1光路Aおよび第2光路Bを進む光は、発光ダイオード12からフォトダイオード13aあるいはフォトダイオード13bに入射するまでに、汚れ層Yを2回、潤滑油を1回、異物層Xを2回通過する。第3光路Cを進む光は、発光ダイオード12からフォトダイオード13cに入射するまでに、汚れ層Yを2回通過する。また、第1光路Aにおける潤滑油透過部の長さL1および第2光路Bにおける潤滑油透過部の長さL2の比は、1:nである。ここで、発光ダイオード12の発光量を発光量Fとすると、各フォトダイオード13a、13b、13cで検出される受光量である第1受光量P、第2受光量Q、第3受光量Rは、以下の各式で表すことができる。ここで、各透過率はパーセント表示ではなく、0<α<1、0<β<1、0<γ<1である。   The transmittance of the lubricating oil flowing in the flow path 15 is the transmittance α. As shown in FIG. 2, a foreign substance adheres to the wall surface of the flow path 15 of the body 11 of the detection mechanism 10 to form a foreign substance layer X, and the transmittance is the transmittance β. Further, as shown in FIG. 2, foreign matter such as dust in the air or water droplets dewed by water vapor adheres to the outer surface of the body 11 of the detection mechanism 10 to form a dirty layer Y, and its transmittance is Transmittance γ. The light traveling along the first optical path A and the second optical path B passes through the dirt layer Y twice, the lubricating oil once, and the foreign substance layer X twice before entering the photodiode 13a or photodiode 13b from the light emitting diode 12. pass. The light traveling in the third optical path C passes through the dirt layer Y twice before entering the photodiode 13c from the light emitting diode 12. The ratio of the length L1 of the lubricating oil transmission part in the first optical path A and the length L2 of the lubricating oil transmission part in the second optical path B is 1: n. Here, if the light emission amount of the light emitting diode 12 is the light emission amount F, the first light reception amount P, the second light reception amount Q, and the third light reception amount R, which are the light reception amounts detected by the photodiodes 13a, 13b, and 13c, are: And can be represented by the following equations. Here, each transmittance is not expressed as a percentage, but 0 <α <1, 0 <β <1, and 0 <γ <1.

P=F×α×β×γ・・・(8)
Q=F×α×β×γ・・・(9)
R=F×γ・・・(10)
ここで、式(8)と式(9)から式(11)、すなわち潤滑油の透過率αが得られる。
P = F × α × β 2 × γ 2 (8)
Q = F × α n × β 2 × γ 2 (9)
R = F × γ 2 (10)
Here, the equation (8) and the equation (9) to the equation (11), that is, the lubricating oil transmittance α is obtained.

α=(Q/P)1/n−1・・・(11)
また、式(8)と式(9)から式(12)が得られる。
α = (Q / P) 1 / n−1 (11)
Moreover, Formula (12) is obtained from Formula (8) and Formula (9).

Q−P=F×(α−α)×β×γ・・・(12)
そして、式(12)および式(10)から次式(13)、すなわち異物層Xの透過率βが得られる。
Q−P = F × (α n −α) × β 2 × γ 2 (12)
Then, the following equation (13), that is, the transmittance β of the foreign material layer X is obtained from the equations (12) and (10).

β=〔(Q−P)/{R×(α−α)}〕1/2・・・(13)
上記の式(11)から分かるように、第1光路の潤滑油透過部の長さL1と第2光路の潤滑油透過部の長さL2との比を1:nにした場合、この潤滑油透過部の長さ比、および潤滑油透過部の長さの比を用いて潤滑油の透過率αを求めることができる。そして、潤滑油中に含まれる粒子濃度が高くなるほど潤滑油の透過率αは増大するという相関関係があるため、潤滑油の透過率αを求めることで液体性状、すなわち潤滑油中の粒子濃度を求めることができる。式(11)には、発光ダイオード12の発光量Fが含まれていない。言い換えると、本実施形態におけるオイル劣化検出装置1によって行われる液体性状検出方法では、発光ダイオード12の発光量Fに因らずに潤滑油の透過率α、つまり液体性状を検出できるので、発光ダイオード12の特性変化、つまり発光量の変動が与える影響を抑えることもできる。
β = [(Q−P) / {R × (α n −α)}] 1/2 (13)
As can be seen from the above equation (11), when the ratio of the length L1 of the lubricating oil transmission portion of the first optical path to the length L2 of the lubricating oil transmission portion of the second optical path is 1: n, this lubricating oil The transmittance α of the lubricating oil can be obtained by using the ratio of the length of the transmission part and the ratio of the length of the lubricating oil transmission part. And since there is a correlation that the transmittance α of the lubricating oil increases as the concentration of the particles contained in the lubricating oil increases, the liquid property, that is, the concentration of particles in the lubricating oil can be determined by determining the transmittance α of the lubricating oil. Can be sought. Expression (11) does not include the light emission amount F of the light emitting diode 12. In other words, in the liquid property detection method performed by the oil deterioration detection device 1 in the present embodiment, the transmittance α of the lubricating oil, that is, the liquid property can be detected regardless of the light emission amount F of the light emitting diode 12, so that the light emitting diode It is also possible to suppress the influence of the twelve characteristic changes, that is, the fluctuation of the light emission amount.

ところで、エンジン50の運転時間が増大すると、検出機構10の流路15の壁面には潤滑油中の異物が付着して異物層Xが形成される。異物層Xの透過率は透過率βである。異物層Xの増加に連れて透過率βは低下する。異物層Xによって発光ダイオード12からの光が吸収されることにより、フォトダイオード13a、13bの受光量P、Qは減少する。異物層Xが薄いとき、すなわち透過率βが大きい時は、潤滑油の透過率αのみに基づいて、液体性状である粒子濃度を精度良く検出することができる。しかし、流路15壁面における異物層Xが厚くなり透過率βが減少すると、潤滑油の透過率αのみに基づいて液体性状、すなわち粒子濃度を精度良く検出することが困難となる。そこで、本実施形態におけるオイル劣化検出装置1によって行われる液体性状検出方法においては、潤滑油の透過率αおよび流路15に付着した異物層Xの透過率βの両方に基づいて液体性状を判定している。たとえば、異物層Xの透過率βの大きさが、潤滑油の透過率αのみに基づく液体性状判定精度に影響しない領域にあるときは、潤滑油の透過率αのみに基づいて液体性状を判定する。異物層Xの透過率βの大きさが、所定値、つまり上述の領域の境界値を超えると、潤滑油の透過率αのみに基づく液体性状判定結果を異物層Xの透過率βに基づいて補正して、最終的な液体性状を求める。この補正は、たとえば、制御装置20に予め実験データ等に基づいて用意された透過率βの大きさと補正係数との関係を示すマップ等に基づいて行われる。   By the way, when the operating time of the engine 50 increases, the foreign matter in the lubricating oil adheres to the wall surface of the flow path 15 of the detection mechanism 10 and the foreign matter layer X is formed. The transmittance of the foreign material layer X is the transmittance β. As the foreign material layer X increases, the transmittance β decreases. When the light from the light emitting diode 12 is absorbed by the foreign material layer X, the received light amounts P and Q of the photodiodes 13a and 13b are reduced. When the foreign material layer X is thin, that is, when the transmittance β is large, the particle concentration that is a liquid property can be accurately detected based only on the transmittance α of the lubricating oil. However, if the foreign matter layer X on the wall surface of the flow path 15 becomes thick and the transmittance β decreases, it becomes difficult to accurately detect the liquid property, that is, the particle concentration based only on the transmittance α of the lubricating oil. Therefore, in the liquid property detection method performed by the oil deterioration detection device 1 in the present embodiment, the liquid property is determined based on both the transmittance α of the lubricating oil and the transmittance β of the foreign material layer X attached to the flow path 15. is doing. For example, when the size of the transmittance β of the foreign material layer X is in a region that does not affect the accuracy of liquid property determination based only on the transmittance α of the lubricating oil, the liquid property is determined based only on the transmittance α of the lubricating oil. To do. When the size of the transmittance β of the foreign material layer X exceeds a predetermined value, that is, the boundary value of the above-described region, the liquid property determination result based only on the transmittance α of the lubricating oil is based on the transmittance β of the foreign material layer X. Correct and determine the final liquid properties. This correction is performed based on, for example, a map indicating the relationship between the magnitude of the transmittance β and the correction coefficient prepared in advance in the control device 20 based on experimental data or the like.

エンジンの運転時間の経過に連れて、流路15に付着する異物層Xの厚さがさらに増大すると、上述の異物層Xの透過率βに基づく補正にもかかわらず粒子濃度を精度良く検出することが困難となる。本実施形態におけるオイル劣化検出装置1によって行われる液体性状検出方法では、このような場合、制御装置20は、速やかに液体性状判定動作を停止する。同時に、制御装置20は、警報機構40を作動させて運転者に対して液体性状判定精度が低下していることを知らせて、直ちに必要な処置、たとえば検出機構10の流路15の洗浄実施、あるいは検出機構10の交換等を行わせることができる。これにより、精度が良好でない判定結果に基づいて何らかの処置をする不具合を防止できる。   When the thickness of the foreign material layer X adhering to the flow path 15 further increases as the engine operating time elapses, the particle concentration is accurately detected despite the correction based on the transmittance β of the foreign material layer X described above. It becomes difficult. In such a liquid property detection method performed by the oil deterioration detection device 1 in this embodiment, in such a case, the control device 20 immediately stops the liquid property determination operation. At the same time, the control device 20 activates the alarm mechanism 40 to inform the driver that the liquid property determination accuracy has decreased, and immediately performs necessary actions, for example, cleaning the flow path 15 of the detection mechanism 10. Alternatively, the detection mechanism 10 can be exchanged. As a result, it is possible to prevent a problem that some kind of treatment is performed based on a determination result with poor accuracy.

上述した、本実施形態におけるオイル劣化検出装置1によって行われる液体性状検出方法では、従来の粒子濃度検出方法において測定されている潤滑油透過長さが異なる第1光路Aおよび第2光路Bの光の各受光量P、Qに加えて、潤滑油を経由しない第3光路Cの光についても受光量Rを測定している。これにより、潤滑油の透過率αに加えて、流路15に付着した異物層Xの透過率βも算出することができる。したがって、潤滑油の透過率αおよび流路15に付着した異物層Xの透過率βの両方に基づいて液体性状を判定することにより、従来の粒子濃度検出方法では高精度の粒子濃度検出が困難であった流路15に付着した異物層Xが増大した場合においても、精度良く液体性状を検出することができる。   In the liquid property detection method performed by the oil deterioration detection device 1 in the present embodiment described above, the light in the first optical path A and the second optical path B having different lubricating oil permeation lengths measured in the conventional particle concentration detection method. In addition to the received light amounts P and Q, the received light amount R is also measured for the light in the third optical path C that does not pass through the lubricating oil. Thereby, in addition to the transmittance α of the lubricating oil, the transmittance β of the foreign material layer X attached to the flow path 15 can also be calculated. Therefore, it is difficult to detect the particle concentration with high accuracy by the conventional particle concentration detection method by determining the liquid property based on both the transmittance α of the lubricating oil and the transmittance β of the foreign material layer X adhering to the flow path 15. Even when the foreign material layer X adhering to the flow path 15 increases, the liquid property can be detected with high accuracy.

次に、本実施形態におけるオイル劣化検出装置1によって行われる液体性状検出方法の処理手順について、図3のフローチャートに基づいて説明する。液体性状検出処理は、制御装置20により所定時間毎に実行される。   Next, the processing procedure of the liquid property detection method performed by the oil deterioration detection device 1 in the present embodiment will be described based on the flowchart of FIG. The liquid property detection process is executed by the control device 20 every predetermined time.

液体性状検出処理が開始されると、制御装置20は、先ずステップS1の初期化処理を実行する。   When the liquid property detection process is started, the control device 20 first executes an initialization process in step S1.

続いて、制御装置20は、ステップS2の処理として、第1光路Aによる透過光量である受光量Pを計測する。このとき、制御装置20は、駆動機構14を駆動して発光ダイオード12を第1光路Aに対応した位置にセットする。   Subsequently, the control device 20 measures the amount of received light P, which is the amount of light transmitted through the first optical path A, as the process of step S2. At this time, the control device 20 drives the drive mechanism 14 to set the light emitting diode 12 at a position corresponding to the first optical path A.

続いて、制御装置20は、ステップS3の処理として、第2光路Bによる透過光量である受光量Qを計測する。このとき、制御装置20は、駆動機構14を駆動して発光ダイオード12を第2光路Bに対応した位置にセットする。   Subsequently, the control device 20 measures the amount of received light Q, which is the amount of light transmitted through the second optical path B, as the process of step S3. At this time, the control device 20 drives the drive mechanism 14 to set the light emitting diode 12 at a position corresponding to the second optical path B.

続いて、制御装置20は、ステップS4の処理として、第3光路Cによる透過光量である受光量Rを計測する。このとき、制御装置20は、駆動機構14を駆動して発光ダイオード12を第3光路Cに対応した位置にセットする。   Subsequently, the control device 20 measures the received light amount R, which is the amount of light transmitted through the third optical path C, as the process of step S4. At this time, the control device 20 drives the drive mechanism 14 to set the light emitting diode 12 at a position corresponding to the third optical path C.

続いて、制御装置20は、ステップS5の処理として、計測した各受光量P、Q、Rに基づき透過率αおよび透過率βを算出する。   Subsequently, the control device 20 calculates the transmittance α and the transmittance β based on the measured amounts of received light P, Q, and R as the process of step S5.

続いて、制御装置20は、ステップS6の判断処理として、算出した透過率βが限界値Gよりも小さいか否かを判断する。透過率βが限界値Gよりも小さい場合は、制御装置20は、続くステップS7の処理として、透過率αおよび透過率βに基づき液体性状である粒子濃度、すなわちオイル劣化度合いKを判定する。続いて、制御装置20は、続くステップS8の処理として、判定したオイル劣化度合いKを表示部30に表示させる。   Subsequently, the control device 20 determines whether or not the calculated transmittance β is smaller than the limit value G as a determination process in step S6. When the transmittance β is smaller than the limit value G, the control device 20 determines the particle concentration that is a liquid property, that is, the oil deterioration degree K based on the transmittance α and the transmittance β as the processing of the subsequent step S7. Subsequently, the control device 20 causes the display unit 30 to display the determined degree of oil deterioration K as the subsequent process of step S8.

一方、先のステップS6における判断処理の結果、算出した透過率βが限界値G以上であるときは、制御装置20は、続くステップS9の処理として、液体性状検出処理と停止する。続いて、ステップS10の処理として、警報機構40を作動させてそのことを運転者に知らせる。   On the other hand, when the calculated transmittance β is equal to or greater than the limit value G as a result of the determination process in the previous step S6, the control device 20 stops the liquid property detection process as the subsequent process in step S9. Subsequently, as a process of step S10, the alarm mechanism 40 is activated to notify the driver of the fact.

(第2実施形態)
この発明に係る液体性状検出方法を具体化した第2実施形態について説明する。
(Second Embodiment)
A second embodiment embodying the liquid property detection method according to the present invention will be described.

第2実施形態は、第1実施形態に対してオイル劣化検出装置1の検出機構10の構成を変更したものである。検出機構10の構成以外に関しては第1実施形態と同じであるので、検出機構10の構成の変更点についてのみ説明する。   2nd Embodiment changes the structure of the detection mechanism 10 of the oil degradation detection apparatus 1 with respect to 1st Embodiment. Since the configuration other than the configuration of the detection mechanism 10 is the same as that of the first embodiment, only changes in the configuration of the detection mechanism 10 will be described.

第2実施形態におけるオイル劣化検出装置1の検出機構10では、フォトダイオードとして1個のフォトダイオード16を用いるとともに、図4に示すように、発光ダイオード12およびフォトダイオード16を共通のブラケット17に固定している。そして、ブラケット17は、駆動機構18により回転軸17aの回りに回転駆動される。   In the detection mechanism 10 of the oil deterioration detection apparatus 1 in the second embodiment, one photodiode 16 is used as a photodiode, and the light emitting diode 12 and the photodiode 16 are fixed to a common bracket 17 as shown in FIG. is doing. The bracket 17 is rotationally driven around the rotation shaft 17 a by the drive mechanism 18.

発光ダイオード12およびフォトダイオード16は、それぞれの光軸を一致させ且つ流路15の流れ方向と直交させてブラケット17に固定されている。また、ブラケット17は、その回転軸17aを流路15の流れ方向と直交させてボディー11に回転可能に保持されている。   The light emitting diode 12 and the photodiode 16 are fixed to the bracket 17 so that their optical axes coincide with each other and are orthogonal to the flow direction of the flow path 15. The bracket 17 is rotatably held by the body 11 with its rotating shaft 17a orthogonal to the flow direction of the flow path 15.

第2実施形態におけるオイル劣化検出装置1の検出機構10では、駆動機構18によりブラケット17を回転させることにより、図5に示すように、発光ダイオード12およびフォトダイオード16の光軸位置を、第1光路A、第2光路B、第3光路Cの各位置に切り替えている。これにより、第1受光量P、第2受光量Q、第3受光量Rを順次測定している。   In the detection mechanism 10 of the oil deterioration detection device 1 according to the second embodiment, the bracket 17 is rotated by the drive mechanism 18 so that the optical axis positions of the light emitting diode 12 and the photodiode 16 are changed to the first as shown in FIG. The position is switched to each position of the optical path A, the second optical path B, and the third optical path C. Thus, the first received light amount P, the second received light amount Q, and the third received light amount R are sequentially measured.

上述したように、第2実施形態においては、3個の受光量P、Q、R測定を1個のフォトダイオード16で行っているのでの各受光量P、Q、R間の相対関係の精度高めることができる。   As described above, in the second embodiment, since the three received light amounts P, Q, and R are measured by one photodiode 16, the accuracy of the relative relationship between the received light amounts P, Q, and R is as follows. Can be increased.

なお、上記各実施形態は以下のように変更して実施することもできる。   In addition, each said embodiment can also be changed and implemented as follows.

上記第1実施形態において、1個の発光ダイオード12を駆動機構14により移動させているが、3個の発光ダイオード12を各光路A、B、Cに対応して固定し、1個のフォトダイオード13を駆動機構14により移動させる構成としてもよい。   In the first embodiment, one light-emitting diode 12 is moved by the drive mechanism 14, but the three light-emitting diodes 12 are fixed corresponding to the respective optical paths A, B, and C, and one photodiode is provided. 13 may be moved by the drive mechanism 14.

上記各実施形態では、発光部である発光ダイオードおよび受光部であるフォトダイオードの少なくとも一方を移動させているが、発光ダイオードおよびフォトダイオードから構成される検出部を複数用い、すなわち第1光路A、第2光路B、第3光路C用に3個用いてもよい。   In each of the embodiments described above, at least one of the light emitting diode that is the light emitting unit and the photodiode that is the light receiving unit is moved, but a plurality of detection units each including the light emitting diode and the photodiode are used, that is, the first optical path A, Three may be used for the second optical path B and the third optical path C.

上記警報機構40から警報が発せられるとき、すなわちエンジン50の運転について不可である旨の判断がなされたときには、エンジン50の機関出力を徐々に低下させて最終的に機関運転を停止させることにより、エンジン50の故障を確実に防止することもできる。   When an alarm is issued from the alarm mechanism 40, that is, when it is determined that the operation of the engine 50 is impossible, the engine output of the engine 50 is gradually decreased to finally stop the engine operation, A failure of the engine 50 can also be reliably prevented.

上記実施形態ではエンジンの潤滑油の粒子濃度を検出する装置に本発明を適用した場合について説明したが、他の液体の粒子濃度を検出する装置にも本発明は同様に適用することができる。たとえば、潤滑油以外の他の液体である燃料あるいは自動変速機用作動液等に含まれる粒子濃度検出用途に適用してもよい。さらに、その用途を自動車用に限る必要は無く、他の用途、例えば各種民生用機器に適用してもよい。たとえば、燃焼式暖房装置の燃料中粒子濃度検出用に適用してもよい。   In the above embodiment, the case where the present invention is applied to a device for detecting the particle concentration of engine lubricating oil has been described. However, the present invention can be similarly applied to devices for detecting the particle concentration of other liquids. For example, the present invention may be applied to a particle concentration detection application contained in a fuel other than lubricating oil, a fuel for automatic transmission, or the like. Furthermore, the use need not be limited to automobiles, and may be applied to other uses such as various consumer devices. For example, the present invention may be applied to detecting the concentration of particles in the fuel of a combustion heating apparatus.

第1実施形態に係るオイル劣化検出装置の構成を説明する概略図である。It is the schematic explaining the structure of the oil deterioration detection apparatus which concerns on 1st Embodiment. 第1実施形態に係るオイル劣化検出装置の検出機構の構造を示す断面図である。It is sectional drawing which shows the structure of the detection mechanism of the oil degradation detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る液体性状検出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the liquid property detection process which concerns on 1st Embodiment. 第2実施形態に係るオイル劣化検出装置の検出機構の構造を示す断面図である。It is sectional drawing which shows the structure of the detection mechanism of the oil degradation detection apparatus which concerns on 2nd Embodiment. 図4中のV矢視図である。It is a V arrow directional view in FIG.

符号の説明Explanation of symbols

1 オイル劣化検出装置(液体性状検出装置)
10 検出機構
11 ボディー
12 発光ダイオード(発光部)
13a、13b、13c フォトダイオード(受光部)
14 駆動機構
15 流路
16 フォトダイオード
17 ブラケット
17a 回転軸
18 駆動機構
20 制御装置
30 表示部
40 警報機構
50 エンジン
51 潤滑油通路
A 第1光路
B 第2光路
C 第3光路
F 発光量
G 限界値
K オイル劣化度合い
L1、L2 長さ
P 第1受光量
Q 第2受光量
R 第3受光量
S1〜S10 ステップ
X 異物層
Y 汚れ層
α 透過率
β 透過率
γ 透過率
1 Oil deterioration detection device (liquid property detection device)
10 Detection Mechanism 11 Body 12 Light Emitting Diode (Light Emitting Unit)
13a, 13b, 13c Photodiode (light receiving part)
DESCRIPTION OF SYMBOLS 14 Drive mechanism 15 Flow path 16 Photodiode 17 Bracket 17a Rotating shaft 18 Drive mechanism 20 Control apparatus 30 Display part 40 Alarm mechanism 50 Engine 51 Lubricant oil path A 1st optical path B 2nd optical path C 3rd optical path F Light emission amount G Limit value K Degree of oil deterioration L1, L2 Length P First received light quantity Q Second received light quantity R Third received light quantity S1 to S10 Step X Foreign matter layer Y Dirt layer α transmittance β transmittance β transmittance

Claims (4)

発光部から液体に光を照射するとともに該液体を透過する透過光の光量を受光部で検出し、この検出された透過光量に基づいて前記液体の性状を検出する液体性状検出方法において、
前記液体を透過し且つ前記液体中における光路長が異なる第1光路および第2光路を経由する光の受光量である第1受光量および第2受光量を測定するとともに、前記液体を透過せずに前記発光部から直接前記受光部に到る第3光路を経由する光の受光量である第3受光量を測定し、
前記第1受光量および前記第2受光量の比および前記第1光路および前記第2光路の長さの比に基づいて前記液体の透過率である第1透過率を算出し、
前記第3受光量および算出された前記第1透過率に基づいて前記発光部の発光面および前記受光部の受光面に付着する異物層の透過率である第2透過率を算出し、
前記第1透過率および前記第2透過率に基づいて前記液体の性状を判定することを特徴とする液体性状検出方法。
In the liquid property detection method of irradiating the liquid from the light emitting unit and detecting the amount of transmitted light that passes through the liquid with the light receiving unit, and detecting the property of the liquid based on the detected transmitted light amount,
Measuring the first received light amount and the second received light amount, which are received light amounts passing through the liquid and passing through the first optical path and the second optical path having different optical path lengths in the liquid, and do not transmit the liquid Measuring a third light receiving amount that is a light receiving amount of light passing through a third optical path directly from the light emitting unit to the light receiving unit,
Calculating a first transmittance which is a transmittance of the liquid based on a ratio of the first received light amount and the second received light amount and a ratio of the length of the first optical path and the second optical path;
Based on the third received light amount and the calculated first transmittance, a second transmittance that is a transmittance of the light emitting surface of the light emitting portion and a foreign substance layer adhering to the light receiving surface of the light receiving portion is calculated,
A liquid property detection method, comprising: determining a property of the liquid based on the first transmittance and the second transmittance.
前記第2透過率が所定値未満の場合には、前記第1透過率に基づいて前記液体の性状を判定し、
前記第2透過率が所定値より大きい場合には、前記第1透過率および前記第2透過率に基づいて前記液体の性状を判定することを特徴とする請求項1に記載の液体性状検出方法。
If the second transmittance is less than a predetermined value, determine the property of the liquid based on the first transmittance,
2. The liquid property detection method according to claim 1, wherein when the second transmittance is larger than a predetermined value, the property of the liquid is determined based on the first transmittance and the second transmittance. .
前記第2透過率が所定値よりも大きい限界値を超えた場合には、液体性状判定を停止するとともに、そのことを知らせる警告信号を発信することを特徴とする請求項2に記載の液体性状検出方法。   3. The liquid property according to claim 2, wherein when the second transmittance exceeds a limit value larger than a predetermined value, the liquid property determination is stopped and a warning signal is transmitted to notify the fact. Detection method. 駆動機構により前記発光部および前記受光部の少なくとも一方を他方に対して前記発光部の光軸と直交する方向に動かして前記第1受光量、前記第2受光量、前記第3受光量の測定を実行することを特徴とする請求項1ないし請求項3のいずれか一つに記載の液体性状検出方法。   Measurement of the first received light amount, the second received light amount, and the third received light amount by moving at least one of the light emitting unit and the light receiving unit in a direction perpendicular to the optical axis of the light emitting unit with respect to the other by a driving mechanism The liquid property detection method according to claim 1, wherein the liquid property detection method is executed.
JP2007048591A 2007-02-28 2007-02-28 Liquid property detection method Expired - Fee Related JP4752791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048591A JP4752791B2 (en) 2007-02-28 2007-02-28 Liquid property detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048591A JP4752791B2 (en) 2007-02-28 2007-02-28 Liquid property detection method

Publications (2)

Publication Number Publication Date
JP2008209353A JP2008209353A (en) 2008-09-11
JP4752791B2 true JP4752791B2 (en) 2011-08-17

Family

ID=39785764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048591A Expired - Fee Related JP4752791B2 (en) 2007-02-28 2007-02-28 Liquid property detection method

Country Status (1)

Country Link
JP (1) JP4752791B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711564B2 (en) * 2011-02-17 2015-05-07 ベックマン コールター, インコーポレイテッド Automatic analyzer
JP6166096B2 (en) * 2013-05-08 2017-07-19 オプテックス株式会社 Light measuring method and apparatus
CN112888931B (en) * 2018-10-29 2024-07-23 京瓷株式会社 Measuring device
CN112304888B (en) * 2019-07-31 2022-11-29 Tcl科技集团股份有限公司 Water quality detection method, system and storage medium
JP7534516B1 (en) 2023-12-11 2024-08-14 Dmg森精機株式会社 MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408488B (en) * 1999-12-22 2001-12-27 Scan Messtechnik Gmbh MINIATURIZED SPECTROMETER
JP2001194302A (en) * 2000-01-14 2001-07-19 Otsuka Denshi Co Ltd Optical measuring instrument
JP2006234549A (en) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Absorption analyzer and absorption photometry

Also Published As

Publication number Publication date
JP2008209353A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4752791B2 (en) Liquid property detection method
JP6126217B2 (en) Sensor and method for measuring particles in a medium
KR101414923B1 (en) Flow rate measurement device and flow speed measurement device
CN106645002B (en) System for determining the concentration of a first fluid in a second fluid in a sample
KR101319801B1 (en) Oil mist detection device
US7518719B2 (en) Contaminant analyzer for fuel
KR20050096128A (en) Apparatus for on-line monitoring quality/condition of fluids
JP2008032552A (en) State detection method for engine oil
JP4314064B2 (en) Particle concentration detector
JP4371157B2 (en) Liquid volume measuring device and liquid volume measuring method
CN102859353A (en) Biofuel degradation sensor based on fluorescence measurements
JP2004340806A (en) Particle concentration detection method
JP4758401B2 (en) Particle concentration detector
JP2008145353A (en) Concentration detector for particles in liquid
US7466400B2 (en) Device and method for automatically detecting at least one fluorescent and/or light absorbing indicator contained in a liquid service fluid during the process of filling the service fluid into a machine
JPH01257245A (en) Measuring apparatus for mixing ratio of fuel for internal combustion engine
WO2011143304A2 (en) Sensitivity augmentation of opacity based particulate matter measurement system
CN1239546A (en) Diagnostic method and device for degenerated oil
JP2006162631A (en) Thermal flow measurement device
KR20110103088A (en) Smoke Detector with Detect Probe
JPH02199212A (en) Oil deterioration detector for internal combustion engine
JP3346004B2 (en) Liquid particle concentration detector
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2011154044A (en) Method for detecting engine oil condition
JP2001337006A (en) Leaked liquid sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees