[go: up one dir, main page]

JP4752181B2 - Direct methanol fuel cell and operation method thereof - Google Patents

Direct methanol fuel cell and operation method thereof Download PDF

Info

Publication number
JP4752181B2
JP4752181B2 JP2004051620A JP2004051620A JP4752181B2 JP 4752181 B2 JP4752181 B2 JP 4752181B2 JP 2004051620 A JP2004051620 A JP 2004051620A JP 2004051620 A JP2004051620 A JP 2004051620A JP 4752181 B2 JP4752181 B2 JP 4752181B2
Authority
JP
Japan
Prior art keywords
fuel
methanol
concentration
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004051620A
Other languages
Japanese (ja)
Other versions
JP2004319437A5 (en
JP2004319437A (en
Inventor
良一 奥山
幸雄 藤田
勉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2004051620A priority Critical patent/JP4752181B2/en
Publication of JP2004319437A publication Critical patent/JP2004319437A/en
Publication of JP2004319437A5 publication Critical patent/JP2004319437A5/ja
Application granted granted Critical
Publication of JP4752181B2 publication Critical patent/JP4752181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は燃料としてメタノールと水を、酸化ガスとして空気を供給して直接発電を行うことができる直接メタノール形燃料電池に関するものである。さらに言えば、直接メタノール形燃料電池の特性劣化を防止し、長期間安定して発電を行うための運転条件や品質管理などに関するものである。   The present invention relates to a direct methanol fuel cell capable of directly generating power by supplying methanol and water as fuel and air as an oxidizing gas. More specifically, the present invention relates to operating conditions and quality control for preventing power characteristic deterioration of a direct methanol fuel cell and generating power stably for a long period of time.

近年、環境問題や資源問題への対策が重要になっており、その対策のひとつとして直接メタノール形燃料電池の開発が活発に行われている。特にメタノールを燃料に用いて改質、ガス化を行うことなく直接発電に利用することができる直接メタノール形燃料電池は、構造がシンプルで小型化、軽量化が容易である。   In recent years, countermeasures to environmental problems and resource problems have become important, and direct methanol fuel cells are being actively developed as one of the countermeasures. In particular, a direct methanol fuel cell that can be directly used for power generation without reforming and gasification using methanol as a fuel has a simple structure, and can be easily reduced in size and weight.

直接メタノール形燃料電池では燃料極側にメタノール水溶液を供給すると、電池反応によって炭酸ガスが発生し、燃料排気側では廃燃料と炭酸ガスが排出される。一方、空気極側では酸化剤として空気を供給すると、電池反応により水が発生し、空気出口から排出される。   In a direct methanol fuel cell, when an aqueous methanol solution is supplied to the fuel electrode side, carbon dioxide gas is generated by the cell reaction, and waste fuel and carbon dioxide gas are discharged on the fuel exhaust side. On the other hand, when air is supplied as an oxidant on the air electrode side, water is generated by the battery reaction and discharged from the air outlet.

このような直接メタノール形燃料電池では電解質膜に用いられている、ナフィオン(デュポン社の登録商標)に代表されるパーフルオロスルホン酸を主体とするプロトン導電性高分子固体電解質に、燃料であるメタノールを透過する性質があるため、これによって電解質膜を透過したメタノールが空気極の分極を増大させることが知られている。このため、燃料中のメタノールには特性が最大となる、最適濃度があることが知られており、燃料のメタノール水溶液の濃度は1M(モル/dm3)程度の濃度が最も良いとされてきた。
しかしながら、上記のメタノール濃度は電解質膜のメタノールの透過による特性ロスをもとにした議論であり、特性がやや低くなる事さえ許容すれば、別段、濃度の濃い燃料を用いても構わないと考えられてきた(非特許文献1参照)。
In such a direct methanol fuel cell, methanol as a fuel is used as a proton conductive polymer solid electrolyte mainly composed of perfluorosulfonic acid represented by Nafion (registered trademark of DuPont), which is used for an electrolyte membrane. Therefore, it is known that the methanol that has permeated the electrolyte membrane increases the polarization of the air electrode. For this reason, it is known that methanol in fuel has an optimum concentration that maximizes the characteristics, and the concentration of methanol aqueous solution in fuel has been considered to be the best at a concentration of about 1 M (mol / dm 3 ). .
However, the above methanol concentration is an argument based on the characteristic loss due to the permeation of methanol through the electrolyte membrane. If the characteristics are allowed to be slightly lowered, it is possible to use a fuel with a higher concentration. (See Non-Patent Document 1).

また、電池運転温度に関しても、元々、直接メタノール形燃料電池が固体高分子形燃料電池と比較して出力特性が低いことから、なるべく、大きな出力特性を得るため、90℃程度の高温で運転する事が行われてきた。また、非特許文献2に記載されているように、近年は、自動車用燃料電池としての応用を考えてさらに高温の130℃程度で運転することが検討されている   Also, regarding the cell operating temperature, the direct methanol fuel cell originally has lower output characteristics than the polymer electrolyte fuel cell, so that it operates at a high temperature of about 90 ° C. in order to obtain as much output characteristics as possible. Things have been done. In addition, as described in Non-Patent Document 2, in recent years, it has been studied to operate at a higher temperature of about 130 ° C. in consideration of application as a fuel cell for automobiles.

パーフルオロスルホン酸以外の、メタノール透過の少ないプロトン導電性電解質膜を開発しようとする検討も行われており、スルホン酸化した芳香族ポリマーなどが有望である。
社団法人自動車技術会学術講演会前刷集 No.46-00,20005062 ジャーナル・オブ・ザ・エレクトロケミカル・ソサイエティー(J.Electrochem.Soc.)Vol 143,No.1,(1996),L12
Studies are underway to develop proton conductive electrolyte membranes with little methanol permeation other than perfluorosulfonic acid, and sulfonated aromatic polymers are promising.
Japan Society for Automotive Technology Academic Lecture Preprints No.46-00,20005062 Journal of the Electrochemical Society (J. Electrochem. Soc.) Vol 143, No. 1, (1996), L12

上述のような直接メタノール形燃料電池の実用化をはかるためには、数千から数万時間といった燃料電池の要求寿命に対して、電池が劣化せず、安定に運転できることが必要である。このような、電池の特性劣化を防止し、電池寿命の向上を図るためには電池の劣化モードを明らかにし、それぞれの劣化モードに対して、有効な対策を実施していくことが不可欠である。   In order to put the above-described direct methanol fuel cell into practical use, it is necessary that the battery does not deteriorate and can be stably operated with respect to the required life of the fuel cell such as thousands to tens of thousands of hours. In order to prevent such deterioration of battery characteristics and improve battery life, it is essential to clarify battery deterioration modes and to implement effective measures for each deterioration mode. .

これまで考えられていた劣化モードに対し、本発明では、直接メタノール形燃料電池の固体電解質膜に用いられているパーフルオロスルホン酸や、燃料極中で燃料極触媒、PTFE微粒子とともに添加されている、微粒子状のパーフルオロスルホン酸が、燃料であるメタノール水溶液中に溶出することによって生じるモードを見出した。この劣化モードが発生すると、燃料極中で一種の結着剤として機能している微粒子状のパーフルオロスルホン酸がその機能を失うため、燃料極触媒やPTFE微粒子などの電極材料が燃料のメタノール水溶液中に溶け出し、急激に燃料が黒変するとともに、電池特性が著しく低下する。この燃料の黒変は黒色の燃料極触媒が燃料中に混入するために生じると考えられる。この劣化モードは、急激に電池特性が低下するうえに、劣化現象は不可逆的であり、一度発生すると回復の手段はないものと考えられる。   In contrast to the degradation mode considered so far, in the present invention, it is added together with perfluorosulfonic acid used in the solid electrolyte membrane of the direct methanol fuel cell, the fuel electrode catalyst, and the PTFE fine particles in the fuel electrode. In addition, the present inventors have found a mode that is generated when fine particulate perfluorosulfonic acid elutes into a methanol aqueous solution as a fuel. When this deterioration mode occurs, the particulate perfluorosulfonic acid functioning as a kind of binder in the fuel electrode loses its function. Therefore, the electrode material such as the fuel electrode catalyst and PTFE fine particles is used as a methanol aqueous solution of fuel. It melts into the fuel, the fuel suddenly turns black, and the battery characteristics deteriorate significantly. This blackening of the fuel is considered to occur because the black anode catalyst is mixed in the fuel. In this deterioration mode, the battery characteristics are rapidly deteriorated and the deterioration phenomenon is irreversible, and it is considered that there is no means for recovery once it occurs.

この発明は、プロトン導電性高分子固体電解質膜の両側に、少なくとも貴金属または貴金属を担持した炭素からなる電極触媒と、パーフルオロスルホン酸などのプロトン導電性高分子固体電解質とを含有する燃料極と空気極とを設けて、燃料極側に燃料としてのメタノールと水を供給し、空気極側に空気中の酸素を供給して発電するようにした直接メタノール形燃料電池であって、燃料中への燃料極材料の溶出を検出するための手段と、前記検出がされた際に、燃料濃度を下げる側、もしくは運転温度を下げる側、あるいは燃料電池の出力を制限する側に、フィードバックするための制御手段とを設けたことを特徴とする。
好ましくは、燃料の色を見るための窓、もしくは燃料の色を検出するためのセンサを設ける。
The present invention relates to a fuel electrode containing at least a noble metal or an electrode catalyst made of carbon carrying a noble metal on both sides of a proton conductive polymer solid electrolyte membrane, and a proton conductive polymer solid electrolyte such as perfluorosulfonic acid. A direct methanol fuel cell that is provided with an air electrode, supplies methanol and water as fuel to the fuel electrode side, and supplies oxygen in the air to the air electrode side to generate electricity. and because of the means for issuing test the elution of the fuel electrode material, when the discovery is, the side lowering the fuel concentration or side lowering the operating temperature, or on the side for limiting the output of the fuel cell, and the feedback And a control means.
Preferably, a window for viewing the color of the fuel or a sensor for detecting the color of the fuel is provided.

またこの発明は、プロトン導電性高分子固体電解質膜の両側に、少なくとも貴金属または貴金属を担持した炭素からなる電極触媒と、パーフルオロスルホン酸などのプロトン導電性高分子固体電解質とを含有する燃料極と空気極とを設けて、燃料極側に燃料としてのメタノールと水を供給し、空気極側に空気中の酸素を供給して発電するようにした直接メタノール形燃料電池の運転方法であって、燃料中への燃料極材料の溶出を検出した際に、燃料濃度を下げる側、もしくは運転温度を下げる側、あるいは燃料電池の出力を制限する側に、フィードバックすることを特徴とする。
好ましくは、燃料の色を見るための窓、もしくは燃料の色を検出するためのセンサを設けて、燃料の色の変化により燃料中への燃料極材料の溶出を検出する。
The present invention also provides a fuel electrode comprising an electrode catalyst comprising at least a noble metal or carbon supporting a noble metal and a proton conductive polymer solid electrolyte such as perfluorosulfonic acid on both sides of the proton conductive polymer solid electrolyte membrane. A direct methanol fuel cell operation method in which methanol and water as fuel are supplied to the fuel electrode side and oxygen in the air is supplied to the air electrode side to generate electricity. When elution of the fuel electrode material into the fuel is detected, it is fed back to the side for lowering the fuel concentration, the side for lowering the operating temperature, or the side for limiting the output of the fuel cell.
Preferably, a window for viewing the color of the fuel or a sensor for detecting the color of the fuel is provided to detect elution of the anode material into the fuel by a change in the color of the fuel.

燃料電池に供給する燃料中のメタノール濃度は好ましくは2M(mol/dm3)未満にする。燃料極や空気極へ添加するプロトン導電性高分子固体電解質はパーフルオロスルホン酸化合物などの他に、芳香族ポリマーのスルホン酸化物などでも良い。
好ましくは、メタノール濃度を1.5M以下、運転温度は90℃以下とし、特に好ましくは運転温度を80℃以下とする。
The concentration of methanol in the fuel supplied to the fuel cell is preferably less than 2M (mol / dm 3 ) . The proton conductive polymer solid electrolyte added to the fuel electrode and the air electrode may be a perfluorosulfonic acid compound or the like, or an aromatic polymer sulfone oxide or the like.
Preferably, the methanol concentration is 1.5 M or less, the operation temperature is 90 ° C. or less, and the operation temperature is particularly preferably 80 ° C. or less.

この発明では、燃料電池の運転中に、燃料極材料の溶出を検出し、燃料濃度を薄め、あるいは運転温度を低下させ、もしくは出力を制限する方向にフィードバック、燃料電池の劣化が進行することを防止し、燃料電池の耐久性を増す。このためには、燃料パイプや循環タンクなどに覗き窓を設けて、燃料の黒変などを目視で観察し、劣化が生じたことを制御回路に入力できるようにしても良い。あるいは比色センサなどのセンサにより、燃料の黒変などを検出して、フィードバックしても良い。 In this invention, elution of the fuel electrode material is detected during the operation of the fuel cell, the fuel concentration is decreased, or the operation temperature is lowered, or the output is fed back in the direction of limiting the output, and the deterioration of the fuel cell proceeds. To increase the durability of the fuel cell . For this purpose, a viewing window may be provided in a fuel pipe, a circulation tank, or the like so that the blackening of the fuel is visually observed, and the fact that deterioration has occurred can be input to the control circuit. Alternatively, fuel blackening or the like may be detected by a sensor such as a colorimetric sensor and fed back.

この発明は、燃料極、空気極、電解質膜、特に燃料極中のパーフルオロスルホン酸などの固体電解質が燃料であるメタノール水溶液中に溶出する現象が、燃料中のメタノール濃度および燃料電池の運転温度と密接に関係しているとの知見に基づくものである。燃料極中の固体電解質が燃料であるメタノール水溶液中に溶出する現象は、燃料中のメタノール濃度が高いほど、また電池の運転温度が高いほど顕著に起こり、このことを発明者は実験的に確認した。   In the present invention, a phenomenon in which a solid electrolyte such as perfluorosulfonic acid in a fuel electrode, an air electrode, an electrolyte membrane, in particular, a fuel electrode elutes in a methanol aqueous solution as a fuel is caused by the concentration of methanol in the fuel and the operating temperature of the fuel cell. It is based on the knowledge that it is closely related. The phenomenon that the solid electrolyte in the fuel electrode elutes into the methanol aqueous solution, which is the fuel, occurs more markedly as the methanol concentration in the fuel is higher and the operating temperature of the battery is higher, and the inventors have confirmed this experimentally. did.

燃料中のメタノール濃度と電池温度の間にも相関関係があり、直接メタノール形燃料電池の電解質膜に用いられているパーフルオロスルホン酸などの固体電解質膜はもともとメタノールを透過させやすい性質を持っており、燃料極に供給したメタノールの一部は電池から電流を取り出さない場合においても、その一部は空気極側に透過していく。そして透過したメタノールは、空気極の触媒と空気極に供給されている空気によって急激に酸化され、電池全体が発熱する。したがって、濃い燃料を電池に供給すると、メタノールの透過によって電池温度がさらに上昇する。さらにこのメタノール透過は電池温度が高いほど大きくなるため、一旦、濃い燃料を電池に供給すると、急速に温度が上がり、電池の劣化は急速に進行する。   There is also a correlation between the concentration of methanol in the fuel and the cell temperature, and solid electrolyte membranes such as perfluorosulfonic acid used in electrolyte membranes for direct methanol fuel cells originally have the property of easily permeating methanol. Even when a part of methanol supplied to the fuel electrode does not take out current from the battery, a part of the methanol permeates to the air electrode side. The permeated methanol is abruptly oxidized by the air electrode catalyst and the air supplied to the air electrode, and the entire battery generates heat. Therefore, when rich fuel is supplied to the battery, the battery temperature further increases due to the permeation of methanol. Further, since the methanol permeation increases as the battery temperature increases, once the thick fuel is supplied to the battery, the temperature rapidly increases and the deterioration of the battery proceeds rapidly.

このような燃料電池からの燃料極材料の燃料への溶出を防止するために、燃料中のメタノール濃度を2M未満、好ましくは1.5M以下にすることが好ましい。電池の運転温度は好ましくは90℃以下、より好ましくは80℃以下に規定する。燃料極材料の溶出を完全に防止するためには、2.0M未満のなるべく低いメタノール濃度で運転することが有効であり、望ましくは0.5〜1.5M、特に0.5〜1.0Mの範囲での運転が望ましい。 In order to prevent elution of the fuel electrode material from the fuel cell into the fuel, the methanol concentration in the fuel is preferably less than 2M, and preferably 1.5M or less . The operating temperature of the battery is preferably 90 ° C. or lower, more preferably 80 ° C. or lower. In order to completely prevent the elution of the fuel electrode material, it is effective to operate at a methanol concentration as low as less than 2.0M, desirably 0.5 to 1.5M, particularly 0.5 to 1.0M. It is desirable to operate within this range.

所定の運転濃度範囲や、運転温度で、直接メタノール形燃料電池システムを制御するため、燃料電池スタック中に燃料中のメタノール濃度を感知するためのダミーセルを挿入して、濃度を検出しても良いし、燃料タンクもしくは燃料配管中にメタノールセンサーを設置して検出しても良い。また、電池温度に関しても、燃料電池スタックに直接、熱電対やサーミスターを設置し、温度を検出しても良いし、スタックの燃料出口もしくは燃料配管中の燃料温度を検出しても良い。 In order to directly control the methanol fuel cell system within a predetermined operating concentration range or operating temperature, a dummy cell for detecting the methanol concentration in the fuel may be inserted into the fuel cell stack to detect the concentration. Alternatively, a methanol sensor may be installed in the fuel tank or fuel pipe for detection. Regarding the cell temperature, a thermocouple or a thermistor may be installed directly on the fuel cell stack to detect the temperature, or the fuel outlet in the stack or the fuel temperature in the fuel pipe may be detected.

検出した燃料中のメタノール濃度および電池温度を制御回路に取り込み、スタックに2.0M以上のメタノール濃度の燃料を供給しないようにし、また好ましくは1.5M以下の濃度で90℃以下の温度に保たれるように制御する。ただし、システム起動時には2.0M未満の範囲で、濃い濃度のメタノールをスタックに供給することが望ましい。   The detected methanol concentration in the fuel and the cell temperature are taken into the control circuit so that fuel with a methanol concentration of 2.0 M or higher is not supplied to the stack, and preferably at a temperature of 90 ° C. or lower with a concentration of 1.5 M or lower. To be controlled. However, it is desirable to supply a high concentration of methanol to the stack in the range of less than 2.0M when the system is started.

メタノール濃度および運転温度は、その電池の必要出力を維持できるかぎり、なるべく低いメタノール濃度、なるべく低い運転温度で運転させることが望ましい。このような制御を行うためには、先の制御回路の中に、このような論理回路を組み入れれば良い。   As for the methanol concentration and the operating temperature, it is desirable to operate at the lowest possible methanol concentration and the lowest possible operating temperature as long as the required output of the battery can be maintained. In order to perform such control, such a logic circuit may be incorporated in the previous control circuit.

以下に実施例を説明するが、これに限るものではない。     Although an Example is described below, it is not restricted to this.

電解質膜にはパーフルオロスルホン酸系電解質膜として一般的な、デュポン社のナフィオン(ナフィオンは登録商標)を用いた。空気極は、空気極材料としての白金の微粒子を炭素粉末上に担持させた空気極触媒と、PTFE微粒子に、パーフルオロスルホン酸系電解質(ナフィオン)の溶液を混合してペーストとし、ガス拡散層としてPTFE(ポリテトラフルオロエチレン)溶液を含浸させて撥水処理を行ったカーボンペーパーに、ペーストを塗布し100℃で乾燥して作製した。燃料極は、同様に空気極と同じく撥水処理を行ったカーボンペーパーをガス拡散層に用い、燃料極材料としての白金-ルテニウムの微粒子を炭素粉末上に担持させた燃料極触媒と、PTFE微粒子、ナフィオン溶液を混合して得たペーストを塗布して、100℃で乾燥して作製した。これらの空気極、燃料極を、乾燥後に、電解質膜に積層し、130℃でホットプレスして接合し、MEA(電解質/電極接合体)を得た。MEA中では、電極中のナフィオン溶液は乾燥され、樹脂状態となり、電極部分にプロトン導電性を付与するとともに、一種の結着剤となって触媒やPTFE粒子を結合する役割を担っている。またパーフルオロスルホン酸は電極中で例えば微粒子状の形態で存在するが、連続膜状の形態で存在しても良い。また空気極触媒には、白金ブラックと称される白金の微粉末を用いてもよく、燃料極触媒には、白金−ルテニウムブラックと称される白金−ルテニウムの微粉末を用いてもよい。   As the electrolyte membrane, Nafion (Nafion is a registered trademark) manufactured by DuPont, which is common as a perfluorosulfonic acid electrolyte membrane, was used. The air electrode is a gas diffusion layer in which an air electrode catalyst in which platinum fine particles as an air electrode material are supported on carbon powder and a PTFE fine particle mixed with a perfluorosulfonic acid electrolyte (Nafion) solution to form a paste. A carbon paper impregnated with a PTFE (polytetrafluoroethylene) solution and subjected to a water repellent treatment was applied with a paste and dried at 100 ° C. Similarly to the air electrode, the fuel electrode uses carbon paper treated with water repellency in the same manner as the air electrode for the gas diffusion layer, and a fuel electrode catalyst in which platinum-ruthenium particles as a fuel electrode material are supported on carbon powder, and PTFE particles. The paste obtained by mixing the Nafion solution was applied and dried at 100 ° C. These air electrode and fuel electrode were dried, laminated on an electrolyte membrane, and hot-pressed at 130 ° C. to join to obtain an MEA (electrolyte / electrode assembly). In the MEA, the Nafion solution in the electrode is dried to be in a resin state, imparts proton conductivity to the electrode part, and serves as a kind of binder to bind the catalyst and PTFE particles. In addition, perfluorosulfonic acid is present in the form of fine particles in the electrode, but may be present in the form of a continuous film. Further, a platinum fine powder called platinum black may be used for the air electrode catalyst, and a platinum-ruthenium fine powder called platinum-ruthenium black may be used for the fuel electrode catalyst.

さらに、このようにして作製したMEAを、ガスリークの防止のためにフェノール樹脂を含浸させたグラファイト製の空気極セパレータ板(溝深さ:3mm、溝幅:3mm)、燃料極セパレータ板(溝深さ1mm、溝幅:3mm)によって挟み込み、単電池を構成した。   Further, the MEA produced in this manner was made of graphite air electrode separator plate (groove depth: 3 mm, groove width: 3 mm) impregnated with phenol resin to prevent gas leakage, fuel electrode separator plate (groove depth). Sandwiched by 1 mm in length and groove width: 3 mm) to form a single cell.

上記の劣化モードによる特性劣化を、単電池に対して検証した。80℃、1Mメタノール水溶液を燃料として燃料流速:4ml/分、空気流速:1 l/分の標準条件で、単電池の初期特性を評価した。次に初期特性を評価済みの単電池を、各種の運転温度、メタノール濃度で200mA/cm2で8時間連続運転した。その連続運転後、初期特性を測定したのと同じ標準条件で再度試験し、連続試験前後の電流密度200mA/cm2における出力密度を算出し、その変化から特性の劣化を評価した。さらに燃料極触媒の脱落は、試験後の燃料廃液の色を目視で確認することによって行った。また黒変した燃料廃液を分析し、白金およびルテニウムの存在の有無を原子吸光法によって確認した。 The characteristic deterioration due to the above-described deterioration mode was verified for the single cell. Initial characteristics of the unit cell were evaluated under standard conditions of 80 ° C. and 1M aqueous methanol as fuel, fuel flow rate: 4 ml / min, air flow rate: 1 l / min. Next, the unit cell whose initial characteristics had been evaluated was continuously operated for 8 hours at various operating temperatures and methanol concentrations of 200 mA / cm 2 . After the continuous operation, the test was performed again under the same standard conditions as the initial characteristics were measured, the output density at a current density of 200 mA / cm 2 before and after the continuous test was calculated, and the deterioration of the characteristics was evaluated from the change. Further, the fuel electrode catalyst was removed by visually checking the color of the fuel waste liquid after the test. The blackened fuel effluent was analyzed and the presence or absence of platinum and ruthenium was confirmed by atomic absorption spectrometry.

試験結果を表1〜5に示す。0.5Mの燃料濃度で80℃未満では、電流密度200mA/cm2では8時間の連続運転は出来なかった。燃料濃度が低すぎる場合には、連続運転が出来ないことが分かった。しかしながら、1.0M、1.5Mでは50〜90℃の温度域で連続運転が可能であり、燃料の黒変、特性劣化は観察されず、幾分特性が向上する現象が認められた。 Test results are shown in Tables 1-5. At a fuel concentration of 0.5 M and less than 80 ° C., continuous operation for 8 hours was not possible at a current density of 200 mA / cm 2 . It was found that continuous operation was not possible when the fuel concentration was too low. However, at 1.0M and 1.5M, continuous operation was possible in the temperature range of 50 to 90 ° C., and no blackening of fuel and deterioration of characteristics were observed, and a phenomenon in which characteristics were somewhat improved was observed.

表1
表1 結果
連続試験条件 設定温度(℃) 50 60 70 80 85 90
燃料メタノール濃度 0.5M 0.5M 0.5M 0.5M 0.5M 0.5M
出力密度 連続運転前 72 75 75 74 71 73
(mW/cm 2 ) 連続運転後 - - - 75 73 74
燃料廃液の黒変の有無 - - - なし なし なし
備考 設定温度が50〜70℃,燃料メタノール濃度が
0.5Mでは、200mA/cm 2 で連続運転できず
Table 1
Table 1 Results <br/> Temperature setting for continuous test (° C) 50 60 70 80 85 90
Fuel methanol concentration 0.5M 0.5M 0.5M 0.5M 0.5M 0.5M
Before output density continuous operation 72 75 75 74 71 73
(mW / cm 2 ) After continuous operation --- 75 73 74
Presence or absence of blackening of fuel waste liquid---None None None Remarks The set temperature is 50 to 70 ° C and the fuel methanol concentration is
In 0.5M, it can not be continuously operated at 200 mA / cm 2

表2
表2 結果
試験条件 設定温度(℃) 50 60 70 80 85 90
燃料メタノール濃度 1.0M 1.0M 1.0M 1.0M 1.0M 1.0M
出力密度 連続運転前 75 74 71 74 73 72
(mW/cm 2 ) 連続運転後 76 75 75 76 73 76
燃料廃液の黒変の有無 なし なし なし なし なし なし
Table 2
Table 2 Results <br/> Test condition setting temperature (° C) 50 60 70 80 85 90
Fuel methanol concentration 1.0M 1.0M 1.0M 1.0M 1.0M 1.0M
Before power density continuous operation 75 74 71 74 73 72
(mW / cm 2 ) After continuous operation 76 75 75 76 73 76
Whether the fuel waste liquid is blackened None None None None None None

表3
表3 結果
試験条件 設定温度(℃) 50 60 70 80 85 90
燃料メタノール濃度 1.5M 1.5M 1.5M 1.5M 1.5M 1.5M
出力密度 連続運転前 72 74 74 73 73 75
(mW/cm 2 ) 連続運転後 74 76 75 74 73 74
燃料廃液の黒変の有無 なし なし なし なし なし なし
Table 3
Table 3 Results <br/> Test condition setting temperature (° C) 50 60 70 80 85 90
Fuel methanol concentration 1.5M 1.5M 1.5M 1.5M 1.5M 1.5M
Before output density continuous operation 72 74 74 73 73 75
(mW / cm 2 ) After continuous operation 74 76 75 74 73 74
Whether the fuel waste liquid is blackened None None None None None None

表4
表4 結果
試験条件 設定温度(℃) 50 60 70 80 85 90
燃料メタノール濃度 2.0M 2.0M 2.0M 2.0M 2.0M 2.0M
出力密度 連続運転前 70 73 73 73 74 74
(mW/cm 2 ) 連続運転後 74 75 74 72 70 68
燃料廃液の黒変の有無 なし なし なし あり あり あり
備考 Pt,Ru Pt,Ru Pt,Ru
検出 検出 検出
Table 4
Table 4 Results <br/> Test condition setting temperature (° C) 50 60 70 80 85 90
Fuel methanol concentration 2.0M 2.0M 2.0M 2.0M 2.0M 2.0M
Before power density continuous operation 70 73 73 73 74 74
(mW / cm 2 ) After continuous operation 74 75 74 72 70 68
Whether there is a blackening in the fuel waste liquid No No No Yes Yes Yes
Remarks Pt, Ru Pt, Ru Pt, Ru
Detection detection detection

表5
表5 結果
試験条件 設定温度(℃) 50 60 70 80 85 90
燃料メタノール濃度 2.5M 2.5M 2.5M 2.5M 2.5M 2.5M
出力密度 連続運転前 72 73 71 72 74 73
(mW/cm 2 ) 連続運転後 71 65 60 62 51 48
燃料廃液の黒変の有無 あり あり あり あり あり あり
備考 Pt,Ru Pt,Ru Pt,Ru Pt,Ru Pt,Ru Pt,Ru
検出 検出 検出 検出 検出 検出
Table 5
Table 5 Results <br/> Test condition setting temperature (° C) 50 60 70 80 85 90
Fuel methanol concentration 2.5M 2.5M 2.5M 2.5M 2.5M 2.5M
Before output density continuous operation 72 73 71 72 74 73
(mW / cm 2 ) After continuous operation 71 65 60 62 51 48
Existence of blackening of fuel waste liquid Yes Yes Yes Yes Yes Yes
Remarks Pt, Ru Pt, Ru Pt, Ru Pt, Ru Pt, Ru Pt, Ru
Detection detection detection detection detection detection detection

2.0Mの80℃以上の連続運転では燃料が黒変し、Pt,Ruが燃料中に確認された。この条件では燃料極の電位がRuの溶出電位を超えていないにも関わらず、上記の劣化モードにより燃料極のナフィオンが溶出し、電極触媒の一部が流出したことが判明した。さらに2.5Mの燃料ではその現象が顕著になり、今回検討を行ったいずれの温度においても、特性の急激な劣化が認められた。また、運転温度が高いほどこの現象は著しかった。なお、ここでは燃料極の電位がRuの溶出電位を超えることにより燃料極触媒が燃料中に溶出する現象を「転極」と呼ぶ。   In continuous operation at 2.0 M and above 80 ° C., the fuel turned black and Pt and Ru were confirmed in the fuel. Under these conditions, it was found that although the fuel electrode potential did not exceed the Ru elution potential, Nafion of the fuel electrode was eluted by the above-described deterioration mode, and a part of the electrode catalyst flowed out. Furthermore, the phenomenon became remarkable with 2.5M fuel, and the characteristics were abruptly deteriorated at any of the temperatures examined. Moreover, this phenomenon was more remarkable as the operating temperature was higher. Here, the phenomenon in which the fuel electrode catalyst elutes into the fuel when the potential of the fuel electrode exceeds the elution potential of Ru is referred to as “polarization”.

次に本発明の実施形態の一例を図1に示す。図において、2は直接メタノール形燃料電池で、4はその燃料電池スタックで、6は高濃度メタノールタンクで、純メタノールや60重量%メタノールなどの高濃度のメタノールを貯蔵する。8は循環タンクで、0.5〜2M濃度のメタノール−水燃料を貯蔵し、10は廃液タンクで、気液分離槽を兼ね、12は制御回路である。14は冷却用のラジエターで、16はそのファン、18はラジエターを迂回するためのバイパス弁である。P1は燃料供給ポンプ、P2は燃料調整ポンプで、高濃度メタノールを循環タンクに補給する。P3は空気ポンプ、P4は廃液ポンプで、廃液を循環タンク8へ注入する。   Next, an example of an embodiment of the present invention is shown in FIG. In the figure, 2 is a direct methanol fuel cell, 4 is its fuel cell stack, and 6 is a high-concentration methanol tank, which stores high-concentration methanol such as pure methanol and 60 wt% methanol. 8 is a circulation tank for storing methanol-water fuel having a concentration of 0.5 to 2M, 10 is a waste liquid tank, which also serves as a gas-liquid separation tank, and 12 is a control circuit. Reference numeral 14 denotes a cooling radiator, 16 a fan thereof, and 18 a bypass valve for bypassing the radiator. P1 is a fuel supply pump, P2 is a fuel adjustment pump, and replenishes the circulation tank with high-concentration methanol. P3 is an air pump, P4 is a waste liquid pump, and injects the waste liquid into the circulation tank 8.

燃料電池2には各種のセンサが設けられ、CSはメタノール濃度センサ、TSは温度センサで、廃液温度を検出する。この温度はスタック4内の温度とほぼ等しく、温度センサTSの温度を運転温度とする。LS1〜LS3はレベルセンサで、レベルセンサLS1は循環タンク8の液面高さを検出し、レベルセンサLS2は高濃度メタノールタンク6の液面高さを検出し、レベルセンサLS3は廃液タンク10の液面高さを検出する。   The fuel cell 2 is provided with various sensors, CS is a methanol concentration sensor, TS is a temperature sensor, and detects the waste liquid temperature. This temperature is substantially equal to the temperature in the stack 4, and the temperature of the temperature sensor TS is set as the operating temperature. LS1 to LS3 are level sensors, the level sensor LS1 detects the liquid level height of the circulation tank 8, the level sensor LS2 detects the liquid level height of the high concentration methanol tank 6, and the level sensor LS3 detects the liquid level of the waste liquid tank 10. Detects the liquid level.

DSは劣化センサで、電極の溶出や転極を検出し、例えば光センサや比色センサなどにより、電極触媒の溶出による燃料の黒変や色の変化を検出する。また燃料の導電率や誘電率、誘電損失などの電気特性の変化を検出する。あるいはイオンセンサにより、燃料中に溶出したナフィオンに基づくフッ素イオンを検出する。またPHセンサにより、強酸性物質であるナフィオンの溶出による、PHの変化を検出する。色の変化や電気特性の変化を検出する場合、燃料極材料の溶出の他に転極も検出でき、フッ素イオンの検出やPHの監視を行う場合、主として燃料極材料の溶出を検出することになる。燃料の色の変化や電気特性の変化は、主として燃料中に溶出した触媒(炭素粉末やPt,Ruなど)によるもので、劣化センサDSはこれらが蓄積しやすい循環タンクの、特に下部の位置に設けることが好ましい。フッ素イオンの検出やPHの検出の場合、劣化センサDSの設置位置は任意である。燃料の黒変は目視でも検出でき、例えば循環タンク8の下部などに覗き窓Wを設けて、外部から燃料タンクの色を確認できるようにする。そして目視で燃料の黒変を発見すると、マニュアルスイッチSWから制御回路12へ入力できるようにする。   The DS is a deterioration sensor that detects elution and inversion of electrodes, and detects, for example, blackening or color change of the fuel due to elution of the electrode catalyst using an optical sensor or a colorimetric sensor. It also detects changes in electrical characteristics such as fuel conductivity, dielectric constant, and dielectric loss. Alternatively, fluorine ions based on Nafion eluted in the fuel are detected by an ion sensor. Moreover, the PH sensor detects a change in PH due to elution of Nafion, which is a strongly acidic substance. When detecting changes in color and electrical characteristics, inversion can be detected in addition to elution of the fuel electrode material, and when detecting fluorine ions and monitoring PH, mainly elution of the fuel electrode material is detected. Become. The change in the color of the fuel and the change in the electrical characteristics are mainly due to the catalyst (carbon powder, Pt, Ru, etc.) eluted in the fuel, and the deterioration sensor DS is located at the lower part of the circulation tank where it is easy to accumulate. It is preferable to provide it. In the case of detection of fluorine ions or detection of PH, the installation position of the deterioration sensor DS is arbitrary. The blackening of the fuel can be detected visually. For example, a viewing window W is provided in the lower part of the circulation tank 8 so that the color of the fuel tank can be confirmed from outside. If the blackening of the fuel is found visually, it can be input to the control circuit 12 from the manual switch SW.

これらのポンプ、センサー、弁の開閉等は制御回路12で管理され、燃料電池システムの状態に応じて制御される必要がある。その制御方法の一例を表6、表7に示す。燃料濃度が0.5M以下まで下がった場合には燃料調整ポンプを運転し、燃料循環タンクに高濃度メタノールを一定量供給し、燃料循環タンク内の燃料のメタノール濃度を2M以上にならない範囲で高くする。また、燃料循環タンクの燃料レベルが満タン状態の場合は高濃度メタノールの追加ができないため、80℃を越えない範囲で運転温度を上げ、水分の蒸発を大きくし、燃料レベルを下げることが必要となる。このため、例えば、ラジエター機構を迂回させ、運転温度の上昇を図る。この際には燃料流速は大きすぎないことが望ましい。また、それ以外の方法としては燃料調整ポンプを逆回転させ、高濃度メタノールタンク内に燃料循環タンクの燃料の一部をくみ上げ、燃料レベルを下げる方法も考えられる。   Opening and closing of these pumps, sensors, valves, etc. are managed by the control circuit 12 and must be controlled according to the state of the fuel cell system. An example of the control method is shown in Tables 6 and 7. When the fuel concentration falls below 0.5M, the fuel adjustment pump is operated to supply a fixed amount of high-concentration methanol to the fuel circulation tank, and the methanol concentration of the fuel in the fuel circulation tank is increased within a range not exceeding 2M. . In addition, when the fuel level in the fuel circulation tank is full, high-concentration methanol cannot be added, so it is necessary to increase the operating temperature within a range not exceeding 80 ° C, increase the evaporation of moisture, and lower the fuel level. It becomes. For this reason, for example, the radiator mechanism is bypassed to increase the operating temperature. In this case, it is desirable that the fuel flow rate is not too high. As another method, a method is also conceivable in which the fuel adjustment pump is rotated in the reverse direction, a part of the fuel in the fuel circulation tank is pumped into the high-concentration methanol tank, and the fuel level is lowered.

表6
表6 燃料電池システムの制御方法(循環タンクが満タンでないとき)

燃料濃度 電池温度
起動時もし 通常運転
通常運転時 くは設定 設定温度
0.5M未満 (0.5M〜2M) 2M以上 温度未満 範囲内 80℃以上
(1)空気
ポンプ - - - - - -
(2)燃料供給
ポンプ 流速大 - 流速大 流速小 - 流速大
(3)燃料濃度 燃料濃度 燃料 燃料
調整 大へ 濃度小へ 濃度大へ
ポンプ (2M未満) - (0.5M以上) (2M未満) - -
燃料濃度
小へ
(4)廃液 (0.5M以上)
ポンプ 流速大 - 流速大 流速小 - 流速大
(5)ラジエター バイパス ラジエ ラジエ
バイパス弁 - - - 側 ター側 ター側
(6)ラジエター
ファン - - - 停止 運転 運転
Table 6
Table 6 Control method of fuel cell system (when circulation tank is not full)

Fuel concentration cell temperature
Normal operation
Set during normal operation Set temperature
Less than 0.5M (0.5M to 2M) 2M or more Less than temperature Within range 80 ° C or more
(1) Air
Pump------
(2) Fuel supply
Pump Large flow velocity-Large flow velocity Small flow velocity-Large flow velocity
(3) Fuel concentration Fuel concentration Fuel Fuel adjustment To large To low concentration To high concentration
Pump (Less than 2M)-(0.5M or more) (Less than 2M)--
Fuel concentration
Small
(4) Waste liquid (0.5M or more)
Pump Large flow velocity-Large flow velocity Small flow velocity-Large flow velocity
(5) Radiator bypass Radier Radier
Bypass valve---side
(6) Radiator
Fan---Stop Driving Driving

表7
表7 燃料電池システムの制御方法(循環タンクが満タンの時)

燃料濃度 電池温度
起動時もし 通常運転
通常運転時 くは設定 設定温度
0.5M未満 (0.5M〜2M) 2M以上 温度未満 範囲内 80℃以上
(1)空気
ポンプ - - - - - -
(2)燃料供給
ポンプ 流速小 - 流速大 流速小 - 流速大
逆回転させ 逆回転させ
(3)燃料 燃料 循環タンク 燃料 循環タンク
濃度調整 濃度大へ レベルを 濃度大へ レベルを
ポンプ (2M未満) - 下げる (2M未満) - 下げる
燃料 燃料
濃度小へ 濃度小へ
(4)廃液 (0.5M以上) (0.5M以上)
ポンプ 流速小 - 流速大 流速小 - 流速大
(5)ラジエ
ターバイ バイパス ラジエ バイパス ラジエ ラジエ
パス弁 側 - ター側 側 ター側 ター側
(6)ラジエ
ターファン 停止 - 運転 停止 運転 運転
Table 7
Table 7 Control method of the fuel cell system (when the circulation tank is full)

Fuel concentration cell temperature
Normal operation
Set during normal operation Set temperature
Less than 0.5M (0.5M to 2M) 2M or more Less than temperature Within range 80 ° C or more
(1) Air
Pump------
(2) Fuel supply
Pump Low flow rate-high flow rate Low flow rate-high flow rate
Reverse rotation reverse rotation
(3) Fuel Fuel Circulation Tank Fuel Circulation Tank Concentration Adjustment To Level High To Level To Level High
Pump (less than 2M)-Lower (less than 2M)-Lower
Fuel fuel
To low concentration To low concentration
(4) Waste liquid (0.5M or more) (0.5M or more)
Pump Low flow rate-high flow rate Low flow rate-high flow rate
(5) Radiator Bypass Radiator Bypass Radiator Radier
Pass valve side-Turner side Turner side Turner side
(6) Radier
Turfan Stop-Run Stop Run Run

燃料濃度が2M以上になってしまった場合には排液ポンプを作動させ、廃液タンクの中に回収した低濃度メタノール廃液を燃料循環タンク内へ供給する。また、燃料循環タンクの燃料レベルが満タン状態の場合は低濃度メタノール廃液の追加ができないため、先と同じく、ラジエター機構を迂回させ、運転温度の上昇を図ることも考えられるが、燃料温度が高くなるとMEAの劣化が進行するため、この際には運転温度を上げないことが望ましい。このため、燃料調整ポンプを逆回転させ、高濃度メタノールタンク内に燃料循環タンクの燃料の一部をくみ上げ、燃料レベルを下げる方法が有効と考える。 When the fuel concentration becomes 2M or more, the drain pump is operated to supply the low concentration methanol waste liquid collected in the waste liquid tank into the fuel circulation tank. In addition, when the fuel level in the fuel circulation tank is full, low-concentration methanol waste liquid cannot be added, so it is possible to bypass the radiator mechanism and increase the operating temperature as before, but the fuel temperature is Since the deterioration of MEA progresses at higher temperatures, it is desirable not to raise the operating temperature at this time. For this reason, it is considered effective to rotate the fuel adjustment pump in the reverse direction, draw a part of the fuel in the fuel circulation tank into the high concentration methanol tank, and lower the fuel level.

次に電池起動時や運転温度が設定温度未満になった場合には、電池温度を上げるために、ラジエターバイパス弁をバイパス側にしてラジエターで冷却を行わないとともに、燃料濃度を2M未満の範囲で大きくし、メタノールクロスリークを利用して電池温度の上昇を図ることができる。   Next, when starting the battery or when the operating temperature is lower than the set temperature, in order to raise the battery temperature, the radiator bypass valve is bypassed and the radiator is not cooled, and the fuel concentration is within a range of less than 2M. The battery temperature can be increased by using methanol cross leak.

また、電池温度が80℃を越えるような場合には電池温度を下げるために、ラジエターバイパス弁をラジエター側として燃料の冷却を行うとともに、燃料濃度を0.5M未満にならない範囲で低下させることができる。   In addition, when the battery temperature exceeds 80 ° C., in order to lower the battery temperature, the radiator bypass valve is used as a radiator side to cool the fuel, and the fuel concentration can be lowered within a range not lower than 0.5M. .

制御回路12の構成を図2に示すと、20は入力インターフェースで、センサCS,TS,LS1〜LS3などからの信号を入力されて、燃料電池2の状態を把握する。またCPU(制御処理装置)22は、入力インターフェース20からのセンサ信号と、起動信号と、劣化検出部26からの信号を用いて、出力インターフェース24を介して、ポンプP1〜P4,バイパス弁18,ファン16などを駆動する。起動信号は、燃料電池2の起動時にオンし、起動から所定時間の間、あるいは燃料電池温度が所定温度に達するまでの間は、表6、表7に示すように、目標温度をやや高め(80℃以下)に、燃料濃度をやや濃いめ(2M未満)に、制御目標を変更する。   The configuration of the control circuit 12 is shown in FIG. 2. Reference numeral 20 denotes an input interface, which receives signals from sensors CS, TS, LS1 to LS3, etc., and grasps the state of the fuel cell 2. Further, the CPU (control processing device) 22 uses the sensor signal from the input interface 20, the start signal, and the signal from the deterioration detection unit 26 to output the pumps P <b> 1 to P <b> 4, the bypass valve 18, The fan 16 and the like are driven. The activation signal is turned on when the fuel cell 2 is activated, and the target temperature is increased slightly as shown in Tables 6 and 7 for a predetermined time after the activation or until the fuel cell temperature reaches the predetermined temperature ( The control target is changed to a slightly higher fuel concentration (less than 2M).

劣化検出部26は、マニュアルスイッチSWや劣化センサDSからの信号で、劣化を検出し、制御目標を変更する。例えば劣化センサDSの信号により、劣化無し、劣化レベル1,劣化レベル2,劣化レベル3の4つのレベルに、燃料電池の状態を判別できるとする。劣化無しの場合は表6、表7などに記載の条件で制御を施し、劣化レベル1で燃料濃度の上限を1.5Mに、電池温度の上限を70℃に変更し、劣化レベル2で燃料濃度の上限を1Mに、電池温度の上限を60℃に変更し、劣化レベル3では燃料電池の運転を終了する。また劣化検出部26はLCD28などの表示部を介して、劣化の程度などを表示する。劣化を検出した際の処理は、燃料電池での燃料濃度の目標値を低下させ、運転温度の目標値を低下させて、劣化の進行を阻止することである。あるいは燃料濃度や運転温度の目標値を低下させることに代えて、またはこれらに加えて、燃料電池の出力(出力電流や出力電力など)に上限を課す、あるいは上限が既に存在する場合は、上限を低下させるなどにより、出力を制限しても良い。これらによって、燃料電池の寿命や耐久性を大幅に延ばすことができる。   The deterioration detection unit 26 detects deterioration based on signals from the manual switch SW and the deterioration sensor DS, and changes the control target. For example, it is assumed that the state of the fuel cell can be discriminated into four levels of no deterioration, deterioration level 1, deterioration level 2, and deterioration level 3 based on a signal from the deterioration sensor DS. When there is no deterioration, control is performed under the conditions described in Table 6, Table 7, etc., the upper limit of the fuel concentration is changed to 1.5M at the deterioration level 1, the upper limit of the cell temperature is changed to 70 ° C., and the fuel at the deterioration level 2 The upper limit of the concentration is changed to 1 M, the upper limit of the battery temperature is changed to 60 ° C., and the fuel cell operation is terminated at the deterioration level 3. The deterioration detection unit 26 displays the degree of deterioration and the like via a display unit such as an LCD 28. The process when the deterioration is detected is to reduce the target value of the fuel concentration in the fuel cell and to reduce the target value of the operating temperature to prevent the progress of the deterioration. Alternatively, instead of or in addition to lowering the target value of fuel concentration and operating temperature, an upper limit is imposed on the output (output current, output power, etc.) of the fuel cell, or an upper limit if an upper limit already exists The output may be limited by lowering the output. By these, the life and durability of the fuel cell can be greatly extended.

次に燃料電池の品質管理の面から、燃料極の溶出について説明する。例えば製造した燃料電池に対して、単電池であるいは燃料電池スタックで、所定の条件で動作させて、燃料極材料の溶出の有無を検査すれば、燃料電池の品質管理を行うことができる。運転条件としては、例えば代表的なサンプルに対して、通常の運転条件よりも厳しい条件、メタノール濃度が2M超で、例えば4M〜60%メタノールなど、運転温度が80℃超で、例えば90〜110℃などで、燃料電池を運転し、燃料中への燃料極材料の溶出の有無や溶出量などの溶出特性を測定する。あるいはこのような耐久条件の前後での電圧/電流特性の変化などを測定する。   Next, elution of the fuel electrode will be described from the aspect of quality control of the fuel cell. For example, the quality control of the fuel cell can be performed by operating the manufactured fuel cell with a single cell or a fuel cell stack under predetermined conditions and checking for elution of the fuel electrode material. As the operating conditions, for example, for a typical sample, conditions that are stricter than normal operating conditions, methanol concentration is higher than 2M, such as 4M to 60% methanol, and the operating temperature is higher than 80 ° C., for example, 90 to 110. Operate the fuel cell at ℃ etc. and measure the elution characteristics such as the presence or absence and elution amount of the anode material in the fuel. Alternatively, changes in voltage / current characteristics before and after such durability conditions are measured.

上記のような加速テストに変えて、通常の使用条件で燃料電池を作動させた際の、燃料極材料の溶出の有無や電圧/電流特性の変化などを測定しても良い。また単電池や燃料電池スタックなどの電池を試料として、溶出特性を評価することに代えて、燃料極単体で溶出特性を評価しても良い。例えばMEAの製造方法として説明したようにして、撥水処理済みのカーボンペーパーに、燃料極材料のペーストを塗布し、ホットプレス温度に相当する温度などで乾燥する。乾燥温度は、MEAを製造する際に経験する最高温度が好ましいが、MEAでの燃料極材料の溶出特性と相関が取れる範囲であればよい。そして乾燥済みの単独の燃料極に対して、燃料中への燃料極材料の溶出を評価すればよい。   Instead of the acceleration test as described above, the presence or absence of elution of the fuel electrode material and the change in voltage / current characteristics when the fuel cell is operated under normal use conditions may be measured. Moreover, instead of evaluating the elution characteristics using a cell such as a single cell or a fuel cell stack as a sample, the elution characteristics may be evaluated by a single fuel electrode. For example, as described in the MEA manufacturing method, a fuel electrode material paste is applied to carbon paper that has been subjected to water repellent treatment, and dried at a temperature corresponding to a hot press temperature or the like. The drying temperature is preferably the highest temperature experienced when manufacturing the MEA, but may be in a range that can be correlated with the elution characteristics of the fuel electrode material in the MEA. The elution of the fuel electrode material into the fuel may be evaluated with respect to the dried single fuel electrode.

燃料極材料の溶出の有無や程度は、単電池や燃料電池スタックで評価する場合も、燃料極単独でその特性変化から評価する場合も、燃料の黒変、電気特性の変化、フッ素イオンの検出、PHの変化、原子吸光分析などの微量元素分析などを用いればよい。さらに耐久テストの前後での電圧/電流特性の変化などからも、間接的に燃料極材料の溶出を評価できる。評価に用いる溶媒には、メタノール−水などに限らず、イソプロパノール−水などの極性溶媒を用いることができる。   Whether or not the elution of the fuel electrode material is evaluated with a single cell or a fuel cell stack, or when evaluating the characteristics of the fuel electrode alone, whether it is due to changes in its characteristics, blackening of the fuel, changes in electrical characteristics, detection of fluorine ions And trace element analysis such as change in pH and atomic absorption analysis may be used. Furthermore, elution of the fuel electrode material can be indirectly evaluated from changes in voltage / current characteristics before and after the durability test. The solvent used for the evaluation is not limited to methanol-water, but a polar solvent such as isopropanol-water can be used.

図3に、6Mのメタノール−水混合燃料を用い、80℃(下限温度)〜90℃(上限温度)の間で、30分間燃料電池を動作させた耐久テスト前後での、電圧/電流特性の変化を示す。図中の1M MeOH、70℃の試験条件は、耐久テストの前後での電圧/電流特性の測定条件である。この例では、燃料極や空気極の固体電解質膜(ナフィオン膜)へのホットプレス温度を190℃にし、燃料極中のナフィオンの溶出を抑制するようにした。6Mのメタノールを用いると、燃料中への燃料極触媒の溶出が検出され、溶出量はホットプレス温度が低い程大きく、また30分間の6Mメタノール中での運転の影響は、ホットプレス温度が低い程大きかった。   FIG. 3 shows the voltage / current characteristics before and after an endurance test in which a fuel cell was operated for 30 minutes between 80 ° C. (lower limit temperature) and 90 ° C. (upper limit temperature) using a 6M methanol-water mixed fuel. Showing change. The test conditions of 1M MeOH and 70 ° C. in the figure are the measurement conditions of the voltage / current characteristics before and after the endurance test. In this example, the hot press temperature for the solid electrolyte membrane (Nafion membrane) of the fuel electrode and the air electrode is set to 190 ° C. to suppress the elution of Nafion in the fuel electrode. When 6M methanol is used, elution of the fuel electrode catalyst into the fuel is detected, and the elution amount becomes larger as the hot press temperature is lower, and the effect of operation in 6M methanol for 30 minutes is lower. It was big.

補足
実施例ではプロトン導電性高分子固体電解質としてNafion(デュポン社の登録商標)を示したが、他のパーフルオロスルホン酸ポリマーや芳香族ポリマーのスルホン酸化合物などでも良い。
In the supplementary examples, Nafion (registered trademark of DuPont) was shown as the proton conductive polymer solid electrolyte, but other perfluorosulfonic acid polymers and aromatic polymer sulfonic acid compounds may also be used.

実施例の直接メタノール形燃料電池のブロック図Block diagram of direct methanol fuel cell of embodiment 実施例での制御部のブロック図Block diagram of the control unit in the embodiment 燃料極の溶出に伴う電圧電流特性の変化を示す特性図Characteristic diagram showing changes in voltage-current characteristics with elution of fuel electrode

符号の説明Explanation of symbols

2 直接メタノール形燃料電池
4 燃料電池スタック
6 高濃度メタノールタンク
8 循環タンク
10 廃液タンク
12 制御回路
14 ラジエター
16 ファン
18 バイパス弁
20 入力インターフェース
22 制御処理装置(CPU)
24 出力インターフェース
26 劣化検出部
28 LCD
P1 燃料供給ポンプ
P2 燃料調整ポンプ
P3 空気ポンプ
P4 廃液ポンプ
CS メタノール濃度センサ
TS 温度センサ
LS1〜LS3 レベルセンサ
DS 劣化センサ
W 覗き窓
SW マニュアルスイッチ
2 Direct methanol fuel cell 4 Fuel cell stack 6 High-concentration methanol tank 8 Circulation tank 10 Waste liquid tank 12 Control circuit 14 Radiator 16 Fan 18 Bypass valve 20 Input interface 22 Control processing device (CPU)
24 Output Interface 26 Deterioration Detection Unit 28 LCD
P1 Fuel supply pump P2 Fuel adjustment pump P3 Air pump P4 Waste liquid pump CS Methanol concentration sensor TS Temperature sensors LS1 to LS3 Level sensor DS Degradation sensor W Viewing window SW Manual switch

Claims (2)

プロトン導電性高分子固体電解質膜の両側に、少なくとも貴金属または貴金属を担持した炭素からなる電極触媒と、プロトン導電性高分子固体電解質とを含有する燃料極と空気極とを設けて、燃料極側に燃料としてのメタノールと水を供給し、空気極側に空気中の酸素を供給して発電するようにした直接メタノール形燃料電池であって、
燃料中への燃料極材料の溶出を検出するための手段と、
前記検出がされた際に、燃料濃度を下げる側、もしくは運転温度を下げる側、あるいは燃料電池の出力を制限する側に、フィードバックするための制御手段とを設けたことを特徴とする、直接メタノール形燃料電池。
Provided on both sides of the proton conductive polymer solid electrolyte membrane is an electrode catalyst made of at least a noble metal or carbon carrying a noble metal, a fuel electrode containing a proton conductive polymer solid electrolyte, and an air electrode. A direct methanol fuel cell in which methanol and water as fuel are supplied to the air electrode and oxygen in the air is supplied to the air electrode side to generate electricity,
Means because issuing test the elution of the fuel electrode material into the fuel,
When the discovery is, the side lowering the fuel concentration or side lowering the operating temperature, or on the side for limiting the output of the fuel cell, characterized in that a control means for feedback, direct Methanol fuel cell.
プロトン導電性高分子固体電解質膜の両側に、少なくとも貴金属または貴金属を担持した炭素からなる電極触媒と、プロトン導電性高分子固体電解質とを含有する燃料極と空気極とを設けて、燃料極側に燃料としてのメタノールと水を供給し、空気極側に空気中の酸素を供給して発電するようにした直接メタノール形燃料電池の運転方法であって、
燃料中への燃料極材料の溶出を検出した際に、燃料濃度を下げる側、もしくは運転温度を下げる側、あるいは燃料電池の出力を制限する側に、フィードバックすることを特徴とする、直接メタノール形燃料電池の運転方法。
Provided on both sides of the proton conductive polymer solid electrolyte membrane is an electrode catalyst made of at least a noble metal or carbon carrying a noble metal, a fuel electrode containing a proton conductive polymer solid electrolyte, and an air electrode. A method of operating a direct methanol fuel cell in which methanol and water as fuel are supplied to the air electrode and oxygen in the air is supplied to the air electrode side to generate electricity,
When methanol elution is detected in the fuel, it is fed back to the fuel concentration decreasing side, the operating temperature decreasing side, or the fuel cell output limiting side. How to operate a fuel cell.
JP2004051620A 2003-03-31 2004-02-26 Direct methanol fuel cell and operation method thereof Expired - Fee Related JP4752181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051620A JP4752181B2 (en) 2003-03-31 2004-02-26 Direct methanol fuel cell and operation method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003096237 2003-03-31
JP2003096237 2003-03-31
JP2004051620A JP4752181B2 (en) 2003-03-31 2004-02-26 Direct methanol fuel cell and operation method thereof

Publications (3)

Publication Number Publication Date
JP2004319437A JP2004319437A (en) 2004-11-11
JP2004319437A5 JP2004319437A5 (en) 2007-04-05
JP4752181B2 true JP4752181B2 (en) 2011-08-17

Family

ID=33478726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051620A Expired - Fee Related JP4752181B2 (en) 2003-03-31 2004-02-26 Direct methanol fuel cell and operation method thereof

Country Status (1)

Country Link
JP (1) JP4752181B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150106A (en) * 2003-10-24 2005-06-09 Yamaha Motor Co Ltd Fuel cell system and transport equipment using above
JP4375208B2 (en) 2004-11-17 2009-12-02 日産自動車株式会社 Fuel cell output limiting device
JP4803699B2 (en) * 2004-12-06 2011-10-26 独立行政法人日本原子力研究開発機構 Polymer electrolysis cell degradation assessment method
US7419732B2 (en) * 2005-02-11 2008-09-02 Gore Enterprise Holdings, Inc. Method for reducing degradation in a fuel cell
TWI344719B (en) * 2007-09-11 2011-07-01 Iner Aec Executive Yuan Fuel supplying and controlling method and fuel cell apparatus using the same
JP5406561B2 (en) * 2009-02-27 2014-02-05 ヤマハ発動機株式会社 Fuel cell system and transportation equipment including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115670A (en) * 1985-11-15 1987-05-27 Toshiba Corp Fuel cell power generating plant
JP4131916B2 (en) * 2001-05-02 2008-08-13 株式会社東芝 Operation method of fuel cell power generator

Also Published As

Publication number Publication date
JP2004319437A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
Varcoe et al. Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes
Yousfi-Steiner et al. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation
Gode et al. Membrane durability in a PEM fuel cell studied using PVDF based radiation grafted membranes
Shi et al. A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells
Rejal et al. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover
Siddiqui et al. Investigation of a new anion exchange membrane‐based direct ammonia fuel cell system
JP4334578B2 (en) Fuel cell system
US20100196800A1 (en) High efficiency fuel cell system
JPWO2004030134A1 (en) Liquid fuel direct supply fuel cell system, operation control method and operation control apparatus thereof
Baglio et al. Investigation of the electrochemical behaviour in DMFCs of chabazite and clinoptilolite-based composite membranes
WO2007052744A1 (en) Electrochemical energy generation device and its operation method, and electrochemical device
Wasterlain et al. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques
US20070227900A1 (en) Performance enhancement via water management in electrochemical cells
WO2004088781A1 (en) Direct methanol type fuel cell and method of preventing elution of its fuel pole, quality control method and operation method
JP4752181B2 (en) Direct methanol fuel cell and operation method thereof
JP2009059669A (en) Operation method of fuel cell
JP2005251434A (en) Fuel cell system, and control method of fuel cell
Almheiri et al. Direct measurement of methanol crossover fluxes under land and channel in direct methanol fuel cells
JP7204815B2 (en) Reversible Shunt for Overcharge Protection of Polymer Electrolyte Membrane Fuel Cells
Bharath et al. Effect of humidity on the interaction of CO2 with alkaline anion exchange membranes probed using the quartz crystal microbalance
JP2004319437A5 (en)
WO2012063414A1 (en) Method for operating solid polymer fuel cell system, and solid polymer fuel cell system
JP2008041646A (en) Fuel cell system and activation treatment method of fuel cell
JP2005158298A (en) Operation method of fuel cell power generation system, and fuel cell power generation system
CN100444448C (en) Direct Methanol Fuel Cell and Method for Preventing Leakage of Fuel Electrode, Quality Control Method, and Operation Method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees